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Abstract

Since the pioneer work by Ottenstein and Ottenstein, the notion of Program Depen-
dency Graph (PDG) has attracted a wide variety of compelling applications in software
engineering, e.g. program slicing, information flow security analysis, debugging, code-
optimization, code-reuse, code-understanding, and many more. Since its inception, a
number of variants are also proposed for various programming languages and features,
possibly tuning them towards their suitable application domains. In order to exploit the
power of dependency graph in solving problems related to relational database appli-
cations, Willmor et al. first proposed Database Oriented Program Dependency Graph
(DOPDG), an extension of PDG by taking database statements and their dependencies
further into consideration. However, we observed that the dependency information
generated by the DOPDG construction algorithm is prone to imprecision primarily
due to its (partially) syntax-based computation and flow insensitivity, and therefore
the approach may increase the susceptibility of false alarms in the above-mentioned
application scenarios. Unfortunately, since then no significant contribution is found
in this research direction. As the values of database attributes differ from that of im-
perative language variables, the computation of semantics (and hence semantics-based
dependency) of database applications is, however, challenging and requires different
treatment. The key point here is the static identification of various parts of the database
information possibly accessed or manipulated by database statements at various pro-
gram points. Addressing these challenges, in this thesis, we aim to answer the following
two main research objectives: (1) How to obtain more precise dependency information
(hence more precise DOPDG)? and (2) How to compute them efficiently? To this aim,
we define a sound semantics approximation of database applications embedding ei-
ther Structured Query Language (SQL) or Hibernate Query Language (HQL) by the
Abstract Interpretation framework. Considering this as the underlying basis, we instan-
tiate semantics-based dependency computation in various relational and non-relational
abstract domains, yielding to a detailed comparative analysis with respect to precision
and efficiency. Notably, this framework is powerful enough to provide solution even in
the case of undecidable scenario when no initial database state is given. We develop a
prototype semDDA, semantics-based Database Dependency Analyzer, integrated with
various abstract domains and we present experimental evaluation results to establish
the effectiveness of our approach. We show an improvement of the precision on an
average of 6% in the interval, 11% in the octagon, 21% in the polyhedra and 7% in the
powerset of intervals abstract domains, as compared to their syntax-based counterpart,
for the chosen set of Java Server Page (JSP)-based open-source database-driven web
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applications as part of the GotoCode project. Finally, we demonstrate the effect of this
semantics-driven dependency refinement on database code slicing and information
leakage analysis, as two case studies.

Keywords: Dependency Graph, Static Analysis, Abstract Interpretation, Relational
Databases, Structured Query Languages, Hibernate Query Languages, Code Slicing,
Information Flow Analysis.
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C H A P T E R 1

Introduction

©

Preface
This chapter starts with a brief introduction on the role of database applications in

information systems scenarios and the need of dependency analysis as a way to solve

various software engineering problems related to database applications. Then we high-

light the motivational factors, possible challenges, and chapter-wise contributions.

©



Introduction

Over the decades, database applications are playing a pivotal role in every aspect of

our daily lives by providing an easy interface to store, access and process crucial data

with the help of Database Management System (DBMS). Their existence are realized

everywhere, ranging from simple web applications to the critical systems like banking,

health-care, etc. Usually database applications are often written in popular host pro-

gramming languages such as C, C++, C#, Java, etc., with embedded data access logic

expressed declaratively in Structured Query Language (SQL) [38,43,47]. Furthermore,

researchers have given enough efforts to minimize paradigm mismatch when database

statements are embedded in other host languages. Hibernate Query Language (HQL)

is one such instance which remedies the paradigm mismatch between object-oriented

languages and relational database models and provides a unified platform for software

developers to develop database applications without knowing much details about the

underlying databases [11, 12, 42]. Various methods in “Session” are used to propagate

object’s states from memory to the database (or vice versa) and to synchronize both

states when a change is made to persistent objects.

Static program analysis is recognized as a fundamental approach to collect infor-

mation about the behavior of computer programs for all possible inputs, without per-

forming any actual execution [97]. Over the past several decades, continuous and

concerted research efforts in this direction make them powerful enough to solve many

non-trivial questions about program’s behavior, although they are undecidable in prac-

tice [81,97]. Some notable and widely used static analysis techniques include Data-flow

analysis [104,114], Control-flow analysis [3], Type-based Theory [98,101,115], Abstract

Interpretation [30, 31], etc.

Observably most of the existing static analysis techniques in the literature make

use, implicitly or explicitly, of dependency information among program statements

and variables, solving a large number of software engineering tasks. Examples in-

clude information-flow security analysis [59], taint analysis [79], program slicing [116],

optimization [17, 45], code-reuse [72], code-understanding [102]. A most common rep-

resentation of these dependencies is Dependency Graph [65, 100], an intermediate form

of programs which consists of both data- and control-dependencies among program

components. Since the pioneer work by Ottenstein and Ottenstein [100], a number of

variants of dependency graph are proposed for various programming languages with a

possible tuning towards their suitable application domains. They are Program Depen-

2



dency Graph (PDG) for intra-procedural programs [100], System Dependency Graph

(SDG) for inter-procedural programs [64], Class Dependency Graph (ClDG) for object-

oriented programs [83], Database-Oriented Program Dependency Graph (DOPDG) for

database programs [121].

Although dependency analysis has been thoroughly studied over the last several

decades, researchers have not paid much attention to the case of database applica-

tions embedding database languages. In order to exploit the power of dependency

graph in solving problems related to database applications, Willmor et al. [121] first

introduced the notion of Database-Oriented Program Dependency Graph (DOPDG),

considering the following two additional data dependencies due to the presence of

database statements: (i) Program-Database dependency (PD-dependency) which rep-

resents dependency between an imperative statement and a database statement, and

(ii) Database-Database dependency (DD-dependency) which represents a dependency

between two database statements. However, since then no such notable contribution is

found in this research direction. Some of the problems among many others which can

effectively be addressed by using DOPDGs are:

(a) Slicing of Database Applications. Program slicing [120] is a well-known static

analysis technique to address many software-engineering problems, including code

understanding, debugging, maintenance, testing, parallelization, integration, software

measurement [78, 82, 102]. Existing program-slicing approaches have not considered

external database states and therefore they are inapplicable to data-intensive programs

in information system scenarios. It is imperative to say that slicing of database ap-

plications [53] based on their dependency information definitely serves as a powerful

technique to solve the above-mentioned software-engineering problems relating query

languages and underlying databases. In this context, preciseness of DOPDGs (hence

slices) and their efficient computations are two prime factors which may affect the

above-mentioned solutions to a great extent. This is yet to receive enough attention

from the scientific community.

(b) Database Leakage Analysis. Language-based information-flow security anal-

ysis [103] has been longly studied during past decades to control illegitimate infor-

mation leakage in software products. Needless to say, the confidentiality of sensi-

tive database information can also possibly be compromised during their flow along

database-applications accessing and processing them legitimately [54, 55]. The depen-

3



Introduction

dency information in the form of DOPDG can effectively capture any interference (if it

exists) between sensitive and non-sensitive data. Of course, preciseness of dependency

information highly matters to guarantee the absence of false security alarms in software

products.

(c) Data provenance. Data provenance [23] is an analysis technique which aids

understanding and troubleshooting database queries by explaining the results in terms

of input databases. Its intention is to show how (part of) the output of a query depended

on (part of) its input. Precise dependency information among queries and identification

of all parts of database information flowing along the program code are the basis of

effective computations of data provenance.

(d) Materialization View Creation. Attribute dependencies are one of the prime

factors for creating materialized views of databases [111]. The computation of precise

static dependency information of database queries issued on a database over a certain

period of time leads to a more precise materialized view creation.

A common challenge in all the above-mentioned application scenarios is to address

the susceptibility of static dependency analysis to false positives, a main drawback of

static analysis, which reduces development speed significantly. The best way to reduce

false-positives is to allow tuning the analysis behavior towards specific needs. Our

contributions in this thesis on semantics-driven database dependency analyzer meet

this challenge by facilitating precision control under various levels of abstractions.

To exemplify our motivation briefly, let us consider a small database code snippet,

depicted in Figure 1.1, which increases salary of all employees by a common bonus

amount Cbonus and by an additional special bonus amount Sbonus only for aged em-

ployees. Observe that the syntactic presence of the attribute sal as the defined-variable

in Q1 and as the used-variable in Q3 makes Q3 syntactically dependent on Q1. However,

a careful observation reveals that syntactic presence of variables as a way of dependency

computation may often result in false positives, and thus fails to compute optimal set

of dependencies. For instance, it is clear from the code that the values of sal referred

in the WHERE clauses of Q1 and Q3 do not overlap with each other and this results in

an independency between Q1 and Q3. This triggers a semantics-based approach to

compute dependency where values instead of variables are considered. In this context,

the following research question arises: Are the values defined by one statement being used

by another statement? The problem to compute semantics-based dependency among

4



Start;
Q0: Connection c =DriverManager.getConnection(. . . . . .);
Q1: UPDATE emp SET sal := sal + Sbonus WHERE age > 60;
Q2: SELECT AVG(sal) FROM emp WHERE age > 60;
Q3: SELECT AVG(sal) FROM emp WHERE age < 60
Q4: UPDATE emp SET sal := sal + Cbonus;
Q5: SELECT AVG(sal) FROM emp;
Stop;

Figure 1.1: An Introductory Example

statements in concrete domain is in general undecidable [70,81]. This is also true in the

case of database applications when the input database instance is unknown. Address-

ing similar problems in imperative languages, Mastroeni and Zanardini [89] introduced

the notion of abstract semantics-based data dependency in the Abstract Interpretation

framework. Abstract Interpretation [30, 31] is a widely used formal method which of-

fers a sound approximation of the program’s semantics to answer about the program’s

runtime behavior including undecidable ones. The intuition of Abstract Interpretation

is to lift the concrete semantics to an abstract domain, by replacing concrete values by

suitable properties of interests and simulating the operations in the abstract domain

w.r.t. its concrete counterparts, in order to ensure sound semantic approximation.

Willmor’s definition for DOPDG is not fully semantics-based [121]: although they

define DD-dependency in terms of defined- and used-values of databases, their def-

inition of PD-dependency relies on the syntactic presence of variables and attributes

in statements. Intuitively, the precision of DOPDG depends on how precisely one

can identify the overlapping of database-parts by various database operations (INSERT,

UPDATE, DELETE). Although they refer to the Condition-Action rules [10] to compute

the overlapping of database-parts, this fails to capture semantic independencies when

the application contains more than one database statements defining (in sequence) the

same attribute which is subsequently used by another database statement. The main

reason behind this is the flow-insensitivity of the Condition-Action rules. For example,

according to Willmor’s definition of DD-dependency [121], Q5 in Figure 1.1 is seman-

tically independent on Q1 as the part of sal-values defined by Q1 is fully redefined by

Q4 and never reaches Q5. Unfortunately, Condition-Action rules can not capture this

independency as the approach checks every pair of database statements independently,

and as a result, this finds dependency when the pair Q1 and Q5 is encountered.

As the values of database attributes differ from that of imperative language variables,
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the computation of abstract semantics (and hence semantics-based dependency) of

database applications is, however, challenging and requires different treatment. The

key point here is the static identification of various parts of the database information

possibly accessed or manipulated by database statements at various program points.

Addressing these challenges, we draw the following two main research objectives:

• How to obtain more precise dependency information of a database application

(hence more precise DOPDG)? and

• How to compute them efficiently?

To achieve our objectives, in this thesis, we formalize the concrete and abstract se-

mantics of database languages SQL and HQL, by extending the Abstract Interpretation

framework. This computable abstract semantics serves as a powerful basis to design a

static semantics-based dependency analyzer for database applications, resulting into a

more precise dependency information by removing false alarms. This is also true for

undecidable scenarios when the input database instance is unknown and presence of

NULL value in the database.

To summarize, our contributions in this thesis are:

1. We define a sound semantics approximation of both SQL and HQL for static de-

pendency analysis of database applications by the Abstract Interpretation frame-

work.

2. We instantiate dependency computation in various relational and non-relational

abstract domains, yielding to a detailed comparative analysis with respect to

precision and efficiency.

3. We develop of a prototype semDDA, semantics-based Database Dependency

Analyzer, integrated with various abstract domains which enables users to per-

form precise dependency computation in various abstract domains of interest.

4. Experimental evaluation on a set of open-source database-driven JSP web appli-

cations as part of the GotoCode project [1] using our semDDA tool. Experiments
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demonstrate the results in different abstract domains with a detailed compari-

son on precision and efficiency. This clearly shows that our technique improves

precision w.r.t. the proposal by Willmor et al. [121].

5. Finally, we demonstrate the effect of this semantics-driven dependency refinement

on database code slicing and information leakage analysis, as two case studies.

The structure of the thesis is as follows:

Chapter 2: Preliminaries: Database Languages, Dependency Graphs and Abstract

Interpretation

This chapter provides background details of the thesis. The content is divided into

three main parts: (i) Database Languages [38, 47], (ii) Dependency Graphs [64, 83, 100],

and (iii) Abstract Interpretation Framework [30]. Since our proposals mainly refer

to SQL and HQL, we describe their syntax and features as per ANSI standards [69],

which are relevant to the subsequent chapters. We then recall various forms of depen-

dency graphs pertaining different programming languages and their roles in software

engineering activities. Finally, we provide a technical overview of the Abstract Inter-

pretation framework, covering various relational and non-relational abstract domains.

Chapter 3: Concrete and Abstract Semantics of Structured Query Language (SQL)

In this chapter, we first recall the syntax and the concrete semantics of SQL from the

literature [52]. Then we define an abstract semantics of SQL at various levels of abstrac-

tions, from non-relational to relational abstract domains such as domains of intervals,

octagons, polyhedra and powerset of intervals.

Chapter 4: Concrete and Abstract Semantics of Hibernate Query Language (HQL)

As stated earlier, the thesis refers database applications embedding either SQL and

HQL. Therefore, like chapter 3, we also define the formal syntax and concrete seman-

tics of HQL, followed by its abstraction in various domains of interest. In particular, we

refer various session methods which act as the central interface between an application

and its underlying database.

Chapter 5: Semantic-based Dependency Computation of Database Applications

7
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Syntax-based dependency computation often fails to generate an optimal set of depen-

dencies, which increases the susceptibility of false alarms in many software engineering

activities. This demands the need of semantics-based dependency computation taking

into account variables values rather than their syntactic structures. This chapter is

dedicated for this purpose. In particular, considering the previously defined abstract

semantics of database applications as the underlying basis, we instantiate semantics-

based dependency computation in various relational and non-relational abstract do-

mains tunable with respect to the precision and efficiency. We develop a prototype

semDDA, a semantics-based Database Dependency Analyzer, and we present experi-

mental evaluation results in various abstract domains to establish the effectiveness of

our approach. We show an improvement of the precision on an average of 6% in the

interval, 11% in the octagon, 21% in the polyhedra and 7% in the powerset of intervals

abstract domains, as compared to their syntax-based counterpart, for the chosen set of

Java Server Page (JSP)-based open-source database-driven web applications as part of

the GotoCode project.

Chapter 6: Policy-based Database Code Slicing

Program slicing is a static analysis technique which is widely used in various software

engineering activities, e.g. debugging, testing, code-understanding, code-optimization,

etc. It extracts from programs a subset of statements which is relevant to a given be-

havior. In this chapter, we introduce a new form of code slicing, known as policy-based

slicing, of database applications based on the refined notion of dependency graph. We

show how the use of semantics-based dependency, together with semantic relevancy

of statements, may improve the precision of the slice w.r.t. a given policy.

Chapter 7: Data Leakage Analysis of Database Applications

Language-based information-flow security analysis has emerged as a promising tech-

nique to detect possible information leakage in any software systems. Confidential

data stored in an underlying database may be leaked to an unauthorized user due to

improper coding of database applications. In this chapter, we extend the full power of

the proposed model in [55] to the case of HQL, particularly by focussing on the session

methods. We define the abstract semantics of HQL over the domain of propositional for-

mulae by considering variables dependencies at each program point. This allows us to
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identify illegitimate information flow by checking the satisfiability of propositional for-

mulae with respect to a truth value assignment based on their security levels. Finally

we explain how the reduced product of the analysis-results obtained from symbolic

propositional formulae domain and numerical abstract domain may further improve

the precision.

Chapter 8: Conclusions and Future Directions

In this chapter, we conclude our research works and highlight the possible future re-

search scope.
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Dependency Graphs and Abstract
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Preliminaries: Database Languages, Dependency Graphs and Abstract
Interpretation

2.1 Databases Languages

The database technology is always at the heart of any information systems, facilitating

one to store external data into persistent storage and to process them efficiently [47].

Even in the era of big data, a survey by TDWI in 2013 [107] says that, for a quarter

of organizations, more than 20% of large volume of data are structured in nature and

are stored in the form of relational database. Due to the structured form of stored

data, relational database management systems gain immense popularity among the

database community. A most common way to develop a database application is to

embed relational database languages such as SQL, PL/SQL, HQL, etc., into other host

languages like C, C++, Java, etc. [38, 48].

Since this thesis primarily focuses database applications involving either SQL or

HQL, let us briefly describe them.

2.1.1 Structured Query Language (SQL)

In 1970, IBM researchers developed Structured English QUery Language (SEQUL) for

the purpose of manipulating and retrieving data stored in System R (relational database

management system of IBM) [6, 21]. Later on, the SEQUEL was renamed to Structured

SELECT [DISTINCT] < attribute list>
FROM (< table name> {< alias >} | < joined table >) {, (< table name > {< alias >} | < joined table >)}
[WHERE <condition>]
[ GROUP BY < grouping attributes > [ HAVING < group selection condition >]]
[ORDER BY < column name > [< order >] {, < column name > | [< order >] } ]
< attribute list > ::= (∗ | (< column name > | < function > (([DISTINCT] < column name >) | ∗))

{ , (< column name > | < function > (([DISTINCT] < column name >) | ∗))})
< grouping attributes > ::= < column name > {, < column name >}
< order > ::= (ASC | DESC)
INSERT INTO < table name > [(< column name > {, < column name >})]
(VALUES (< constant value > {,< constant value >}) {, (< constant value > {,< constant value >})}
| < select statement >)
DELETE FROM < table name >
[WHERE < selection condition >]

UPDATE < table name >
SET < column name >=< value expression > {, < column name >=< value expression >}
[WHERE < selection condition >]

Table 2.1: Summary of SQL DML Syntax [69]
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Query Language (SQL) and it has been standardized by ANSI and ISO [91]. Today

SQL is being used by several RDBMS implementation, like MySql, Oracle, DB2, Sybase,

MS Access, etc. [50, 75, 87]. In general, SQL comprises of Data Definition Language

(DDL), Data Manipulation Language (DML) and Data Control Language (DCL). In

addition, it also supports statements for constraint specification, schema evolution,

security enforcement and other features [38]. This is noteworthy to mention that, in

this thesis, we restrict our proposal to database applications embedding DML only.

Table 2.1 summarizes a part of the DML syntax recalled from [69] for a quick reference.

2.1.2 Hibernate Query Language (HQL)

Although SQL is widely used in many database applications, it suffers from paradigm

mismatch between host languages and relational data model. As a remedy of this,

Hibernate Query Language (HQL) is introduced as a unified platform for software

developers to develop database applications without knowing much details about the

database [11,12,42]. More specifically, HQL remedies the paradigm mismatch between

object-oriented languages and relational database models. The Object Relational Map-

ping (ORM) tool of the Hibernate framework automatically translates HQL queries into

conventional SQL queries, thus simplifying the data creation, data manipulation and

data access.

2.1.2.1 Hibernate Architecture

Different layers of hibernate architecture is depicted in Figure 2.1 [11]. Hibernate

framework consists of mapping files and configuration files, along with other elements

such as Session Factory, Session, etc.

Mapping file. This is an XML file which contains mapping from a Plain Old Java

Object (POJO) class name and its fields to a database table name and its attributes

respectively.

Configuration file. This is an XML file, named hibernate.cfg.xml, which consists of

several parameters like database name, driver name, user id, password, mapping file

name, etc. This is to note that only one configuration file is created for each database.
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Figure 2.1: Layered form of Hibernate Architecture [99]

Session Factory. This is a heavyweight thread-safe object, which is created by provid-

ing a configuration object. Only one session factory is created for each database.

Session. Session objects are used to get a physical connection with a database. It is

basically a thread of Session Factory whose responsibilities are to make objects into a

persistent form and to store (or retrieve) those persistent objects into (or from) databases.

Multiple sessions are used to handle multiple clients’ requests. Session consists of

several methods which are use to convert HQL into possibly multiple SQL statements.

2.1.2.2 Hibernate Properties

Hibernate creates a POJO class using the following four properties [99]:

• To be persistent, a class must have a default constructor.

• Class should contain an ID in order to allow easy identification of objects within

the Hibernate and the database.

• All fields in a class will be declared as private and the class contains public methods

getXXX() and setXXX(), where getXXX() has a return type without argument and

setXXX() accept arguments without any return type.

• Non-final class is Preferable.
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In addition, Hibernate system should maintain the followings:

• Different XML files for each persistent class acts as ORM in Hibernate.

• For a particular database only one cfg file is configured.

• There is one service class which consists of main() method.

2.1.2.3 Operations in Hibernate Query Language

Let us explain the HQL operations using suitable examples depicted in Figure 2.2. The

POJO class stud in Figure 2.2(a) contains three private fields id, courseid and mark, and

default public methods getXXX() and setXXX() corresponding to each attribute. Figures

2.2(b) – 2.2(f) depict various database operations Insert, Update, Delete, Select with and

without condition respectively. The first statement in each operation creates a session

object through which various methods (save(), createQuery(), beginTransaction(), etc.)

are invoked. Observe that save() is used to store a stud object information into the un-

derlying database table which corresponds to the stud class (defined in XML mapping

file). The session method createQuery() is used to create database statements for up-

date, delete and select, whereas executeUpdate() and list() methods are used to execute

them. The symbol ‘:’ prefixed with a variable indicates that the actual value of this

variable will be substituted at runtime using the setParameter() method. Observe that

all these database operations will be committed through a Transaction object created

using the session method beginTransaction().

2.2 Dependency Graphs and their role in Software Engi-

neering

Dependency Graph [45,100] is an intermediate representation of program which explic-

its both the data- and control-dependencies among program statements. This provides

the basis for powerful programming tool to address a large number of software en-

gineering activities [23, 45, 53, 59, 64, 73, 100, 103]. In this section, we briefly discuss

the evolution of dependency graphs and their applications in the field of software

engineering.
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class stud {
private int id;
private int courseid;
private int mark;

stud() { }

public int getId() { return id;}
public void setId(int id) { this.id = id;}
public String getcourseid() { return courseid;}
public void setcourseid(int courseid){ this.courseid = courseid;}
public String getMark() { return mark;}
public void setMark(int mark) { this.mark = mark;}
}

(a) POJO class stud

1. Session session=getSessionFactory().openSession();
2. Transaction tx=session.beginTransaction();
3. stud s1=new stud();
4. s1.setcourseid(1001);
5. s1.setmark(500);
6. session.save(s1);
7. tx.commit();
8. session.close();

(b) Insert

1. Session session = getSessionFactory().openSession();
2. Transaction tx =session.beginTransaction();
3. Query query = session.createQuery("UPDATE stud SET mark =: mark WHERE id =: id");
4. query.setParameter("mark", 700);
5. query.setParameter("id", 1);
6. int result = query.executeUpdate();
7. tx.commit();
8. session.close();

(c) Update

1. Session session = getSessionFactory().openSession();
2. Transaction tx =session.beginTransaction();
3. Query query = session.createQuery("DELETE FROM stud WHERE mark < 500 AND courseid = 1001");
4. int result = query.executeUpdate();
5. tx.commit();
6. session.close();

(d) Delete

1. Session session = getSessionFactory().openSession();
2. Transaction tx =session.beginTransaction();
3. Query query = session.createQuery("FROM stud");
4. List result = query.list();
5. tx.commit();
6. session.close();

(e) Select without condition

1. Session session = getSessionFactory().openSession();
2. Transaction tx =session.beginTransaction();
3. Query query = session.createQuery(" SELECT stud.courseid FROM stud WHERE stud.id > 10 GROUP

BY stud.mark HAVING MAX(stud.mark) < 700 ORDER BY stud.mark");
4. List result = query.list();
5. tx.commit();
6. session.close();

(f) Select with condition

Figure 2.2: Operations of HQL
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1. void main() {
2. int i=1;
3. while(i<11) {
4. i=i+1; }
5. printf("%d", i);
6. }

(a) A code snippet ExProg
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Figure 2.3: An example code snippet and its PDG.

2.2.1 Dependency Graphs

In this section, we recall from the literature a number of variants of dependency graph,

such as Program Dependency Graph (PDG) [100], System Dependency Graph (SDG)

[64], Class Dependency Graph (ClDG) [83], Database-Oriented Program Dependency

Graph (DOPDG) [121], etc., which are proposed for different programming languages

and features since the pioneer work by Ottenstein and Ottenstein in 1984 [45].

2.2.1.1 Program Dependency Graph (PDG)

Program Dependency Graph (PDG) [100] is an intermediate representation of programs

where nodes represent program statements and edges represent data- and control-

dependencies between the statements. However, unlike control-flow graph, the control-

dependencies in PDG do not represent any execution-order of the program.

Given two statements S1 and S2, the control and data dependencies are defined as

follows:

Definition 2.1 (Control Dependency) The statement S2 is said to be control dependent on

another statement S1 iff: (i) There exists a path π from S1 to S2 such that every statement

Si ∈ π− {S1,S2} is post-dominated (node n post-dominates node m if every path from node m to

the end node e passes through n) by S2, and (ii) S2 does not post-dominate S1.
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1. class X {
2. int r;
3. void incr( n ) {
4. if(r < n) {
5. r = add(n); }

}

6. int add(int a) {
7. a = a + 1;
8. return(a); } }

(a) class X

3
6

2

4

a =
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a a

Xin
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Denote methods

Denote statements
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Summary
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1

(b) SDG of X

Figure 2.4: SDG for inter-procedural dependencies.

Definition 2.2 (Data Dependency) The statement S2 is data-dependent on another state-

ment S1 if there exists some variable x such that: (i) x is defined by S1, (ii) x is used by S2, and

(iii) there is a x-definition free path from S2 to S1.

Observe that above definition of data dependency is based on the syntactic presence of

“used” and “defined” variables in statements.

Example 1 Consider the program ExProg in Figure 2.3(a). The PDG of ExProg is depicted

in Figure 2.3(b). The control-dependencies between program statements (denoted by solid-line)

are computed by following the definition 2.1. For instance, the edges 1→ 2, 1→ 3, 3→ 4, etc.

represent control dependencies. The data-dependencies (denoted by dotted-line) are computed

based on “used” and “defined” variables information in the statements. For instance, the

statement 3 is data-dependent on statement 2 (denoted 2 → 3), as the statement 2 defines the

variable i which is then used by statement 3. Similarly, other data-dependencies 2→ 4, 2→ 5,

4→ 3, 4→ 4 and 4→ 5 are computed.

2.2.1.2 System Dependency Graph (SDG)

Due to the presence of procedural call in programs, the notion of System Dependency

Graph (SDG) [64] is introduced. For each procedure call, nodes corresponding to

the calling- and called-procedures are associated with parameter-in and parameter-

out nodes. The parameter-in nodes of a calling procedure are then connected by
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dependency edges with the parameter-in nodes of its corresponding called-procedure.

Similar is followed between parameter-out nodes of a calling- and called-procedure

nodes, but in a reverse direction.

Example 2 Consider the program in Figure 2.4(a). Observe that the method incr() calls

another method add()within the same class X. The system dependency graph is depicted in Figure

2.4(b). Observe that the long-dash-dotted edges represent dependencies between parameter-in

node (labelled by ‘xin=n’) of calling method (node 5) and parameter-in node (labelled by ‘a=xin’)

of called-method (node 6). Similar is done for parameter-out nodes of 5 and 6 (labelled by ‘8’

and ‘r=a’ respectively) in reverse direction. The solid-bold edge represents the summary edge

which is connected from parameter-in to parameter-out nodes within the same method to model

the transitive flow of the dependencies across the method call.

2.2.1.3 Class Dependency Graph (ClDG)

The Class Dependency Graph (ClDG) [83] is an extension of SDG for Object-Oriented

Programming (OOP) languages. This is featured by the following types of dependen-

cies:

(a) Intra-class Intra-method Dependency: This represents the dependencies within the

same method of a class, and it follows the PDG-based approach.

(b) Intra-class Inter-method Dependency: The dependencies between two different

methods within the same class is constructed by following the similar approach

as in the case of SDG.

(c) Inter-class Inter-method Dependency: Inter-class Inter-method dependencies occur

in OOP when a method in one class calls another method in other class. This

is done by calling the method through an object of the called-class. Therefore,

additional in-parameters corresponding to the object-fields through which the

method is called, must be considered. Note that, in this scenario, a constructor-

call during object creation is also a part of the graph which follows the same

representation as of other inter-class inter-method calls.

Example 3 Consider the example in Figure 2.5(a). The ClDG of the code is depicted

in Figure 2.5(b), which represents the interaction between two methods main() in class
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sample and mult() in class operation. Observe that when 4 calls 10, the fields of obj

(i.e., obj.a and obj.b ) are associated with node 4 as in-parameters.

1. class sample {
2. public static void main(String arg[]){
3. operation obj = new operation(4);
4. obj.mult(); } }

5. class operation {
6. int a, b ;
7. operation(int x){
8. a = x;
9. b = 2; }

10. int mult(){
11. a = a * b; } }

(a) Classes sample and operations
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(b) ClDG for classes sample and operation

Figure 2.5: ClDG for inter-class inter-method dependencies.
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2.2.1.4 Database-Oriented Program Dependency Graph (DOPDG)

Database-Oriented Program Dependency Graph (DOPDG) [121] is an extension of

traditional PDG to the case of database applications. DOPDG considers two ad-

ditional dependencies: (i) Program-Database dependency (PD-dependency) and (ii)

Database-Database dependency (DD-dependency). A PD-dependency represents the

dependency between a database statement and an imperative statement, whereas a

DD-dependency represents the dependency between two database statements. Let us

recall them below:

Definition 2.3 (Program-Database (PD) dependency [121]) A database statement Q is

PD dependent on an imperative statement I for a variable x (denoted I x
−→ Q) if the follow-

ing three hold: (i) x is defined by I, (ii) x is used by Q, and (iii) there is no redefinition of x

between I and Q.

The PD-dependency of I on Q is defined similarly.

Definition 2.4 (Database-Database (DD) dependency [121]) Let Q.SEL, Q.INS, Q.UPD

and Q.DEL denote the parts of database state which are selected, inserted, updated, and deleted

respectively by Q. A database statement Q1 is DD-dependent on another database statement

Q2 iff (i) the database-part defined by Q2 overlaps the database-part used by Q1, i.e. Q1.SEL ∩

(Q2.INS ∪ Q2.UPD ∪ Q2.DEL) , ∅, and (ii) there is no roll-back operation in the execution

path p between Q2 and Q1 (exclusive) which reverses back the effect of Q2.

Example 4 depicts the construction of DOPDG on an example code by following the

algorithm proposed in [121].

Example 4 Consider the database application DbProg and the associated database vendor

depicted in Figure 2.6. The DOPDG of DbProg is depicted in Figure 2.6(c). The control-

dependencies between program statements are computed by following similar approach as in

the case of traditional Program Dependency Graphs. For instance, the edges 1 → 2, 1 → 3,

1→ 4, etc., represent control dependencies. We construct DD- and PD-dependencies based on

the algorithm proposed in [121]. For instance, edges 2 → 3, 2 → 4, 2 → 6, 2 → 7, 3 → 4,

3→ 6, 3→ 7 and 6→ 7 represent DD-dependencies (denoted by dashed-lines), whereas edges

4→ 5 and 7→ 8 represent PD-dependencies (denoted by dotted-line).
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1. start;
2. Stmt = DriverManager.getConnection(. . . . . . ).createStatement();
3. Stmt.executeQuery("UPDATE emp SET sal=sal+100 WHERE (age + com) > 60");
4. Resultset rs1=Stmt.executeQuery("SELECT avg(sal) from emp WHERE

(age+com)655");
5. display(rs1);
6. Stmt.executeQuery(" DELETE from emp WHERE age > 61");
7. Resultset rs2 = Stmt.executeQuery("SELECT ∗ from emp");
8. display(rs2);
9. stop;

(a) Program DbProg

sal age com
1500 35 10
800 28 20
2500 50 10
3000 62 10
2000 30 30
1600 42 20
1000 20 30

(b) Database Table
vendor
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(c) DOPDG of DbProg

Figure 2.6: DOPDG for an example database code

Over the past decades, a large number of algorithms using dependency graphs are pro-

posed to address various software-engineering activities, including language-based in-

formation flow security analysis, program slicing, code-optimization, code-maintenance,

code-understanding, data provenance, etc. [23, 45, 53, 59, 64, 73, 100, 103].

2.3 Abstract Interpretation

The Abstract Interpretation theory is proposed by Patrick Cousot and Radhia Cousot

in 1977 [30, 32, 33, 34, 35, 96]. It is a method of sound approximation of programs‘

concrete semantics which enables to provide answers to questions about programs‘

run-time behaviour (including undecidable ones). The core principle of the Abstract

Interpretation theory is that all types of semantics, like operational, denotational, rule-

based, axiomatic, etc., can be expressed as fixpoints of monotonic operators in partially

ordered structure and can be lifted to an abstract setting by replacing concrete values

with suitable properties of interest and simulating concrete operations by sound abstract

operations. Moreover, it facilitates the proof of correctness of existing analyses and aids
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in the design of new analyses [34].

LetD andD be the concrete and abstract domains respectively. Let us assume that

both domains respect the stronger properties like Complete Partial Orderings (CPO) or

complete lattices, defined below:

Complete Partial Order (CPO) [32]. A complete partial order 〈X, v〉 is a poset where

the set X is equipped with an ordering relation v and satisfies the following property:

every increasing chain C , x0 v x1 v x2 v · · · v xn of elements of X has least upper

bound
⊔

C, which is called the limit of the chain. Note that, since the empty set ∅ is a

chain, a complete partial order has a least element ⊥ =
⊔
∅.

Lattice and Complete Lattice [33]. A lattice 〈X, v, t, u〉 is a poset where each

pair of elements x, y ∈ X has a least upper bound denoted by xt y and a greatest lower

bound denoted by x u y. A complete lattice 〈X, v, t, u, ⊥, >〉 is a lattice where

any subset A ⊆ X has a least upper bound
⊔

A ,
�
{x ∈ X | ∀y ∈ A, x w y} and a

greatest lower bound
�

A ,
⊔
{x ∈ X | ∀y ∈ A, x v y}. A complete lattice has both a

least element ⊥ ,
�
X and a greatest element > ,

⊔
X. Note that, a complete lattice is

always a CPO.

Fixpoint [31]. Given a partially ordered set 〈X,v〉 and a function F : X → X, a fixpoint

of F is an element y ∈ X such that F(y) = y. A pre-fixpoint is an element y ∈ X such that

y v F(y). Dually, F(y) v y is called post-fixpoint. The least fixpoint of F, denoted by lfpz

F which is greater than or equal to an element z ∈ X. Dually, the greatest fixpoint of F is

denoted by gfpz F which is less than or equal to an element z ∈ X. If the order v is not

clear from the context then least and greatest fixpoint of F is written lfpvz F and gfpvz F

respectively.

Abstract Interpretation establishes a correspondence between concrete and abstract

domains in the form of Galois Connection in order to guarantee the correctness of

analysis in the abstract domain.

Definition 2.5 (Galois Connections [30]) Consider two partial order set (D, 6) and (D,

v) where the first one represents a concrete domain and the second one represents an abstract

domain. Let α: D → D and γ: D → D be the abstraction and concretization functions
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respectively. The Galois Connection between D and D (denoted by
〈
(D,6), α, γ, (D,v)

〉
or

(D, 6)
α
−→
←−−
γ

(D, v)) holds iff:

• ∀v ∈ D. v 6 γ ◦ α(v).

• ∀v ∈ D. α ◦ γ(v) v v.

• α and γ are monotonic.

In other words, iff ∀v ∈ D, v ∈ D. α(v) v v ⇐⇒ v 6 γ(v). Notice that for some abstract

domains only a concretization function exists, like in the case of Polyhedra.

Formally, the concrete semantic domainD forms a complete lattice 〈D,⊆,⊥,>,∪,∩〉.

On this domain, a semantics S[[P]] of syntactically correct programP in a given program-

ming language is defined. Observe that the concrete semantics is usually a collecting

interpretation. In the same way, an abstract semantics S[[P]] is defined in an abstract

domain D, aiming to approximate S[[P]] in a computable way. Formally, the abstract

semantic domain D has to form a complete lattice 〈D,v,⊥,>,t,u〉. Given a Galois

connections
〈
(D,6), α, γ, (D,v)

〉
, we say that S[[P]] is a sound approximation of S[[P]]

when S[[P]] ⊆ γ(S[[P]]).

Let
〈
(D,6), α, γ, (D,v)

〉
be a Galois connection, F : D → D be a concrete function

and F : D→D be an abstract function. F is said to be a sound or correct approximation

of F iff F◦γ v γ◦F. On the other hand, F is a complete approximation of F iff F◦γ = γ◦F,

which indicates that no loss of precision is accumulated in the abstract computation

through F. Similarly in case of iterative function, lfp F is a sound approximation of lfp

F iff lfp F v γ(lfp F). Observe that, if the abstract domain respects the ascending chain

condition then the computation is guaranteed to terminate. Otherwise the sequence

convergence must be assured using a widening operator [86].

A number of abstract domains, non-relational and relational, exist in the literature

[30, 31, 36, 93, 94]. Let us briefly illustrate them below:

2.3.1 Non-relational Abstract Domains

An abstract domain is said to be non-relational if it does not preserve any relation

among program variables. Non-relational abstract domains care only about the ac-

tual variables being updated, rather than having potential to change multiple values
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at once [31]. Some widely used non-relational abstract domains for program analysis

include sign domain for sign property analysis, parity domain for parity property anal-

ysis, interval domain for division-by-zero or overflows [30]. Analyses in these domains

are, although efficient, but imprecise w.r.t. relational abstract domains. Figure 2.7 pic-

torially depicts a scenario where a set of points SP (indicated by •) on the xy-plane are

abstracted by sign and interval properties.
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•
•
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•

•

•
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Figure 2.7: Abstractions of SP by Sign (left) and Interval Properties (right)

Let us now describe briefly about the sign and interval domains in the sections be-

low.

2.3.1.1 Sign Domain

Let Lc = 〈℘(R),⊆, ∅,R,∩,∪〉 be a concrete lattice of the powerset of numerical values R.

Given an abstract domain SIGN={>,+,−, 0,±, 0+, 0−,⊥} representing sign properties

of numerical values, let La = 〈SIGN,v,⊥,>,u,t〉 be an abstract lattice.

The correspondence between Lc and La is formalized as the Galois connection 〈Lc, αs, γs,

La〉which is depicted below:

∅

{ 1} { 2 } { 3 } . . .{ 0 }{ -1 }. . .

{-1,0} {0, 1} {1, 2} {2, 3}. . . . . .

{-1,0,1} {1,2,3}. . .. . . . . . . . .

R

αs

γs

⊥

0 -+

±0+ 0-

>

Figure 2.8: Galois Connection between Lc and La
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The abstraction function αs and concretization function γs between the domains are

defined below:

∀S ∈ ℘(R) : αs(S)=



⊥ if S = ∅

+ if S = { a | a > 0 }

0 if S = { 0 }

− if S = { a | a < 0 }

± if S = { a | a > 0 ∨ a < 0 }

0+ if S = { a | a > 0 }

0− if S = { a | a 6 0 }

> Otherwise

∀v ∈ SIGN: γs(v)=



∅ if v = ⊥

{k ∈ R | k > 0} if v = +

{0} if v = 0

{k ∈ R | k < 0} if v = −

{k ∈ R | k > 0 ∨ k < 0} if v = ±

{k ∈ R | k > 0} if v = 0+

{k ∈ R | k 6 0} if v = 0−

R Otherwise

The arithmetic operations over the abstract domain are defined accordingly, ensur-

ing the soundness w.r.t. their concrete counter-part [31]. For example, the ’×’ operation

over the concrete domain is mapped to its abstract version ’×’ as follows: −(×)− = +,

+(×)− = −, +(×)+ = +, >(×)+ = >, ⊥(×)+ = ⊥, and so on.

2.3.1.2 Domain of Intervals

In the interval domain, a set of integers is approximated by a pair [l, h] where l and h

represent minimal and maximal element of the set respectively. For example, {2, 1, 100,

4} is represented by [1, 100].

Let Lc = 〈℘(R),⊆, ∅,R,∩,∪〉 be a concrete lattice of the powerset of numerical val-
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ues R. Let I = {[l, h] | l ∈ R ∪ {−∞}, h ∈ R ∪ {+∞}, l ≤ h} ∪ ⊥ be the abstract domain of

intervals forming an abstract lattice La = 〈I,v,⊥, [−∞,+∞],u,t〉, such that:

• [l1, h1] v [l2, h2] ⇐⇒ l2 6 l1 ∧ h2 > h1

• [l1, h1] u [l2, h2] = [max(l1 l2), min(h1 h2)]

• [l1, h1] t [l2, h2] = [min(l1, l2), max(h1 h2)]

The correspondence between Lc and La is formalized as the Galois connection 〈Lc, αI, γI,

La〉where ∀S ∈ ℘(R) and ∀v ∈ I:

αI(S) =



⊥ if S = ∅

[l, h] if inf(S) = l ∧ sup(S) = h

[−∞, h] if @inf(S) ∧ sup(S) = h

[l, +∞] if inf(S) = l ∧ @sup(S)

[+∞, −∞] if @inf(S) ∧ @sup(S);

γI(v) =



∅ if v = ⊥

{k ∈ R | l ≤ k ≤ h} if v = [l, h]

{k ∈ R | k ≤ h} if v = [−∞, h]

{k ∈ R | l ≤ k} if v = [l, +∞]

R if v = [+∞, −∞].

The pictorial representation of the Galois connections 〈Lc, αI, γI, La〉 is shown in Figure

2.9.

∅

{0} {1} {2} . . .{-1}{-2}. . .

. . .

R

αI

γI

⊥

[0, 0] [1, 1] [2, 2] . . .[-1, -1][-2, -2]. . .

[-2, -1] [-1, 0] [0, 1] [1, 2]. . . . . .

. . .

[-∞, +∞]

Figure 2.9: Galois Connection between Lc and La
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2.3.2 Relational Abstract Domains

Unlike non-relational abstract domains, the relational abstract domains preserve rela-

tions among program variables [36]. Analyses in these domains are more precise as

compared to the non-relational abstract domains, in particular, for large number of

relations among variables in the code. Widely used relational abstract domains are

the domains of Polyhedra, Octagons, Difference-Bound Matrices (DBM), etc [36,93,94].

Abstractions of the same set of points in the octagon and polyhedra domains are exem-

plified in Figure 2.10.

x

y

•

•

•
•

•

•

•

•

•

• •

•

x

y

•

•

•
•

•

•

•

•

•

• •

•

Figure 2.10: Abstractions of SP in Octagon (left) and Polyhedra Domains (right)

Let us now describe briefly about the octagon and polyhedra domains in the sections

below.

2.3.2.1 Relational Abstract Domain of Octagons

The octagon abstract domain encodes binary constraints between program variables

in the form of kixi + k jx j 6 k where xi, x j are program variables, ki, k j ∈ [−1, 0, 1] are

coefficients and k is a constant in the numerical domain R. Since coefficients can be

either -1, 0 or 1, the number of inequalities between any two variables is bounded. The

set of points satisfying the conjunction of such constraints forms an octagon.

Octagonal constraints representation in memory. The encoding of conjunctions of

octagonal constraints makes use of Difference Bound Matrix (DBM) representation. Let

us describe DBM first and then an extension to encode the set of octagonal constraints.

Difference Bound Matrices (DBM) [93]. Given a program P with a finite set of variables

VP = {x1, . . . , xn}. A Difference Bound Matrix (DBM) m with size n × n represents a set
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of invariants each of the form x j − xi 6 k, where k ∈ R∞ and R∞ = R ∪ {∞} such that:

mi j ,


k if (x j − xi 6 k) where xi, x j ∈ VP and k ∈ R∞,

∞ otherwise.

Example 5 Consider the constraints {x1 − x2 6 3, x2 − x3 6 4, x3 − x1 6 5, x2 − x4 6 4}. These

constraints are represented by the DBM shown below:

x1 x2 x3 x4

x1 ∞ ∞ 5 ∞

x2 3 ∞ ∞ ∞

x3 ∞ 4 ∞ ∞

x4 ∞ 4 ∞ ∞

Extension to encode octagonal constraints [94]. The above DBM representation over pro-

gram variables can represent only a subset of octagonal constraints of the form xi−x j 6 k.

In order to allow more general form ±xi ± x j 6 k of octagonal constraints, a DBM m of

size n× n defined overVP is extended to another DBM m′ of size 2n× 2n over the set of

enhanced variablesV′
P

= {x′1, . . . , x
′

2n} where each variable xi ∈ VP comes in two forms: a

positive form x′2i−1, denoted x+
i and a negative form x′2i, denoted x−i . This extended form

of DBM m′ is called coherent DBM (CDBM) representing octagon. This is illustrated in

the following example.

Example 6 Consider the octagonal constraints {x1 +x2 6 3, x1−x2 6 4, −x1−x2 6 5, x1 6 4},

its equivalent CDBM constraints are {x+
1 − x−2 6 3, x+

2 − x−1 6 3, x+
1 − x+

2 6 4, x−2 − x−1 6 4,

x−1 − x+
2 6 5, x−2 − x+

1 6 5, x+
1 − x−1 6 8}. These constraints are represented in CDBM shown

below:

x+
1 x−1 x+

2 x−2
x+

1 ∞ ∞ ∞ 5

x−1 8 ∞ 3 4

x+
2 4 5 ∞ ∞

x−2 3 ∞ ∞ ∞

Observe that any constraints of the form (xi 6 k) and (xi > k) can be represented as

(x+
i − x−i 6 2k) and (x−i − x+

i 6 −2k) respectively.

Closure. An octagon can be represented by more than one set of inequalities. For

instance, the octagonal constraints {(x 6 4)∧ (y 6 6)} and {(x 6 4)∧ (y 6 6)∧ (x+ y 6 10)}
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represent the same concrete values. Therefore, the use of closure operation ensures a

unique representation of any octagonal constraints. The closure operation on CDBM

follows Floyd – Warshall algorithm [27].

In the rest of the paper, we use the notation m to represent closed CDBM when the

context is clear.

Galois Connections. Let Lc = 〈℘(Rn),⊆, ∅,Rn,∩,∪〉 be the concrete lattice. Let M be

the set of all closed CDBMs representing the domain of octagons. Let M⊥= M ∪ {m⊥}

where m⊥ represents the bottom element that contains an unsatisfiable set of constraints.

We define the abstract lattice La = 〈M⊥, v, m⊥, m>, u, t〉where m> represents the top

element for which the bound for all constraints is ∞. The partial order, meet and join

operations in La are defined as follows:

• ∀m,n ∈M⊥: m v n⇐⇒ ∀i, j: mi j 6 ni j.

• ∀m,n ∈M⊥: (mun)=m’where ∀i, j: m’i j ,min(mi j, ni j).

• ∀m,n ∈M⊥: (mtn)=m’where ∀i, j: m’i j ,max(mi j, ni j).

Observe that since the union of two octagons is not always an octagon the result is

approximated.

Let Σ be the set of all environments defined as Σ : V 7→ R. An environment ρ ∈ Σ

maps each variable to its value. An environment will be understood as a point in Rn

where |V| = n. The Galois connection between Lc and La is formalized as 〈Lc, αM, γM,

La〉where αM and γM on S ∈ ℘(Rn) and m ∈M⊥ are defined below:

• if S = ∅: αM(S) , m⊥

• if S , ∅: αM(S) = m where mi j ,
max{ρ(xl) − ρ(xk) | ρ ∈ S} when i = 2k − 1, j = 2l − 1 or i = 2l, j = 2k

max{ρ(xl) + ρ(xk) | ρ ∈ S} when i = 2k, j = 2l − 1

max{−ρ(xl) − ρ(xk) | ρ ∈ S} when i = 2k − 1, j = 2l
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γM(m) =



∅ if m = m⊥

Rn if m = m>{
(k1, . . . , kn) ∈ Rn

| (k1,−k1 . . . kn,−kn)

∈ dom(m) and ∀i, j : x j − xi 6 mi j

}
otherwise

Sound operations in octagon domain. Let us recall from [94] some useful sound oper-

ations in octagon abstract domain defined in terms of CDBM:

• Emptiness test: Let m be a CDBM and G be a directed weighted graph of m. We

say that the octagon is empty, i.e. γ(m) = ∅, if and only if G has a simple cycle with

a strictly negative total weight. The well-known Bellman-Ford [13] algorithm is

used for such cycle detection.

• Projection: Let m be a CDBM representing a non empty octagon. We extract the

values of the variable xi from m in the form of interval as:

{v | ∃(k1 . . . kn) ∈ γ(m) such that ki = v}

= [−m2i 2i+1/2, m2i+1 2i/2]

Interested reader may refer to [94] [95] for more abstract operations (closure, widening,

etc.) in octagon domain.

2.3.2.2 Relational Abstract Domain of Polyhedra

The regions in n-dimensional spaceRn bounded by finite sets of hyperplanes are called

polyhedra. Let VP = {x1, x2, . . . xn} be the set of variables in program P. We represent

by ~v = 〈v1, v2, . . . vn〉 ∈ R
n, an n-tuple (vector) of real numbers. By β = ~v.~x > k where ~v ,

~0, ~x = 〈x1, x2, . . . , xn〉, k ∈R, we represent a linear inequality overRn. A linear inequality

defines an affine half-space ofRn. If P is expressed as the intersection of a finite number

of affine half-spaces of Rn, then P ∈ Rn is a convex polyhedron. Formally, a convex

polyhedron P = (Θ, n) is a set of linear inequalities Θ = {β1, β2 . . . βm} on Rn. Equiva-

lently, P can be represented by frame representation which is a collection of generators

i.e. vertices and rays [25]. On the other hand, given a set of linear inequalities Θ on Rn,

a set of solutions or points defines a polyhedron P = (Θ,n).
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Concretization Function. Let Lc = 〈℘(Rn),⊆, ∅,Rn,∩,∪〉 be the concrete lattice defined

over the concrete domain. The set of polyhedra P with partial order v forms an ab-

stract lattice La=〈P,v, P⊥, P>,u,t〉. Given P1, P2 ∈ P, the partial order, meet and join

operations are defined below:

• P1 v P2 if and only if γ(P1) ⊆ γ(P2), where γ(P) represents the set of solutions or

points in P as concrete values.

• P1u P2 is the convex polyhedron containing exactly the set of points γ(P1) ∩ γ(P2).

• P1t P2 is not necessarily a convex-polyhedron. Therefore, the least polyhedron

enclosing this union is computed in terms of convex hull.

An environment ρ ∈ Σ , V 7→ R map each variable to its value in R. Given P ∈ P, γP

is defined below:

γP(P) =


∅ if P = P⊥

Rn if P = P>.{
ρ ∈ Σ | ∀(~v.~x > k) : ~v.ρ(~x) > k

}
otherwise

Note that there is no abstraction function in polyhedra abstract domain because some

vector sets do not have a best over-approximation as a convex closed polyhedron [36].

Therefore, in this case we denote by αP(S) a (possibly minimal) polyhedron in P such

that γP(αP(S)) ⊇ S.

Sound operations in polyhedra domain. Let us recall from [7, 22, 36] some useful oper-

ations in the abstract domain of polyhedra:

• Emptiness test: Program analyzers during their analysis may encounter constraints

present in program statements. Addition of a constraint to a non-empty polyhe-

dron may lead to an empty polyhedron. A polyhedron is empty if and only if

its constraint set is infeasible. The Linear Programming (LP) solver [76] is used

for checking feasibility of such constraint system. For example, adding a new

constraint ~v.~x > k to a non empty polyhedra P, we can solve the LP problem µ

= min ~v.~x subject to P. If k > µ, then new polyhedron is empty. Alternatively, in
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generator representation a polyhedron is empty if and only if its set of vertices and

rays are empty.

• Projection: Let P be a non empty polyhedron. The projection operation removes

all constraints information from P corresponding to a variable xi without affecting

the relational information between other variables, defined as:

Πxi(P) = {ρ[v/xi] | ρ ∈ γ(P), v ∈ R}

This is computed by eliminating all occurrences of xi in the constraints of P by

using the Fourier-Motzkin algorithm [67] as below:

F(P,xi) , {(Σivixi > k) ∈ Θi
| vi = 0} ∪ {(−v−i )β+ + v+

i β
−

| β+ = (Σiv+
i xi > k+) ∈ Θ+, v+

i > 0, β− = (Σiv−i xi > k−) ∈ Θ−, v−i < 0}

where v+
i and v−i represent positive and negative coefficients for xi respectively.

The algorithm partitions the set of liner inequalities Θ = {β1, β2 . . . βm} into Θ+,

Θi and Θ−, corresponding to inequalities that have positive, zero and negative

coefficients for xi. For each pair (β+, β−) of inequalities drown from Θ+
× Θ−, the

algorithm multiplies β+ by the absolute value of xi-th coefficient (|v−i |) in β− and

similarly multiplies β− by xi-th coefficient v+
i in β+. The combination of these two

results finally removes xi as the resultant coefficient becomes zero.

• Inclusion test: Let P1 and P2 be non empty polyhedra. The inclusion test (denoted P2

v P1) reduces to the problem of checking whether each inequality in P2 is entailed

by P1, which can be implemented using LP. For example, we can compute µ = min

~v.~x subject to P1 for each ~v.~x > k. If µ < k then inclusion does not hold.

• Redundancy removal: In order to improve the efficiency in memory, it is desirable

to remove the redundant constraints. Given P = (Θ, n), an inequality β ∈ Θ is

said to be redundant when β can be entailed by the other constraints in P, i.e. P /

{β} |= β. The LP solver is used for such verification. For example, in order to check

whether β = (~v.~x > k) is redundant, we can compute µ = max ~v.~x subject to P. If

k 6 µ, then β is redundant and can be eliminate from P.
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2.3.2.3 Powerset Abstract Domain

The finite powerset construction of an abstract domain yields a new abstract domain

which improves the precision of the analysis as compared to the original one [8]. For

example, application of condition-part in many cases may result in multiple abstract

values for an attribute. In such cases the powerset representation of abstract state is

more suitable in terms of precision.

Let Lc = 〈D,6,⊥c,>c,∩c,∪c〉 be a concrete lattice and La = 〈D,v,⊥a,>a,ua,ta〉 an abstract

lattice over an abstract domain A. The Lc and La are related by the Galois connection

(Lc, α, γ, La). Considering the powerset abstract domain, the powerset of D denoted by

℘(D) with the order relations � forms an abstract lattice Lp = 〈℘(D),�, ∅,D,f,g〉. The

partial order, meet and join operations in this abstract domain are defined as follows:

• ∀S1,S2 ∈ ℘(D) : S1 � S2 ⇔ ∀vi ∈ S1 : ∃v j ∈ S2. vi v v j.

• ∀S1,S2 ∈ ℘(D) : S1 f S2 = {vi u v j | ∀vi ∈ S1,∀v j ∈ S2}.

• ∀S1,S2 ∈ ℘(D) : S1 g S2 = S1 ∪ S2.

Observe that in powerset abstract domain the meet operation S1 f S2 is defined by the

pairwise meet of the elements from S1 and S2, whereas the join operation S1gS2 reduces

to a set union.

The Lc and Lp are related by a Galois connections 〈Lc, α1, γ1, Lp〉 where α1 and γ1 on

∀X ∈ D and ∀Y ∈ ℘(D) are defined below:

α1(X) =


∅ if X = ⊥c

D if X = >c{
α(X)

}
otherwise

γ1(Y) =


⊥c if Y = ∅

>c if Y = D.⋃{
γ(v) | v ∈ Y

}
otherwise

The pictorial representation of the Galois Connection among the concrete domain (Lc),

the abstract domain (La), and the powerset of the abstract domain (Lp) is shown below:
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Lc Lp La

α

γ

α1

γ1

To summarize, as we move from non-relational to relational abstract domain, the

precision of the analysis-result improves by tolerating an increased computational cost.

Therefore, a wise-choice of abstract domain as a trade-off between precision and effi-

ciency is the key factor here.
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C H A P T E R 3

Concrete and Abstract Semantics of

Structured Query Language (SQL)

©

Preface
In this chapter, we first recall the syntax and the concrete semantics of SQL from the

literature [52]. Then we define an abstract semantics of SQL at various levels of abstrac-

tions, from non-relational to relational abstract domains such as domains of intervals,

octagons, polyhedra and powerset of intervals.
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3.1 Formal Syntax of SQL

In this section, we recall from [52] the formal syntax of database applications embed-

ding SQL. Table 3.1 depicts the syntactic sets and the formal syntax. In particular, the

syntax supports imperative programming paradigm combined with SQL statements.

Formally, a SQL statement Q is denoted by 〈A, φ〉 where A represents an action-part

and φ represents a conditional-part. The action-part A includes SELECT, UPDATE, DELETE

and INSERT operations which are denoted by Asel, Aupd, Adel and Ains respectively. The

conditional-part φ represents the condition under the WHERE clause of the statement,

which follows first-order logic formula. The imperative counterpart of the language

includes skip, assignment, conditional and iteration. Intuitively, any program in

this language involves two types of variables: application variables (denoted Va) and

database variables (denoted Vd). For the sake of simplicity, without compromising the

generality, this is assumed that attributes names are unique. The SQL clauses GROUP BY

and ORDER BY are denoted by the functions g(~e) and f (~e) respectively where ~e represents

an order sequence of arithmetic expressions. Based on the values of ~e over database

tuples, g(~e) results maximal partitions of the tuples and f (~e) sorts the tuples in either as-

cending or descending order. The aggregate functions (AVG, SUM, MAX, MIN and COUNT) in

SELECT query are denoted by s. The ordered sequence of aggregate functions operating

on an ordered sequence of arguments ~x is denoted by ~h(~x) where each function hi ∈
~h

operates on the corresponding argument xi ∈ ~x. Observe that the argument ‘∗’ in case

of count denotes the sequence of all attributes of the target relation. This is to observe

that, in the thesis, we consider only numerical domain for variables values including

NULL. However, there is a scope to enhance our work by considering other data-type

as well, such as string [28].

Let us illustrate the formal syntax using a suitable examples shown below:

Example 7 Consider the following database statements:

Qupd = UPDATE t SET sal := sal + 100 WHERE age > 35

Qsel = SELECT dno, MAX(sal), AVG(DISTINCT age), COUNT(∗) FROM t WHERE sal ≥ 1000

GROUP BY dno HAVING MAX(sal) < 4000, ORDER BY dno
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Constants:
k ∈ R Set of Numerical Constants

Variables:
va ∈ Va Set of Application Variables
va ::= x | y | z | . . .
vd ∈ Vd Set of Database Attributes
vd ::= a1 | a2 | a3 | . . .
V ::= Va ∪Vd

Expressions:
e ∈ E Set of Arithmetic Expressions
e ::= k | vd | va | opu e | e1 opb e2 where opu ∈ {+,−} and opb ∈ {+,−, ∗, /}
b ∈ B Set of Boolean Expressions
b ::= true | false | e1 opr e2 | ¬b | b1 ⊕ b2

where opr ∈ {≤,≥,==, >,,, . . . } and ⊕ ∈ {∨,∧}
SQL Pre-conditions:

τ ∈ T Set of Terms
τ ::= k | va | vd | fn(τ1, τ2, ..., τn) where fn is an n-ary function.

a f ∈ A f Set of Atomic Formulas
a f ::= Rn(τ1, τ2, ..., τn) | τ1 == τ2 where Rn(τ1, τ2, ..., τn) ∈ {true, f alse}
φ ∈ W Set of Pre-conditions
φ ::= a f | ¬φ | φ1 ⊕ φ2 | ⊗ v φ where ⊕ ∈ {∨,∧} and ⊗ ∈ {∀,∃}

SQL Functions:
g(~e) ::= GROUP BY(~e) | id

where ~e = 〈e1, ..., en | ei ∈ E〉 and id denotes identity function
r ::= DISTINCT | ALL

s ::= AVG | SUM | MAX | MIN | COUNT | id
h(e) ::= s ◦ r(e)
h(∗) ::= COUNT(*)

where * represents a list of database attributes denoted by ~vd
~h(~x) ::= 〈h1(x1), ..., hn(xn)〉

where ~h = 〈h1, ..., hn〉 and ~x = 〈x1, ..., xn | xi = e ∨ xi = ∗〉
f (~e) ::= ORDER BY ASC(~e) | ORDER BY DESC(~e) | id

Commands:
Q ∈ Q Set of SQL Statements
Q ::= Qsel | Qupd | Qins | Qdel

Qsel ::= 〈Asel, φ〉

::=
〈
SELECT

(
va, f (~e′), r(~h(~x)), φ2, g(~e)

)
, φ1

〉
Qupd ::= 〈Aupd, φ〉

::= 〈UPDATE(~vd,~e), φ〉
Qins ::= 〈Ains, φ〉

::= 〈INSERT(~vd,~e), f alse〉
Qdel ::= 〈Adel, φ〉

::= 〈DELETE(~vd), φ〉
c ∈ C Set of Commands
c ::= skip | va := e | Q | if b then c endif
| if b then c1 else c2 endif |while b do c done

P ::= c | c ; P Program

Table 3.1: Formal Syntax of SQL embedded Programs [52]
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The abstract syntax of the above statements are denoted by

Qupd = 〈A, φ〉 = 〈UPDATE(~vd, ~e), φ〉 where

• φ = (age > 35)

• ~vd = 〈sal〉

• ~e = 〈sal + 100〉

and Qsel=〈A, φ〉= 〈SELECT
(
va, f (~e′), r(~h(~x)), φ2, g(~e)

)
, φ1〉 where

• φ1 = sal ≥ 1000,

• ~e = 〈 dno, sal, age 〉,

• g(−→e ) = GROUP BY(dno),

• φ2 = (MAX ◦ ALL(sal))< 4000,

•
−→
h (−→x )= 〈 DISTINCT(dno), MAX ◦ ALL(sal), AVG ◦ DISTINCT(age), COUNT(∗) 〉,

• f(
−→
e′ ) = ORDER BY ASC(dno),

• va = ResultSet type application variable with fields ~w =< w1,w2, . . .wn >.

Observe that the syntax is consistent with the SQL definition given by ANSI [69]. There-

fore, the formalism supports different RDBMS implementations, like Oracle, MySQL

or IBM DB2. Its equivalence with relational algebra is reported in [52].

3.2 Concrete Semantics

In this section, we describe the concrete semantics of database applications embedding

SQL, by recalling the formal concrete semantics of the imperative [30] as well as database

statements [52].
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3.2.1 Concrete Semantics of Imperative Statements

Since the imperative counterpart of the language does not involve any database variable,

let us define the set of concrete states Σ : Va → R, which represents a mapping

of imperative program variables to their semantic domain values. Given the set of

arithmetic expressionsE and the set of boolean expressionsB, the concrete denotational

semantics functions Te : (E ∪ B) → (Σ → R ∪ {true, f alse}) for expressions evaluation

and T f : B → (℘(Σ) → ℘(Σ)) for state-filtering based on boolean satisfiability are

defined below:

Te[[k]] ={(ρ, k) | ρ ∈ Σ}

Te[[x]] ={(ρ, v) | ρ ∈ Σ, ρ(x) = v}

Te[[e1 ⊕ e2]] ={(ρ, v1 ⊕ v2) | (ρ, v1) ∈ Te[[e1]], (ρ, v2) ∈ Te[[e2]],

⊕ ∈ {+,−,×} ∨ (⊕ ∈ {/,%} ∧ v2 , 0)}

Te[[e1 } e2]] ={(ρ,u1 } u2) | (ρ,u1) ∈ Te[[e1]], (ρ,u2) ∈ Te[[e2]],

} ∈ {>,6, <, >,=}}

Te[[¬b]] ={(ρ,¬w) | (ρ,w) ∈ Te[[b]]}

Te[[b1 ~ b2]] ={(ρ,w1 ~ w2) | (ρ,w1) ∈ Te[[b1]], (ρ,w2) ∈ Te[[b2]],

~ ∈ {∨,∧}}

T f [[b]] ={(ρ, ρ) | ρ ∈ Σ, (ρ, true) ∈ Te[[b]]}

Observe that the operators ⊕, } and ~ on the left hand side represent syntactic part of

the language, whereas the same on the right hand side represent the operations on the

corresponding semantic values.

Given the set of commandsC, the concrete denotational semantics function Tc : C→

(Σ→ Σ) specifying effects of commands on states is defined below:

Tc[[skip]] ={(ρ, ρ) | ρ ∈ Σ}

Tc[[x := e]] ={(ρ, ρ[x← v]) | ρ ∈ Σ, (ρ, v) ∈ Te[[e]]}

Tc[[c1; c2]] =Tc[[c2]] ◦Tc[[c1]]

Tc[[if b then c1 else c2]] = {(ρ , ρ′) | (ρ , ρ) ∈ T f [[b]], (ρ , ρ′) ∈ Tc[[c1]]}

∪
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{(ρ , ρ′′) | (ρ, ρ) ∈ T f [[¬b]], (ρ, ρ′′) ∈ Tc[[c2]]}

Tc[[while b do c]] = {(ρ , ρ′) | (ρ , ρ′) ∈

T f [[¬b]] ◦ lfp λY.(ρ ∪Tc[[c]] ◦T f [[b]]Y)}

Observe that, in case of assignment statement x := e, the semantic function Tc returns

a new state by substituting the semantic value of e into x w.r.t. the given state. The

semantics of conditional and iterative statements are expressed in terms of the function

T f which filters the memory domains and considers only those satisfying the boolean

expression b. The join operation ∪ merges the semantics of both branches of the

conditional statement. On the other hand, the semantics of iterative statement is defined

in terms of a loop invariant which is obtained via a least fixpoint computation.

3.2.2 Concrete Semantics of SQL Statements

Before describing the semantics of database languages, let us recall the definition of

environments and state from [52]. This is to note that database language may involves

variables from both Va and Vd. Therefore, both the notions of database environment

and application environment are relevant in defining state.

Application Environment. Given the set of application variables Va and the domain

of values Val, let Ea : Va → Val be the set of all functions with domain Va and range

included in Val. An application environment ρa ∈ Ea maps application variables to

their values in Val.

Database Environment. A database d is a set of tables {ti | i ∈ Ix} for a given set of

indexes Ix. A database environment is defined as a function ρd whose domain is Ix, such

that for i ∈ Ix, ρd(i) = ti.

Table Environment. Given a database table t with attributes attr(t)={a1, a2, . . . , ak}.

So, t ⊆ D1 × D2 × .... × Dk where ai is the attribute corresponding to the typed domain

Di. A table environment ρt for a table t is defined as a function such that for any attribute

ai ∈ attr(t), ρt(ai) = 〈πi(l j) | l j ∈ t〉whereπ is the projection operator andπi(l j) represents

the ith element of the l j-th row. In other words, ρt maps ai to the ordered set of values
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over the rows of the table t.

State. Let Σdba be the set of states for the database language under consideration, de-

fined by Σdba , Edbs × Ea where Edbs and Ea denote the set of all database environments

and the set of all application environments respectively. Therefore, a state ρ ∈ Σdba is

denoted by a tuple (ρd, ρa) where ρd ∈ Edbs and ρa ∈ Ea.

Transition Function. The transition function

Tdba : (C × Σdba)→ ℘(Σdba) (3.1)

specifies which successor states (ρd′ , ρa′) ∈ Σdba can follow when a statement c ∈ C exe-

cutes on state (ρd, ρa) ∈ Σdba.

Concrete Semantics. Given a database statement Q = 〈A, φ〉 and a concrete database

state ρ = (ρd , ρa), the concrete semantics of Q w.r.t. ρ is defined below:

Tdba[[〈A, φ〉]]ρ

=Tdba[[〈A, φ〉]](ρd , ρa)

=Tdba[[〈A, φ〉]](ρt , ρa)

where t = target(〈A, φ〉)

=Tdba[[〈A〉]](ρ(t↓φ) , ρa) t (ρ¬(t↓φ) , ρa)

=(ρt′ , ρa) t (ρ¬(t↓φ) , ρa)

=(ρt′ t ρ¬(t↓φ) , ρa t ρa)

=(ρt′′ , ρa)

(3.2)

where the function target(Q) returns the table on which the operations in Q are restricted

and the notation (t ↓ φ) denotes the set of tuples in t for which φ is true. Observe that

the semantics function Tdba on the action-part A w.r.t. the table environment ρt↓φ yields

a new state ρt′ . Observe that, as concrete table environment is defined in such a way to

capture multiset semantics of attributes, the concrete semantics of SQL respect this as
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well. As this is clear from the context, in this semantics definition the state of the tables

other than ρt remained unchanged. Therefore, we have not specified this explicitly. Let

us illustrate the concrete semantics of an update statement in Example 8.

(a) table t
eid sal age dno
1 1500 35 10
2 800 28 20
3 2500 50 10
4 3000 62 10

(b) table t′′

eid sal age dno
1 1600 35 10
2 800 28 20
3 2600 50 10
4 3100 62 10

Table 3.2: Database before and after the update operation

Example 8 Consider the database table t in Table 3.2(a) and the following update statement:

Qupd : UPDATE t SET sal := sal + 100 WHERE age > 35

The abstract syntax is denoted by 〈UPDATE(~vd,~e), φ〉 where φ = (age > 35) and ~vd = 〈sal〉 and

~e = 〈sal + 100〉.

The table targeted by Qupd is target(Qupd)= {t}. The semantics of Qupd is:

Tdba[[Qupd]](ρd, ρa)

=Tdba[[
〈
UPDATE(〈sal〉, 〈sal + 100〉), (age > 35)

〉
]](ρd, ρa)

=Tdba[[
〈
UPDATE(〈sal〉, 〈sal + 100〉), (age > 35)

〉
]](ρt, ρa)

Since, target(Qupd)={t}

=Tdba[[UPDATE(〈sal〉, 〈sal + 100〉)]](ρt↓(age>35), ρa)

t

(ρt↓¬(age>35), ρa) Absorbing φ = (age > 35)

=(ρt′ , ρa) t (ρt↓¬(age>35), ρa)

=(ρt′ t ρt↓¬(age>35), ρa)

=(ρt′′ , ρa)

where

ρt′ ≡ρt↓ (age > 35)

[
sal ← Te[[sal + 100]](ρt↓ (age > 35), ρa)

]
44



3.3 Abstract Semantics

=ρt↓ (age > 35) [sal ← 〈1600, 2600, 3100〉]

The notation (t ↓ (age > 35)) denotes the set of tuples in t for which (age > 35) is true (denoted

by red part in t of Table 3.2(a)). Te is the semantic function for arithmetic expression which

maps “sal + 100” to a list of values 〈1600, 2600, 3100〉 on the table environment ρt↓(age>35). The

notation← denotes a substitution by new values. Observe that the substitution of ’sal’ by the

list of values in ρt↓(age>35) results in a new table environment ρt′ (denoted by red part in Table

3.2(b)). Finally, the least upper bound (denoted t) which is defined over the lattice of table

environments partially ordered by ⊆, results in a new state (ρt′′ , ρa) where t′′ is depicted in Table

3.2(b).

3.3 Abstract Semantics

Let us first recall from [29,36,94] the abstract semantics of imperative statements. Then

we define the abstract semantics of database statements at various levels of abstractions,

from non-relational to relational domains.

3.3.1 Abstract Semantics of Imperative Statements

Let Lc = 〈D,⊆,⊥c,>c,∩c,∪c〉 be a concrete lattice and La = 〈D,v,⊥a,>a,ua,ta〉 an abstract

lattice. The Lc and La are related by the Galois connection (Lc, α, γ, La) such that α(X) v

Y ⇐⇒ X ⊆ γ(Y) where X ∈ D and Y ∈ D. The set of abstract states is defined as Σ : Va

→ D which respects the Galois Connection, i.e. ∀ ρ ∈ Σ,∀ ρ ∈ Σ: α(ρ) v ρ ⇐⇒ ρ ⊆

γ(ρ).

3.3.1.1 Domain of Interval

Given an abstract domain I of intervals, the set of abstract states is defined as Σ :Va→ I

which respects the Galois Connection, i.e. ∀ ρ ∈ Σ,∀ ρ ∈ Σ: α(ρ) v ρ ⇐⇒ ρ ⊆ γ(ρ).

The corresponding sound abstract semantics function Te : (E ∪ B) → (Σ → I ∪

{true, f alse,>B}) for expression evaluation where >B denotes “ may be true or may be

false”, is defined as:

Te[[k]] ={(ρ, [k, k]) | ρ ∈ Σ}
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Te[[x]] ={(ρ, ρ(x)) | ρ ∈ Σ}

Te[[e1 ⊕ e2]] ={(ρ, v1 ⊕ v2) | (ρ, v1) ∈ Te[[e1]], (ρ, v2) ∈ Te[[e2]]}

Te[[e1 } e2]] ={(ρ, v1 } v2) | (ρ, v1) ∈ Te[[e1]], (ρ, v2) ∈ Te[[e2]]}

Examples of sound abstract arithmetic and relational operations ⊕ and } respectively

in the domain of intervals are:

[l1, h1] + [l2, h2] =[l1 + l2, h1 + h2]

[l1, h1] − [l2, h2] =[l1 − l2, h1 − h2]

[l1, h1] × [l2, h2] =[min(l1 × l2, l1 × h2, h1 × l2, h1 × h2),

max(l1 × l2, l1 × h2, h1 × l2, h1 × h2)]

[l1, h1] / [l2, h2] =[l1, h1]×[
1
l2
,

1
h2

], 0 < [l2, h2]

[l1, h1]>[l2, h2] =


true if l1 > h2

f alse if h1 < l2

>B otherwise

Abstract versions of other arithmetic and relational operations are also defined this

way, ensuring the soundness in I.

Similarly, the abstract semantics functions T f : B→ (Σ→ Σ) for abstract state-filtering

and Tc : C→ (Σ→ Σ) for commands are:

T f [[x 6 k]] =
{
(ρ, ρ[x← [l,min(h, k)]]) | ρ ∈ Σ, ρ(x) = [l, h], l 6 k

}
T f [[x < k]] =

{
(ρ, ρ[x← [l,min(h, k − 1)]]) | ρ ∈ Σ, ρ(x) = [l, h], l 6 k − 1

}
T f [[x > k]] =

{
(ρ, ρ[x← [max(l, k), h]]) | ρ ∈ Σ, ρ(x) = [l, h], h > k

}
T f [[x > k]] =

{
(ρ, ρ[x← [max(l, k + 1), h]]) | ρ ∈ Σ, ρ(x) = [l, h], h > k + 1

}
T f [[x = k]] =

{
(ρ, ρ[x← [k, k]]) | ρ ∈ Σ, ρ(x) = [l, h], l 6 k 6 h

}
Tc[[skip]] =

{
(ρ, ρ) | ρ ∈ Σ

}
Tc[[x := e]] =

{
(ρ, ρ[x← v]) | (ρ, v) ∈ Te[[e]]

}
Tc[[if b then c1 else c2]] = {(ρ, ρ3) | (ρ, ρ1) ∈ T f [[b]], (ρ1, ρ3) ∈ Tc[[c1]]}
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t

{(ρ, ρ4) | (ρ, ρ2) ∈ T f [[¬b]], (ρ2, ρ4) ∈ Tc[[c2]]}

= {(ρ, ρ3 t ρ4) | ρ ∈ Σ}

where t denotes component-wise join operation in the abstract lattice La.

Tc[[while b do c]] = {(ρ , ρ1) | (ρ , ρ1) ∈

T f [[¬b]] ◦ lfp λY.(Y∇(ρ t T c[[c]] ◦T f [[b]]Y))}

where ∇ : (I × I)→ I is a widening operator, if:

• for each x, y ∈ I: x v x∇y and y v x∇y.

• for each increasing chain x0 v x1 v . . . , the increasing chain defined by y0 = x0,

yn+1 = yn∇xn+1 for n ∈ N, is not strictly increasing.

Example 9 Consider the statement c ::= if x > 5 then x := x + y else x := x − y. Consider an

abstract state in the domain of intervals ρ=〈x→ [2, 10], y→ [1, 1]〉. The abstract semantics of

c w.r.t. ρ is illustrated below:

T f [[x > 5]](ρ) =ρ[x← [5, 10]] = ρ1

T f [[¬(x > 5)]](ρ) =ρ[x← [2, 4]] = ρ2

Te[[x + y]](ρ1) =ρ1(x) + ρ1(y) = [6, 11]

Te[[x − y]](ρ2) =ρ2(x) − ρ2(y) = [1, 3]

Tc[[x := x + y]](ρ1) =ρ1[x← [6, 11]] = ρ3

Tc[[x := x − y]](ρ2) =ρ2[x← [1, 3]] = ρ4

Tc[[if x > 5 then x := x + y else x := x − y]](ρ)

= (ρ3 t ρ4) = 〈[6, 11] t [1, 3], [1, 1] t [1, 1]〉

= 〈[1, 11], [1, 1]〉 = ρ5

Example 10 Consider the simple code fragment x = 1; while(x < 100){x = x + 1;}. Figure

3.1 illustrates a data flow-based analysis of the code in I for the absence of runtime errors. The

data-flow equation for each node is mentioned on the controlling edge of the corresponding node.
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x = 1

x < 100

x = x + 1

ρ0 = 〈x→ ⊥〉

ρ1 = ρ0[[1, 1]/x]

x: [1,1]

ρ2 = (ρ1 ∩ ρ3) ∩ [−∞, 99]

x: [1,99]

yes

ρ3 = ρ2+[1, 1]

x: [2,100]

ρ4 = (ρ1 ∩ ρ3) ∩ [100,+∞]

x: [100,100]

no

Figure 3.1: An example of interval analysis

The fix-point solution of these equations represent the abstract collecting semantics (denoted by

red color).

3.3.1.2 Domain of Octagons

Given the set of boolean expressions B and commands C. The concrete denotational

semantics functions for state-filtering based on the boolean satisfiability is defined as

T f :
(
B → ℘(Σ)

)
→ ℘(Σ). The corresponding sound abstract function T f in the

domain of octagons is defined as T f : (B → M⊥) → M⊥. Similarly, the concrete

denotational semantic function for the effects of commands on states is defined as

Tc :
(
C → ℘(Σ)

)
→ ℘(Σ) and its corresponding sound abstract function Tc in octagon

domain is defined as Tc : (C→M⊥)→M⊥.

Test: Given a CDBM m representing abstract state at a program point and a boolean

expression b. The state-filtering function T f finds m’ applying b on m where γ(m′) is

{ρ ∈ γ(m) | ρ satisfies b}. However, as it is in general impossible to implement such a

transition function, an upper approximation result is computed such that

γ(m′) ⊇ {ρ ∈ γ(m) | ρ satisfies b}

The tests that can be modeled in the octagon domain are: xh + xl 6 k, xh − xl 6 k,

−xh − xl 6 k, xh + xl = k, xh 6 k and xh > k. The state-filtering function T f for xh + xl 6 k

is defined as below:
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T f [[xh + xl 6 k]]m = m′ where

m′i j ,



min(mi j, k) if (i, j) ∈ {(2h, 2l − 1), (2l, 2h − 1)},

mi j otherwise

Observe that the entries in the CDBM m corresponding to the cells (x−h , x+
l ) and (x−l , x+

h )

are updated based on the value k, resulting into m’ which satisfies xh + xl 6 k. Similarly

T f for all others tests can also be defined.

Assignment: An assignment is to replace the value of a program variable xi with the

value of an expression e, formally xi = e. Given an abstract state m representing octag-

onal constraints at a program point and an assignment xi = e, the abstract semantics of

the assignment on m results m’ as an upper approximation such that

γ(m′) ⊇ {ρ[xi ← k] | ρ ∈ γ(m) ∧ k = Te[[e]]ρ}where

Te is the semantic function of arithmetic expression and ρ[xi ← k] denote ρ with its ith

component changed into k.

The assignments that can be modeled in octagon domain are: xh = xh + k and xh = xl + k

with h , l. In the first case xh = xh + k, we subtract k from inequalities having negative

coefficient for xh and we add k to inequalities having positive coefficient for xh. On the

other hand, for the second case xh = xl + k, the inequalities xh − xl 6 k and xl − xh 6 −k

are added into the octagon. Let us illustrate them below:

1. If xh = xh + k:

Tc[[xh = xh + k]]m = m′ where m′i j , mi j + (αi j + βi j)k with
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αi j ,



+1 if j = 2h,

-1 if j = 2h − 1,

0 otherwise

and

βi j ,



-1 if i = 2h,

+1 if i = 2h − 1,

0 otherwise

2. If xh = xl + k with h , l:

Tc[[xh = xl + k]]m = m′ where

m′i j ,



k if (i, j) ∈ {(2h, 2l); (2l − 1, 2h − 1)},

-k if (i, j) ∈ {(2l, 2h); (2h − 1, 2l − 1),

mi j if i, j < {2h, 2h − 1},

+∞ otherwise

Example 11 Consider the statement c ::= if x > 5 then x := y + 1 else x := y−1. Let the initial

abstract state be m> (which is the top element in the lattice of octagon abstract domain). The

abstract semantics of c w.r.t. m is illustrated below, where
rep
= denotes an alternative representation

in memory.

T f [[x > 5]]m> ={−x 6 −5}
rep
= m1

T f [[¬(x > 5)]]m> ={x 6 4}
rep
= m2

Tc[[x := y + 1]]m1 ={x − y 6 1, y − x 6 −1,−x 6 −5}
rep
= m3

Tc[[x := y − 1]]m1 ={x − y 6 −1, y − x 6 1, x 6 4}
rep
= m4

Tc[[if x > 5 then x := y + 1 else x := y − 1]]m> = (m3 tm4)
rep
= 〈{x − y 6 1, y − x 6 −1,−x 6 −5} t

{x − y 6 −1, y − x 6 1, x 6 4}〉
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= 〈{x − y 6 1, y − x 6 1}〉 = m5

After recalling the abstract semantics of imperative languages on octagon domains

designed by [94], let us move to database languages.

3.3.1.3 Domain of Polyhedra

Given the concrete denotational semantics functions T f :
(
B → ℘(Σ)

)
→ ℘(Σ), the

corresponding sound abstract function T f in the domain of polyhedra is defined as

T f : (B → P) → P. Similarly, given the concrete denotational semantic function

Tc :
(
C → ℘(Σ)

)
→ ℘(Σ), its corresponding sound abstract function Tc in polyhedra

domain is defined as Tc : (C→ P)→ P.

Test: Let b be a boolean expression in the form of linear inequalities ~v.~x > k and

the abstract state in the form of polyhedron P. The state-filtering function T f finds P’

applying b on P define as

T f [[~v.~x > k]]P = P′

where P′ = P u b.

Example 12 Given P=({x > 8, y > 6}, 2). The equivalent generators representation (vertices

and rays) of P is V={(8, 6)} and R={(1, 0), (0, 1)}. The abstract semantics of boolean expression

x > 20 is defined as: T f [[x > 20]]P = P′ where P′ = ({x > 20, y > 6}, 2) and its equivalent

generators representation is V′={(20, 6)} and R′={(1, 0), (0, 1)}.

Assignment statement: Tc[[x j = e]](P) = P’ where P’ is obtained as follows: (i) Case-1: If

e is non-linear expression or the assignment is non-invertible, then we simply project-

out the corresponding variable from the linear inequalities in P, resulting into a new

polyhedron P’; (ii) Case-2: otherwise, we introduce a fresh variable x j’ to hold the value

of e, then we project out x j and finally we reuse x j’ in place of x j which results into P’.

Example 13 Given P=({x > 3, y > 2}, 2). The equivalent generators representation (vertices

and rays) of P is V={(3, 2)} and R={(1, 0), (0, 1)}. The Tc of assignment x := x + y is define as

Tc[[x := x + y]]({x > 3, y > 2}, 2) = P′ where
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P′ = ({x − y > 3, y > 2}, 2) and its equivalent generators representation is V′={(5, 2)} and

R′={(1, 0), (-1, -1)}.

3.3.1.4 Powerset Abstract Domain

Let us explain the powerset construction over the interval abstract domain. Consider

the interval abstract domain I = {[l, h] | l ∈ Z ∪ {−∞}, h ∈ Z ∪ {+∞}, l ≤ h} ∪ ⊥ forming

an abstract lattice La = 〈I,v,⊥, [−∞,+∞],u,t〉. The powerset of the intervals denoted

by ℘(I) forms the abstract lattice Lp = 〈℘(I),�, ∅, I,f,g〉.

The correspondence between La and Lp is formalized as the Galois connections

〈La, α1, γ1, Lp〉. The partial order, meet and join operations in the powerset domain of

intervals can be defined accordingly.

Given a powerset abstract domain of intervals℘(I), the set of abstract states Σ : V →

℘(I) respects the Galois Connection, i.e. ∀ ρ ∈ Σ,∀ ρ ∈ Σ: α1(ρ) v ρ ⇐⇒ ρ ⊆ γ1(ρ).

Given S1,S2 ∈ ℘(I), the sound abstract arithmetic operations ⊕ in the powerset ab-

stract domain of intervals are defined as:

∀S1,S2 ∈ ℘(I) : S1⊕S2 = {vi ⊕ v j | ∀vi ∈ S1,∀v j ∈ S2}

The corresponding sound abstract semantics function Te : (E ∪ B) → (Σ → ℘(I) ∪

{true, f alse,>B}) for expression evaluation where >B denotes “ may be true or may be

false”, the abstract semantics functions T f : B → (Σ → Σ) for abstract state-filtering

and Tc : C→ (Σ→ Σ) for commands are defined accordingly in the powerset domain

of intervals. Example 14 illustrates this.

Example 14 Consider the statement c ::= if x > 5 then x := x + y else x := x − y. Consider

an abstract state in the powerset domain of interval ρ=〈x→ {[2, 6], [8, 10]}, y→ {[1, 1]}〉. The

abstract semantics of c w.r.t. ρ is illustrated below:

T f [[x > 5]](ρ) =ρ[x← {[5, 6], [8, 10]}] = ρ1

T f [[¬(x > 5)]](ρ) =ρ[x← {[2, 4]}] = ρ2

Te[[x + y]](ρ1) =ρ1(x) + ρ1(y) = {[6, 7], [9, 11]}
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Te[[x − y]](ρ2) =ρ2(x) − ρ2(y) = {[1, 3]}

Tc[[x := x + y]](ρ1) =ρ1[x← {[6, 7], [9, 11]}] = ρ3

Tc[[x := x − y]](ρ2) =ρ2[x← {[1, 3]}] = ρ4

Tc[[if x > 5 then x :=x + y else x := x − y]](ρ)

= (ρ3 g ρ4) = 〈{[6,7], [9, 11]} g {[1, 3]}, {[1, 1]} g {[1, 1]}〉

= 〈{[1, 3], [6, 7], [9,11]}, {[1, 1]}〉 = ρ5

3.3.2 Abstract Semantics of SQL Statements

Motivated from the abstract semantics of database statements defined only in the do-

main of intervals [52], we are now in a position to enrich it to more precise abstract

domains, namely the domain of octagons, polyhedra and powerset of intervals. To

this aim, let us first define abstract database states and the abstract semantic transition

function in an abstract domain of interest w.r.t. its concrete counterpart.

Definition 3.1 (Abstract Table) Given a concrete table t ∈ ℘(D) where D = D1×D2×....×Dk

such that attr(t)={a1, a2, . . . , ak} and ai is the attribute corresponding to the typed domain Di.

Let D be an abstract domain which represents properties of the attributes of t establishing the

Galois Connection 1
〈
(℘(D),⊆), α, γ, (D,v)

〉
. An element t ∈ D is said to be a sound abstraction

of the concrete table t if for all tuples l ∈ t, l ∈ γ(t).

Definition 3.2 (Abstract Table Environment) Given an abstract table t, an abstract table

environmentρt is defined asρt(ai) = πi(t) for any attribute ai ∈ attr(t), whereπ is the projection

operator in the abstract domain and πi(t) represents the projected abstract values corresponding

to the ith attribute in t.

Definition 3.3 (Abstract Database States) An abstract database d is a set of abstract tables

{ti | i ∈ Ix} for a given set of indexes Ix. An abstract database environment is defined as a function

ρd whose domain is Ix, such that for i ∈ Ix, ρd(i) = ti.

Definition 3.4 (Abstract States) An abstract state ρ ∈ Σdba for database applications is de-

fined as a tuple (ρd, ρa) where ρd ∈ Edbs and ρa ∈ Eaps are an abstract database environment and

an abstract application environment respectively.

1Notice that for some abstract domain the abstraction function may not exist.
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Example 15 illustrates the abstraction of a simple table in various relational and non-

relational abstract domains.

Example 15 Consider a concrete database that contains a table t shown in Figure 3.2(a). The

table provides information about the employees of a company. Let us consider the abstract domain

of intervals. Considering an abstraction where employees id, salaries ages and department

number of the employees are abstracted by the elements from the domain of intervals. The

abstract table t corresponding to t is depicted in Figure 3.2(b). Similarly one can abstract the

eid sal age dno
1 1500 35 10
2 800 28 20
3 2500 50 10
4 3000 62 10

(a) Concrete table t

eid sal age dno
[1,4] [800,3000] [28,62] [10, 20]

(b) Abstract table t in interval do-
main

Figure 3.2: Concrete and its corresponding Abstract Database

table using relational abstract domains also. The corresponding abstract representation of t in

octagons and polyhedra domain are represented by CDBM mt and Pt respectively as

mt
rep
=

{
− eid 6 −1, eid 6 4, − sal 6 −800, sal 6 3000,

− age 6 −28, age 6 62,−dno 6 −10, dno 6 20
}
, and

Pt
rep
=

{
eid > 1,−eid > −4, sal > 800,−sal > −3000,

age > 28,−age > −62, dno > 10,−dno > −20
}

Beside these classical abstract domains, one may also consider other kinds of treatment

to database instances as abstraction. For example, sets of abstract rows when each

row corresponds to the union of abstractions of some partitions of the concrete table.

Similarly, the form of conditional tables (c-tables) proposed in [68] can also be viewed

as an abstraction.

In order to formalize the abstract semantics of database applications, we define the

following sound abstract transition function corresponding to its concrete counterpart

Tdba (defined in equation 3.1):

T dba : C × Σdba → Σdba (3.3)

which specifies the successor abstract state (ρd′ , ρa′) ∈ Σdba when a statement c ∈ C
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executes on an abstract state (ρd , ρa) ∈ Σdba. The soundness of the abstract semantics

relies on the soundness of T dba w.r.t. Tdba.

Observe that since our abstraction over-approximates the attributes values, the multi-

plicity of attribute values may not be taken into account in abstract database representa-

tion and hence in abstract semantics, as per the definition of abstract table environment.

The abstract semantics of SQL statements in various abstract domains following equa-

tion 3.3 are defined below.

3.3.2.1 Domain of Intervals

Let us recall the semantic function T dba defined in equation 3.3 which specifies the

successor abstract state (ρd′ , ρa′) ∈ Σdba when a statement c ∈ C executes on an abstract

state (ρd , ρa) ∈ Σdba.

Given a database statement Q = 〈A, φ〉 and an abstract database state ρ = (ρd , ρa),

the abstract semantics of Q w.r.t. ρ is defined below:

T dba[[〈A, φ〉]]ρ

=T dba[[〈A, φ〉]](ρd , ρa)

=T dba[[〈A, φ〉]](ρt , ρa)

where t = target(〈A, φ〉) and ∃t ∈ ρd : t ∈ γ(t)

=T dba[[〈A〉]](ρTM , ρa) t (ρFM , ρa)

=(ρTM′ , ρa) t (ρFM , ρa)

=(ρTM′ t ρFM , ρa t ρa)

=(ρt′ , ρa) (3.4)

where

(ρTM , ρa) ∈ T f [[φ]](ρt , ρa) and (ρFM , ρa) ∈ T f [[¬φ]](ρt , ρa)

Observe that TM and FM are the abstract database states obtained by using the filtering

semantics function T f based on the satisfaction of φ. In particular, TM denotes the

part of the abstract database state for which φ is true, whereas FM denotes the abstract
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database state for which φ is false. After performing the update action A on TM,

the resultant abstract state TM′ is obtained. Finally, component-wise join operation

between TM′ and FM yields the resultant abstract state t′. Observe that, in order to

ensure the soundness, both TM and FM include the information for which φ results in

“may be true or false”. We illustrate this in Example 16.

Example 16 Consider the abstract domain of intervals I. Given the concrete database table t

shown in Table 3.3(a), its corresponding abstract version t replacing concrete values by their

properties from I is depicted in Table 3.3(b). Similarly, given an application environment

(a) Concrete table t
eid sal age dno
1 1500 35 10
2 800 28 20
3 2500 50 10
4 3000 62 10

(b) Abstract table t in interval do-
main

eid sal age dno
[1,4] [800,3000] [28,62] [10, 20]

Table 3.3: Concrete and its corresponding Abstract Database

ρa = 〈x → 100〉 where x is an application variable, its corresponding abstract application

environment in I is ρa = 〈x→ [100, 100]〉.

Now consider the following UPDATE statement:

Qupd : UPDATE t SET sal = sal + x WHERE sal > 1500

Here A = UPDATE(〈sal〉, 〈sal + x〉) and φ = sal > 1500. The concrete semantics yields the

resultant table t′ shown in Table 3.4.

eid sal age dno
1 1600 35 10
2 800 28 20
3 2600 50 10
4 3100 62 10

Table 3.4: Execution result t′ by Qupd on t

The abstract semantics of Qupd w.r.t. ρ = (ρt , ρa) is

T dba[[〈A, φ〉]](ρt , ρa)

=T dba[[
〈
UPDATE(〈sal〉, 〈sal + x〉), sal > 1500

〉
]](ρt , ρa)

56



3.3 Abstract Semantics

=T dba[[
〈
UPDATE(〈sal〉, 〈sal + x〉)

〉
]](ρTM, ρa) t (ρFM, ρa)

=(ρTM′ , ρa) t (ρFM , ρa)

=(ρTM′ t ρFM , ρa t ρa)

=(ρt′ , ρa)

where

ρTM =T f [[sal > 1500]](ρt) = ρt

[
sal ← [1500, 3000]

]
ρFM =T f [[¬(sal > 1500) ]](ρt) = ρt

[
sal ← [800, 1499]

]

ρTM′ = T dba[[UPDATE(〈sal〉, 〈sal + x〉)]](ρTM , ρa)

= Tc[[sal = sal + x]](ρTM , ρa)

= Tc[[sal = sal + [100, 100]]](ρTM , ρa)

= ρTM

[
sal← [1600, 3100]

]
Tables 3.5(a) and 3.5(b) depict TM and FM respectively. After performing the update action A

on TM, the resultant abstract table TM′ is shown in Table 3.5(c). Finally, component-wise join

operation between TM′ and FM yields the resultant table t′ depicted in Table 3.5(d). Observe

that the abstract semantics is sound, i.e. t′ ∈ γ(t′).

(a) Abstract table TM
eid sal age dno

[1,4] [1500,3000] [28,62] [10, 20]

(b) Abstract table FM
eid sal age dno

[1,4] [800,1499] [28,62] [10, 20]

(c) Abstract table TM′

eid sal age dno
[1,4] [1600,3100] [28,62] [10, 20]

(d) Abstract table t′ = TM′ t FM
eid sal age dno

[1,4] [800,3100] [28,62] [10, 20]

Table 3.5: Execution results of Qupd on t

3.3.2.2 Domain of Octagons

In case of database applications, we consider two different environments: database

environment ρd ∈ Edbs and application environment ρa ∈ Ea. To determine abstract
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semantics of database statements in the domain of octagons, we define the abstract

state ρ ∈ Σdba as

ρ = 〈md,ma〉

where md and ma are CDBMs of octagonal constraints as abstraction of database val-

ues and application variables values respectively. Therefore, as defined in equation

3.3, the abstract semantic function for database statements Q = 〈A, φ〉 is defined as:

T dba[[〈A, φ〉]](md,ma) = T dba[[〈A, φ〉]](mt , ma) = (mt′ , ma) where mt is the octagonal

representation of the concrete table t which acts as the target of Q and mt′ is the octag-

onal representation of the resultant table t′. Below is the abstract semantics for update

statement.

T dba[[〈UPDATE(~vd,~e), φ〉]](mt , ma)

=T dba[[〈UPDATE(~vd,~e)〉]](mTM , ma) t (mFM , ma)

=(mTM′ , ma) t (mFM , ma)

=(mTM′ tmFM , ma tma)

=(mt′ , ma) where

T f [[¬φ]](mt,ma) = (mFM,ma) and T f [[φ]](mt,ma) = (mTM,ma)

We can define similarly the abstract semantics for other database statements as well.

Example 17 Consider the concrete table t shown in Table 3.3(a). Consider the concrete ap-

plication environment ρa = 〈x → 100〉 where x is an application variable. The corresponding

abstract representation of ρt and ρa in octagon domain are represented by CDBM mt and ma

respectively as

mt
rep
=

{
− eid 6 −1, eid 6 4, − sal 6 −800, sal 6 3000,

− age 6 −28, age 6 62,−dno 6 −10, dno 6 20
}
, and

ma
rep
=

{
x 6 100,−x 6 −100

}
.
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Consider the following UPDATE statement

Qupd : UPDATE t SET sal = sal + x WHERE age > 35

where A = UPDATE(〈sal〉, 〈sal+x〉) andφ = age > 35. The abstract semantics w.r.t. ρ = (mt,ma)

is

T dba[[〈A, φ〉]](mt,ma)

=T dba[[
〈
UPDATE(〈sal〉, 〈sal + x〉), age > 35

〉
]](mt,ma)

=T dba[[
〈
UPDATE(〈sal〉, 〈sal + x〉)

〉
]](mTM,ma) t (mFM,ma)

=(mTM′ ,ma) t (mFM,ma)

=(mTM′ tmFM , ma tma)

=(mt′ , ma)

where

mTM
rep
=

{
− eid 6 −1, eid 6 4,−sal 6 −800, sal 6 3000,−age

6 −35, age 6 62, − dno 6 −10, dno 6 20
}

mFM
rep
=

{
− eid 6 −1, eid 6 4,−sal 6 −800, sal 6 3000,−age

6 −28, age 6 34, − dno 6 −10, dno 6 20
}

mTM′
rep
=

{
− eid 6 −1, eid 6 4,−sal 6 −900, sal 6 3100,−age

6 −35, age 6 62, − dno 6 −10, dno 6 20
}

Note that we can follow an alternative equivalent way of abstract state representation

by combining both CDBM of md and ma for the sake of simplicity. Let p and q denote

the numbers of database variables and application variables respectively. Given md

and ma as CDBM representations of database values and variables values, these can be

combined into equivalent CDBM m defined in (p + q) – dimension space by merging md
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and ma. In the subsequent chapters we define abstract semantics w.r.t. abstract state

ρ = m.

3.3.2.3 Domain of Polyhedra

Let us define the abstract semantics for four database operations in the domain of poly-

hedra. Like octagon domain, given ρ = 〈Pd, Pa〉 ∈ Σdba where Pd and Pa are polyhedra

representation of database values and application variables values respectively. Accord-

ing to equation 3.3, the abstract semantic function for database statements Q = 〈A, φ〉

is defined as: T dba[[〈A, φ〉]](Pd, Pa) = T dba[[〈A, φ〉]](Pt , Pa) = (Pt′ , Pa) where Pt is the

polyhedron representation of the concrete table t which acts as the target of Q, and Pt′ is

the polyhedron representation of the resultant table t′. Below is the abstract semantics

for update statement.

T dba[[〈UPDATE(~vd,~e), φ〉]](Pt , Pa)

=T dba[[〈UPDATE(~vd,~e)〉]](PTM , Pa) t (PFM , Pa)

=(PTM′ , Pa) t (PFM , Pa)

=(PTM′ t PFM , Pa t Pa) = (Pt′ , Pa)

where

T f [[¬φ]](Pt, Pa) = (PFM, Pa) and T f [[φ]](Pt, Pa) = (PTM, Pa)

We can define similarly the abstract semantics for other database statements as well.

Example 18 Consider the concrete table t shown in Table 3.3(a). Consider the concrete applica-

tion environment ρa = 〈x→ 0.2〉where x is an application variable. The corresponding abstract

representation of ρt and ρa in polyhedra domain are represented by Pt and Pa respectively as

Pt
rep
=

{
eid > 1,−eid > −4, sal > 800,−sal > −3000,

age > 28,−age > −62, dno > 10,−dno > −20
}
, and

Pa
rep
=

{
− x > −0.2, x > 0.2

}
.
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Consider the following UPDATE statement

Qupd = UPDATE t SET sal = sal + sal × x WHERE dno + age > 60

where A = UPDATE(〈sal〉, 〈sal × x〉) and φ = dno + age > 60. The abstract semantics w.r.t.

ρ = (Pt, Pa) is

T dba[[〈A, φ〉]](Pt, Pa)

=T dba[[
〈
UPDATE(〈sal〉, 〈sal × x〉), dno + age > 60

〉
]](Pt, Pa)

=T dba[[
〈
UPDATE(〈sal〉, 〈sal × x〉)

〉
]](PTM, Pa) t (PFM, Pa)

=(PTM′ , Pa) t (PFM, Pa)

=(PTM′ t PFM , Pa t Pa)

=(Pt′ , Pa)

where

PTM
rep
=

{
eid > 1,−eid > −4, sal > 800,−sal > −3000, age > 40,

− age > −62, dno > 10,−dno > −20, dno + age > 60
}

PFM
rep
=

{
eid > 1,−eid > −4, sal > 800,−sal > −3000, age > 28,

− age > −49, dno > 10,−dno > −20,−dno − age > −59
}

PTM′
rep
=

{
eid > 1,−eid > −4, sal > 960,−sal > −3600, age > 40,

− age > −62, dno > 10,−dno > −20, dno + age > 60
}

Observe that alternatively, like octagon abstract domain, for the sake of simplicity, we

may combine both Pd and Pa into a single polyhedra P as an abstract program state.

In the subsequent chapters we define abstract semantics suitable for independency

computations w.r.t. an abstract state ρ= P in the domain of polyhedra.
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3.4 Correctness

Lemma 3.1 Given an abstract stateρ = (ρt , ρa), the abstract semantics function T dba is correct

w.r.t. the concretization function γ if ∀Q ∈ Q,∀ρt ∈ γ(ρt), ∀ρa ∈ γ(ρa) : Tdba[[Q]](ρt, ρa) ⊆

γ(T dba[[Q]](ρt, ρa)).

Proof 1 Given an abstract state ρ, the abstract semantics of Q = 〈A, φ〉 ∈ Q w.r.t. ρ is

defined as T dba[[Q]]ρ = T dba[[〈A, φ〉]]ρ = T dba[[〈A〉]]ρTM t ρFM = ρTM′ t ρFM = ρ′, where

ρTM represents abstract database state which satisfies φ and ρFM represents abstract database

state which does not satisfy φ. Abstract state which, due to abstraction, may satisfy φ is

included in both ρTM and ρFM. The state ρTM′ is obtained by performing A on ρTM. Now

let us consider a concrete state ρ ∈ γ(ρ). The concrete semantics of Q = 〈A, φ〉 w.r.t. ρ is

Tdba[[Q]]ρ = Tdba[[〈A, φ〉]]ρ = Tdba[[〈A〉]]ρT ∪ ρF = ρT′ ∪ ρF = ρ′, where ρT and ρF represent

concrete database states based on the satisfaction and dissatisfaction of φ respectively. As φ

in the abstract domain considers three valued logic due to the imprecision introduced in the

abstraction, and since both ρTM and ρFM include the database state for which φ evaluates to

“may be true or false”, assuming local correctness of the functions and relations involved in φ

we get ρT ∈ γ(ρTM) and ρF ∈ γ(ρFM). Similarly, the local correctness of the operations involved

in A guarantees ρT′ ∈ γ(ρTM′) [52]. Considering the Galois connection between concrete and

abstract database and application domains, we therefore get (ρT′ ∪ ρF) ∈ γ(ρTM′ t ρFM) and

so ρ′ ∈ γ(ρ′). This is depicted below:

ρ
Tdba[[Q]]// ρ′ ⊆ γ(ρ′))

ρ
T dba[[Q]]

//

γ

OO

ρ′
γ

OO

3.5 Discussions

Let us summarize the strengths and limitations of various relational and non-relational

abstract domains which we have used above to define abstract semantics of database

applications. As abstraction in the interval domain does not capture any relation among

variables or attributes, this yields a highly approximated analysis-results. On the other

hand, although abstract semantics in both octagon and polyhedra domains capture
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relationships among variables or attributes, the octagon domain allows a weak form

of constraints compared to that in polyhedra domain. Due to this reason, analysis in

octagon domain is less precise than that in the polyhedra domain. Intuitively, precise-

ness of the analysis in relational abstract domain improves significantly when more

number of relations among variables or attributes is present in the program itself, e.g.

in the WHERE clause or in the conditional or iterative statements. In terms of algorithmic

efficiency, octagon domain always lies between interval and polyhedra. Analyses (in-

volving all common operations e.g. emptiness test, inclusion, etc.) in polyhedra abstract

domain experience an exponential (O(2n)) worst-case time complexity [76], whereas in

octagonal domain the graph-based analysis algorithms for all common operations ex-

perience O(n3) worst-case time complexity, where n is the number of variables in the

program [94]. Powerset operator, on the other hand, can generate very expressive inter-

pretations. In fact, the powerset abstract domain gains the capability of expressing the

logical disjunction of the properties represented by the original domain. A summary

on the strength and weakness of domains is reported in Table 3.6. This is to observe

that, in relational database, the semantics of NULL value is as follows [44]:

1. Value unknown (exists but is not known).

2. Value not available (exists but is purposely withheld).

3. Value not applicable (the attribute is undefined for this tuple).

When initial database in unknown, the database is over-approximated by considering

the top values of attributes from their corresponding abstract domains. Therefore, this

captures the above-mentioned semantics of NULL value as well. Moreover, we have

defined the abstract semantic functions T dba and T dep in terms of ρTM, ρFM and ρTM
′ ,

Domain Invariants Time cost Memory cost Precision
Interval x ∈

{
[l, h] | l, h ∈ R,

l ≤ h, x ∈ V
} O(n) O(n) low

Octagon ±xi ± x j 6 k, xi, x j ∈

V ∧ k ∈ R ∪ {∞}
O(n3) O(n2) medium

Polyhedra Σn
i=1 aixi > k, xi ∈ V ∧

ai, k ∈ Rn
O(2n) O(2n) high

Powerset ℘(D) Depends onD Depends on D Improves w.r.t D

Table 3.6: A summary on various abstract domains
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which also include the results when the condition-partφ leads to “may be true or false” in

three-valued logic and the results on applying the action-part A on NULL values. This

guarantees a sound approximation of real database systems where we often experience

NULL values in the database.

3.6 Conclusions

In this chapter, we define an abstract semantics of database languages embedding

SQL in the Abstract Interpretation framework. We consider various non-relational

and relational abstract domains of interests. We prove that the abstraction of database

language, following the Abstract Interpretation framework, always guarantees the

soundness property. In the subsequent part of the thesis, we show how this semantic

formalism may serve as a powerful dependency analysis framework, even in the case

of undecidable scenarios, enabling one to tune between precision and efficiency.
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C H A P T E R 4

Concrete and Abstract Semantics of

Hibernate Query Language (HQL)

©

Preface
As stated earlier, the thesis refers database applications embedding either SQL and

HQL. Therefore, like chapter 3, we also define the formal syntax and concrete seman-

tics of HQL, followed by its abstraction in various domains of interest. In particular, we

refer various session methods which act as the central interface between an application

and its underlying database.
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4.1 Formal Syntax of HQL

Hibernate query language (HQL) is an Object-Relational Mapping (ORM) tool which

remedies the paradigm mismatch between object-oriented languages and relational

database models and hence simplifies the data creation, data manipulation, data

access [11, 12, 42]. It provides a unified platform for the programmers to develop

object-oriented applications to interact with databases, without knowing much details

about the underlying databases. The attractive feature of Hibernate is the presence

of Hibernate Session which provides a central interface between the application and

database and acts as a persistence manager. In HQL, an object is transient if it has just

been instantiated using the new operator. Transient instances will be destroyed by the

garbage collector if the application does not hold a reference anymore. A persistent

instance, on the other hand, has a representation in the database and an identifier value

assigned to it. Given an object, the Hibernate Session is used to make the object per-

sistent. Various methods in Hibernate Session are used to propagate object’s states

from memory to the database (or vice versa) and to synchronize both the states when a

change is made to the persistent objects [99].

Syntax of HQL is similar to the object oriented constructs along with SQL variants

through Session objects. The syntactic sets and the abstract syntax of HQL is depicted

in Table 4.1. Like Object-Oriented Program (OOP) [86], HQL programs are composed of

a set of classes including main class. That is, a HQL programP is defined asP = 〈cmain, L〉

where cmain ∈ Class is the main class and L ⊂ Class are the other classes. Similarly, a

class c ∈ Class contains a set of fields and methods, and therefore, is defined as a triplet

c = 〈init, F, M〉, where init is the constructor, F is the set of fields, and M is the set of

member methods.

In abstract syntax, we denote a Session method by a triplet 〈C, φ, OP〉 where OP is

the operation to be performed on the database tuples corresponding to a set of objects

of classes c ∈ C satisfying the condition φ. For instance, consider the following update

statement which is invoked through a session object ‘ses’:

Query Q = ses.createQuery(“UPDATE std SET rank = rank + 1 WHERE mark > 500′′)

The abstract syntax of Q is denoted by 〈C, φ, OP〉 = 〈{std},mark > 500, rank = rank + 1〉
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Constants and Variables
n ∈ N Set of Integers
v ∈ V Set of Variables

Arithmetic and Boolean Expressions
exp ∈ E Set of Arithmetic Expressions
exp ::= n | v | exp1 ⊕ exp2

where ⊕ ∈ {+,−, ∗, /}
b ∈ B Set of Boolean Expressions
b ::= true | false | exp1 ⊗ exp2|¬b|b1 � b2

where ⊗ ∈ {≤,≥,==, >,,, . . . } and � ∈ {∨,∧}
Well-formed Formulas

τ ∈ T Set of Terms
τ ::= n | v | fn(τ1, τ2, ..., τn)

where fn is an n-ary function.
a f ∈ A f Set of Atomic Formulas
a f ::= Rn(τ1, τ2, ..., τn) | τ1 == τ2

where Rn(τ1, τ2, ..., τn) ∈ {true, f alse}
φ ∈ W Set of Well-formed Formulas
φ ::= a f | ¬φ | φ1 � φ2

where � ∈ {∨,∧}
HQL Functions

g(~e) ::= GROUP BY( ~exp) | id
where ~exp = 〈exp1, ..., expn | expi ∈ E〉

r ::= DISTINCT | ALL

s ::= AVG | SUM | MAX | MIN | COUNT

h(exp) ::= s ◦ r(exp) | DISTINCT(exp) | id
h(∗) ::= COUNT(*)

where * represents a list of database attributes denoted by ~vd
~h(~x) ::= 〈h1(x1), ..., hn(xn)〉

where ~h = 〈h1, ..., hn〉 and ~x = 〈x1, ..., xn | xi = exp ∨ xi = ∗〉
f ( ~exp) ::= ORDER BY ASC( ~exp) | ORDER BY DESC( ~exp) | id
Session Methods

c ∈ Class Set of Classes
c ::= 〈init, F, M〉

where init is the constructor, F ⊆ Var is the
set of fields, and M is the set of methods.

mses ∈ Mses Set of Session methods
mses ::= 〈C, φ, OP〉

where C ⊆ Class

OP ::= SEL(va, f ( ~exp′), r(~h(~x)), φ, g( ~exp))
| UPD(~v, ~exp)
| SAVE(obj)
| DEL()

where φ represents ‘HAVING’ clause
and obj denotes an instance of a class.

Table 4.1: Formal Syntax of HQL Session Methods
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The descriptions of OP in various Session methods are as follows:

•
〈
C, φ, SAVE(obj)

〉
=

〈
{c}, f alse, SAVE(obj)

〉
: Stores the state of the object obj in the

database table t, where t corresponds to the POJO class c and obj is the instance of

c. The pre-condition φ is f alse as the method does not identify any existing tuples

in the database.

•
〈
C, φ, UPD(~x, ~exp)

〉
=
〈
{c}, φ, UPD(~v, ~exp)

〉
: Updates the attributes corresponding to the

class fields ~x by ~exp in the database table t for the tuples satisfying φ, where t

corresponds to the POJO class c.

•
〈
C, φ, DEL()

〉
=
〈
{c}, φ, DEL()

〉
: Deletes the tuples satisfying φ in t, where t is the

database table corresponding to the POJO class c.

•
〈
C, φ, SEL

(
va, f ( ~exp′), r(~h(~x)), φ′, g( ~exp)

)〉
: Selects information from the database

tables corresponding to the set of POJO classes C, and returns the equivalent

representations in the form of objects.

It is immediate that in case of SAVE() the condition φ is f alse and C is singleton set {c}.

As UPD() and DEL() always target single class, the set C is also singleton {c} in those cases.

However, C may not be singleton in case of SEL().

4.2 Concrete Semantics of HQL

In this section, we define the semantics of HQL by (i) extending the of semantics Object-

Oriented Programming (OOP) [86] and (ii) defining the semantics of Session methods

in terms of the semantics of database statements [52].

4.2.1 Concrete Semantics of OOP

Let us first recall from [86] the concrete semantics of object-oriented programming

languages. Object-oriented programming languages consist of a set of classes including

a main class from where execution starts. Each class contains a set of attributes and a

set of methods - called members of the class. Therefore, a programP in OOP is defined

as P = 〈cmain, L〉 where Class denotes the set of classes, cmain ∈ Class is the main class,

L ⊂ Class are the other classes present in P.
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A class c ∈ Class is defined as a triplet c = 〈init, F, M〉where init is the constructor,

F is the set of fields, and M is the set of member methods in c.

Let Var, Val and Loc be the set of variables, the domain of values and the set of

memory locations respectively. The set of environments, stores and states are defined

below:

• The set of environments is defined as Env : [Var −→ Loc]

• The set of stores is defined as Store : [Loc −→ Val]

• The set of states is defined as Σ : Env × Store. So, a state ρ ∈ Σ is denoted by a

tuple 〈e, s〉where e ∈ Env and s ∈ Store.

4.2.1.1 Trace Semantics

Let c = 〈init, F, M〉 and m be init or m ∈ M. Let pcexit and pcin be the entry and exit point

of the m. Furthermore, let →⊆ (Env × Store)×(Env × Store) be a transition relation

and S0 ∈ ℘(Env×Store) be a set of methods‘ initial states. The trace semantics of m,

W[[m]] ∈ (℘(Env × Store)→ ℘(Env × Store)), is

W[[m]](S0) =lfp⊆
∅
λ X. S0 ∪

{
ρ0 → ρ1 → · · · → ρn → ρn+1 | ρn+1 ∈ (Env × Store) ∧

ρ0 → ρ1 → · · · → ρn ∈ X ∧ ρn → ρn+1

}
∪

{
ρ0 → . . . ρn | ρ0 → . . . ρn ∈ X

}
Let P = 〈cmain, L〉 be an object-oriented program. Let→⊆ (Env × Store)×(Env × Store)

be a transition relation and S0 ∈ ℘(Env×Store) be a set of initial states such that ∀ρ0 ∈

S0. ρ0(currentMethod) = cmain and ρ0(pc) = pcmain where pcmain is the entry point of main

method in cmain. The semantic of P is defined as

S[[P]](S0) =lfp⊆
∅
λ X. S0 ∪

{
ρ0 → ρ1 → · · · → ρn → ρn+1 | ρn+1 ∈ (Env × Store)∧

ρ0 → ρ1 → · · · → ρn ∈ X ∧ ρn → ρn+1

}
4.2.1.2 Constructor and Method Semantics

The semantics of constructor and methods are defined in terms of final state abstraction

of their own trace semantics. The class constructor is invoked when an object of that

class is created and initialized, given a store s, the constructor maps its fields to fresh
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locations and then assigns values into those locations. Constructor never returns any

output.

Definition 4.1 (Constructor Semantics) Given a store s. Let {ain, apc} ⊆ Loc be the free

locations, Valin ⊆ Val be the semantic domain for input values. Let vin ∈ Valin and pcexit be the

input value and the exit point of the constructor. The semantic of the class constructor init,

S[[init]] ∈ (Store × Val→ ℘(Env × Store)), is defined by

S[[init]](vin, s) =
{
(e0, s0) | (e0 , Vin → ain, pc→ apc) ∧ (s0 , s[ain → vin, apc → pcexit])

}
in αa(W[[init]](

{
(e0, s0)

}
))

where the final state abstraction αa is defined as

αa(T) = {σ ∈ Σ | ∃τ ∈ T. τ is maximal, τ(len(τ) − 1) = σ and T is the sets of finite traces}

Definition 4.2 (Method Semantics) Let Valin ⊆ Val and Valout ⊆ Val be the semantic

domains for the input values and the output values respectively. Let vin ∈ Valin be the input

values, ain and apc be the fresh memory locations, and pcexit be the exit point of the method m.

The semantic of a method m, S[[m]] ∈ (Env × Store × Valin → ℘(Store × Env × Valout), is

defined as

S[[m]](e, s, vin) =
{
(e′, s′, vout) | (e′ , e[Vin → ain, pc→ apc])∧

(s′ , s[ain → vin, apc → pcexit]) ∧ vout ∈ Valout

}
in let S f = αa(W[[init]](

{
(e′, s′)

}
))

in
{
〈ρ f (vout, e f , s f )〉 | ρ f = 〈e f , s f )〉 ∈ S f

}

Example 19 Consider the example of Figure 4.1. The class constructor Sample() creates a

new environment consists of field a. The semantics of constructor Sample() and the semantics

of the methods parity() and incr() are defined below:

S[[Sample()]](s, i) =
{
(e0, s0) | (e0 , a→ ain, pc→ apc) ∧ (s0 , s[ain → i, apc → 5])

}
S[[parity()]](e, s,∅) =

{
(e, s′, vout) | (s′ , s[e(pc)→ 10]) ∧ (vout = if(s(e(a))%2) ?1 : 0)

}
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1. class Sample {
2. int a;

3. Sample(int i) {
4. a = i;
5. }

6. int parity() {
7. if(a % 2 == 0)
8. return 1;
9. else return 0;
10. }

11. int ∗ incr( int j ) {
12. a = a + j;
13. return &a;
14. }

15. }

Figure 4.1: An example class

S[[incr()]](e, s, j) =
{
(e, s′, vout) | (s′ , s[e(a)→ s(e(a)) + j, e(pc)→ 14]) ∧ vout = e(a)

}
Observe that parity() takes no input and returns an integer value as output, whereas incr()

takes an integer value as input and returns an address as output.

4.2.1.3 Object and Class Semantics

Object semantics is defined in terms of interaction history between the program-context

and the object. A direct interaction takes place when the program-context calls any

member-method of the object, whereas an indirect interaction occurs when the program-

context updates any address escaped from the object’s scope. However, both direct or

indirect interaction can cause a change in an interaction state (see definition 4.3).

Definition 4.3 (Interaction States) The set of interaction states is defined by

Σ = Env × Store × Valout × ℘(Loc)

where Env, Store, Valout, and Loc are the set of application environments, the set of stores, the

set of output values, and the set of addresses respectively.

Definition 4.4 (Initial Interaction States) Let vin ∈ Valin be an input to the class construc-

tor init when creating an object. Let s ∈ Store be a store. Then the set of initial interaction
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states is defined by

I0 =
{
〈e0, s0, φ, ∅〉 | vin ∈ Valin, s ∈ Store, S[[init]](vin, s) 3 〈e0, s0〉

}
Observe that φ denotes no output produced by the constructor and ∅ represents the

empty context with no escaped address.

Example 20 (Initial Interaction States) Consider the example of Figure 4.1. The input to

the constructor is i. Given a store s, the initial interaction states are

I0 =
{
〈e0, s0, φ, ∅〉 | S[[Sample()]](i, s) 3 (e0, s0)

}
=

{
〈e0, s0, φ, ∅〉 |(e0 , a→ ain, pc→ apc) ∧ (s0 , s[ain → i, apc → 5])

}
Observe that the third element in an initial state is φ because constructor does not return any

value as output. Similarly the fourth element is ∅ because no address is escaped from the object’s

scope after execution of sample().

4.2.1.4 Transition Function.

Let Lab = (M × Valin) ∪ {upd} be a set of labels, where M is the set of class-methods, Valin

is the set of input values and upd denotes an indirect update operation by the context.

The transition function T : Σ → ℘(Σ × Lab) specifies which successor interaction

states σ′ = 〈e′, s′, v′, Esc′〉 ∈ Σ can follow

1. when an object’s methods m ∈ M with input vin ∈ Valin is directly invoked on an

interaction state σ = 〈e, s, v, Esc〉 (direct interaction), or

2. the context indirectly updates an address escaped from an object’s scope (indirect

interaction).

Definition 4.5 (Direct Interaction Tdir) Transition on Direct Interaction is defined below:

Tdir(〈e, s, v, Esc〉) =
{(
〈e′, s′, v′, Esc′〉, (m, vin)

)
| S[[m]](〈e, s, vin〉) 3 〈e′, s′, v′〉

∧ Esc′ = Esc ∪ reach(v′, s′)
}
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where

reach(v, s) =



if v ∈ Loc

{v} ∪ {reach(e′( f ), s) | ∃B. B = {init, F, M}, f ∈ F,

s(v) is an instance of B, s(s(v)) = e′

else ∅

Example 21 (Direct interaction Tdir) Consider the example of Figure 4.1. The context can

invoke any one of the two methods of Sample class. Therefore given an interaction state

σ = 〈e, s, v, Esc〉, the set of successor interaction states are

Tdir(〈e, s, v, Esc〉) =
{(
〈e, s′, v′, Esc〉, (parity(), φ)

)
| S[[parity()]](〈e, s, φ〉) 3 〈e, s′, v′〉

}⋃{(
〈e, s′, v′, Esc′〉, (incr(), j)

)
| S[[incr()]](〈e, s, j〉) 3 〈e, s′, v′〉

∧ Esc’ = Esc ∪ {v′}
}

Definition 4.6 (Indirect Interaction Tind) Transition on Indirect Interaction is defined be-

low:

Tind(〈e, s, v, Esc〉) =
{(
〈e, s′, v, Esc〉, upd

)
| ∃a ∈ Esc. Update(a, s) 3 s′

}
where Update(a, s) = {s′ | ∃v ∈ Val. s′ = s[a← v]}

Definition 4.7 (Transition function T ) Let σ ∈ Σ be an interaction state. The transition

function T : Σ → ℘(Σ × Lab) is defined as T = Tdir ∪ Tind, where Tdir and Tind represent

direct and indirect transitions respectively.

Let us denote a transition between interaction states σ1 and σ2 by σ1
`
−→ σ2 where ` ∈ Lab.

4.2.1.5 Objects Fix-point Semantics

Given a store s ∈ Store, the set of initial interaction states is defined as

I0 =
{
〈e0, s0, φ, ∅〉 | S[[init]](vin, s) 3 〈e0, s0〉, vin ∈ Valin

}
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The fix-point trace semantics of obj, according to [31], is defined as

T [[obj]](I0) = lfp⊆
∅
F (I0) =

⋃
i≤ω

F
i(I0)

where F (I) = λT . I ∪
{
σ0

`0
−→ . . .

`n−1
−−→ σn

`n
−→ σn+1 | σ0

`0
−→ . . .

`n−1
−−→ σn ∈ T∧

(σn+1, `n) ∈ T (σn)
}

4.2.1.6 Class Semantics

Class is nothing but a description of the set of objects. The semantics of a class c is

defined as

S[[c]] = ∪
{
T [[obj]](I0) | "obj" is an instance of a class c and I0 is the

set of initial interaction states
}

Observe that the semantic definitions of objects and classes aim at verifying invariance

properties of classes.

4.2.2 Concrete Semantics of Session Methods

The semantics of conventional constructors, methods, objects, classes in HQL are de-

fined in the same way as in the case of OOP. The Session methods require an ‘ad-hoc’

treatment. We define its concrete semantics by specifying how the methods are exe-

cuted on (e, s, ρd) where e ∈ Env is an environment, s ∈ Store is a store and ρd ∈ Ed is

a database environment (defined in chapter 3), resulting into new state (e′, s′, ρd′). The

semantic definitions are expressed in terms of the semantics of database statements

SELECT, INSERT, UPDATE, DELETE defined in chapter 3.

We use the following functions in the subsequent part: map(v) maps v to the under-

lying database object; var(exp) returns the variables appearing in exp; attr(t) returns the

attributes associated with table t; dom(f) returns the domain of f .

The semantics function is defined as:

S[[(C, φ, op)]](e, s, ρd)
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=



S[[(C, φ, op)]](e, s, ρt′) if ∃t1, . . . , tn ∈ dom(ρd) : C = {c1, . . . , cn}

∧(∀i ∈ [1 . . . n]. ti = map(ci)) ∧ t′ = t1 × t2 × · · · × tn.

∅ otherwise.

4.2.2.1 Semantics of Session Method SAVE().

Let obj be an instance of a class c. Consider the Session method 〈{c}, φ, SAVE(obj)〉. The

semantics is defined as follows:

S[[〈{c}, φ, SAVE(obj)〉]]

=S[[〈{c}, f alse, SAVE(obj)〉]]

=λ(e, s, ρt). let c = 〈init, F, M〉 such that map(F) = attr(t) = ~a, and let

s(e(obj)) = e′ such that s(e′(F)) = ~val, in{
〈e, s, ρt′〉 | ρt′ ∈ S[[

〈
INSERT(~a, ~val), f alse

〉
]](ρt)

}
.

Note that our semantic definition presents a state transition from ρt to ρ′t on insertion of

new object into the database table t. Observe that this definition does not capture the

existence of any underlying database constraints.

4.2.2.2 Semantics of Session Method UPD().

Consider the Session method 〈{c}, φ, UPD(~v, ~exp)〉.

Let PE[[X]] (which stands for partial evaluation) be an auxiliary function which con-

verts variables in X into the corresponding database objects. This is defined by

PE[[X]](e, s, F) = X′

where X′ = X[xi/vi] for all vi ∈ var(X) and xi =


map(vi) if vi ∈ F

E[[vi]](e, s) otherwise
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The semantics is defined below1:

S[[〈{c}, φ, UPD(~v, ~exp)〉]]

=λ(e, s, ρt). let c = 〈init, F, M〉 such that map(F) = attr(t) and map(~v) = ~a ⊆ attr(t)

where ~v ⊆ F, and let φd = PE[[φ]](e, s, F) and ~expd = PE[[ ~exp]](e, s, F) in{
〈e, s, ρt′〉 | ρt′ ∈ S[[

〈
UPDATE(~a, ~expd), φd

〉
]](ρt)

}
.

4.2.2.3 Semantics of Session Method DEL().

Consider the Session method 〈{c}, φ, DEL()〉. The semantics is defined below:

S[[〈{c}, φ, DEL()〉]]

=λ(e, s, ρt). let c = 〈init, F, M〉 such that map(F) = attr(t) = ~a and let φd = PE[[φ]](e, s, F)

in
{
〈e, s, ρt′〉 | ρt′ ∈ S[[

〈
DELETE(~a), φd

〉
]](ρt)

}
4.2.2.4 Semantics of Session Method SEL().

The semantics of Session method

〈C, φ, SEL
(
va, f ( ~exp′), r(~h(~x)), φ′, g( ~exp)

)
〉 is defined as:

S[[〈C, φ, SEL
(

f ( ~exp′), r(~h(~x)), φ′, g( ~exp)
)
〉]]

=λ(e, s, ρt). let C = {〈initi, Fi, Mi〉 | i = 1, . . . ,n}, and F =
⋃

i=1,...,n

Fi, and

〈 ~exp′d, ~xd, φ
′

d, ~expd, φd〉 = PE[[〈 ~exp′, ~x, φ′, ~exp, φ〉]](e, s, F), and let

ρt′ = S[[〈SELECT(va, f ( ~exp′d), r(~h(~xd)), φ′d, g( ~expd)), φd〉]](ρt) and

(e′, s′) =
⊔
∀li∈t′

S[[Object()]](s, val(li)) in
{
〈e′, s′, ρt〉

}
.

Observe that val(li) converts each tuple li ∈ t′ into input values, and S[[Object()]](s, val(li))

invokes the object constructor Object() which creates an object by initializing the fields

1Observe that, for the sake of simplicity, we do not consider here the method REFRESH() which
synchronize the in-memory objects state with that of the underlying database.
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with val(li). This is done for all tuples li ∈ t′, resulting into new (e′, s′). As we already

mentioned in the case of concrete semantics of SQL, in this semantics definition also the

state of the tables other than ρt remained unchanged and this is clear from the context.

4.2.2.5 Fix-point Semantics of Session Objects

Let Env and Store be the set of HQL environments and stores respectively. Let Ed be the

set of database environments. The set of interaction states of Session objects is defined

below:

Definition 4.8 (Interaction States of Session Objects) The set of interaction states ofSession

objects is defined by

Σ = Env × Store × Ed × ℘(Loc)

Therefore, an interaction state of a Session object is a triplet 〈e, s, ρd, Esc〉, where e ∈ Env,

s ∈ Store, ρd ∈ Ed and Esc ∈ ℘(Loc).

Because of nondeterministic executions, the transition function is defined as T :

Mses × Σ → ℘(Σ) specifying which successor interaction states σ′ = 〈e′, s′, ρd′ , Esc′〉 ∈ Σ

can follow when a Session method mses = 〈C, φ, op〉 ∈ Mses is invoked on an interaction

state σ = 〈e, s, ρd, Esc〉. That is,

T [[mses]](〈e, s, ρd, Esc〉) =
{
〈e′, s′, ρd′ , Esc

′
〉 | S[[mses]](〈e, s, ρd〉) 3 〈e′, s′, ρd′〉 ∧mses ∈ Mses

}
We denote a transition by σ

mses
−−→ σ′ when application of a Session method mses on

interaction state σ results into a new state σ′.

Let I0 be the set of initial interaction states. The semantics of Session object objses is

defined as

T [[objses]](I0) = lfp⊆
∅
F (I0) =

⋃
i≤ω

F
i(I0)

where F (I) = λT . I ∪
{
σ0

m0
−→ . . .

mn−1
−−−→ σn

mn
−−→ σn+1 | σ0

m0
−→ . . .

mn−1
−−−→ σn ∈ T

∧σn
mn
−−→ σn+1 ∈ T

}
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4.2.2.6 Session Class Semantics

The semantics of the Session class cses is defined as

S[[cses]] = ∪
{
T [[objses]](I0) | "objses" is an instance of a Session class cses and I0 is the

set of initial interaction states
}

4.2.3 Illustration using an Example

Consider the HQL program HProg depicted in Figure 4.2 and the initial database table

t1 depicted in Table 4.3(a). The fields id, age, dno, sal of POJO class emp correspond

to the attributes tid, tage, tdno, tsal of table t1 respectively. The Session methods of

the class Service allows manipulating the employee’s information such as inserting a

new record in the database table, updating the values of the attributes tage and tsal,

removing existing record from the database table and to make simple queries to that

database 2.

Now we will describe our semantic formalism on the Session methods at various

program points of HProg.

The formal syntax of SAVE() at program point 12 is defined as
〈
{emp}, f alse, SAVE(obj)

〉
.

Given the table environment ρt1 in Figure 4.3(a), the semantics is defined as below:

[[
〈
{emp}, f alse, SAVE(obj)

〉
]]

=λ(e, s, ρt1). let emp = 〈emp(), F, M〉 such that F = 〈id, age, dno, sal〉 and

map(F) = attr(t) = 〈tid, tage, tdno, tsal〉 and let

s(e(obj)) = e′ such that s(e′(〈id, age, dno, sal〉)) = 〈4, 32, 1, 1000〉, in{
〈e, s, ρt2〉 | ρt2 ∈ S[[

〈
INSERT(〈tid, tage, tdno, tsal〉, 〈4, 32, 1, 1000〉), f alse

〉
]](ρt1)

}
.

where ρt2 is depicted in Table 4.3(b).

The formal syntax of the UPD() to the statements 13-15 is
〈
{c}, φ, UPD(~v, ~exp)

〉
, where

2Observe at program points 13, 14-16, 17-18 that the basic differences between HQL and SQL.
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class emp {
private int id;
private int age;
private int dno;
private int sal;
emp(){ }

emp(int x){ this.id=x; }
public int getId() { return id;}
public void setId(int id) { this.id = id;}
public int getage() {return age;}
public void setage(int age) { this.age = age;}
public int getdno() { return dno;}
public void setdno(int dno) { this.dno = dno;}
public int getsalary() { return sal;}
public void setsalary(int salary) { this.sal = salary;} }

(a) Class emp

1. public class Service{
2. public static void main(String[] args) {
3. Configuration cfg=new Configuration();
4. cfg.configure("hibernate.cfg.xml");
5. SessionFactory sf=cfg.buildSessionFactory();
6. Session ses=sf.openSession();
7. Transaction tr=ses.beginTransaction();

% Creating emp object and stores into database %

8. emp obj=new emp( 4 );
9. obj.setage(32);
10. obj.setdno(1);
11. obj.setsalary(1000);
12. ses.save( obj );

% Updating persistent emp objects %

13. Query q1 = ses.createQuery("UPDATE emp SET emp.age= emp.age+1,
emp.sal= emp.sal + :inc×2 WHERE emp.sal > 1600");

14. q1.setParameter("inc",100);
15. int r1 = q1.executeUpdate();

% Selecting from persistent emp objects %

16. Query q2 = session.createQuery("SELECT emp.dno, MAX(emp.sal),
AVG(DISTINCT emp.age) FROM emp

WHERE emp.sal ≥ 1000 GROUP BY emp.dno HAVING
MAX(emp.sal) < 4000 ORDER BY emp.dno");

17. List r2 = q2.list();
% Deleting persistent emp objects %

18. Query q3 = ses.createQuery("DELETE FROM emp WHERE
emp.age > 50");

19. int r3 = q3.executeUpdate();
20. tr.commit();
21. ses.close();
22. } }

(b) Class Service

Figure 4.2: A HQL Program HProg
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tid tage tdno tsal
1 35 3 1600
2 19 2 900
3 50 3 2550

(a) Initial Table t1

tid tage tdno tsal
1 35 3 1600
2 19 2 900
3 50 3 2550
4 32 1 1000

(b) Table t2: After executing
statement 12

tid tage tdno tsal
1 35 3 1600
2 19 2 900
3 51 3 2750
4 32 1 1000

(c) Table t3: After executing
statements 13-15

tid tage tdno tsal
1 35 3 1600
2 19 2 900
3 51 3 2750
4 32 1 1000

(d) Table t4: After executing
statement 16-17 (no change in
database)

tid tage tdno tsal
1 35 3 1600
2 19 2 900
4 32 1 1000

(e) Table t5: After executing
statements 18-19

tdno MAX(tsal) AVG(tage)
1 1000 32
3 2750 43

(f) Table tsel: Result of Selection at
16-17

Figure 4.3: Snapshot of database states after executing various Session methods

• {c}= {emp},

• φ= “emp.sal > 1600”,

• UPD(~v, ~exp)=UPD
(
〈age, sal〉, 〈age + 1, sal+ : inc × 2〉

)
Given the table environment ρt2 in Figure 4.3(b), the semantics is defined as:

S[[
〈
{emp}, (emp.sal > 1600), UPD

(
〈age, sal〉, 〈age + 1, sal+ : inc × 2〉

)〉
]]

=λ(e, s, ρt2). let emp = 〈emp(), F, M〉 such that F = 〈id, age, dno, sal〉 and

map(F) = attr(t) = 〈tid, tage, tdno, tsal〉 and

map(~v) = map(〈age, sal〉) = 〈tage, tsal〉 ⊆ attr(t), and let

(tsal > 1600) = PE[[(emp.sal > 1600)]](e, s, F) and

〈tage + 1, tsal + 100 × 2〉 = PE[[〈age + 1, sal+ : inc × 2〉]](e, s, F) in{
〈e, s, ρt3〉 | ρt3 ∈ S[[

〈
UPDATE(〈tage, tsal〉, 〈tage + 1, tsal + 100 × 2〉), (tsal > 1600)

〉
]](ρt2)

}
.
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where ρt3 is depicted in Table 4.3(c).

The formal syntax of the DEL() at program point 18-19 is defined as
〈
{emp}, φ, DEL()

〉
,

where φ = “emp.age > 50′′.

Given the table environment ρt4 in Figure 4.3(d), the semantics is defined as below:

S[[
〈
{emp}, (emp.age > 50), DEL()

〉
]]

=λ(e, s, ρt4). let emp = 〈emp(), F, M〉 such that F = 〈id, age, dno, sal〉 and

map(F) = attr(t) = 〈tid, tage, tdno, tsal〉 and let

(tage > 50) = PE[[(emp.age > 50)]](e, s, F) in{
〈e, s, ρt5〉 | ρt5 ∈ S[[

〈
DELETE(〈tid, tage, tdno, tsal〉, (tage > 50))

〉
]](ρt4)

}
.

where ρt5 is depicted in Table 4.3(e).

The formal syntax of the SEL() to the statements 16-17 is:

〈
C, φ, SEL(va, f ( ~exp′), r(~h(~x)), φ′, g( ~exp))

〉
where

• C={c}= {emp},

• φ= “emp.sal ≥ 1000”,

• ~exp = 〈emp.dno〉,

• g( ~exp) = GROUP BY(〈emp.dno〉),

• φ′=“MAX(emp.sal)<4000”,

• ~x= 〈emp.dno, emp.sal, emp.age〉,

• ~h= 〈DISTINCT, MAX◦ALL, AVG◦DISTINCT〉,

• r(~h(~x))= DISTINCT
(
DISTINCT(emp.dno), MAX◦ALL(emp.sal), AVG◦DISTINCT(emp.age)

)
,

• ~exp′=〈emp.dno〉,
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• f ( ~exp′)=ORDER BY ASC(〈emp.dno〉)

• va = ResultSet type with fields ~w =< w1,w2, . . .wn >

Given the table environment ρt3 in Figure 4.3(c), the semantics is defined as:

S[[
〈
{emp}, φ, SEL

(
va, f ( ~exp′), r(~h(~x)), φ′, g( ~exp)

)〉
]]

=λ(e, s, ρt2). let emp = 〈emp(), F, M〉 such that

F = 〈id, age, dno, sal〉 and let

〈 ~exp′d, ~xd, φ
′

d, ~expd, φd〉 = PE[[〈 ~exp′, ~x, φ′, ~exp, φ〉]](e, s, F) where

φd = “tsal ≥ 1000′′

~expd = 〈tdno〉

φ′d = “MAX(tsal) < 4000′′

~xd = 〈tdno, tsal, tage〉

~exp′d = 〈tdno〉

and S[[
〈
SELECT(va, f ( ~exp′d), r(~h(~xd)), φ′d, g( ~expd)), φd

〉
]](ρt3) = ρtsel (See Figure 4.3(f))

in
{
〈e′, s′, ρt〉 | (e′, s′) =

⊔
li∈tsel

S[[Object()]](s, val(li))
}
.

4.3 Abstract Semantics of HQL

As it is usual, in the Abstract Interpretation framework, once the concrete semantics is

formulated, it can be lifted to an abstract semantics by simply making correspondence

of concrete objects (variables values, object instances, stores, states, traces, etc.) into

abstract ones representing partial information on them. Here we extend the semantics

abstraction of OOP to the case of HQL in the same line as proposed in [86]. This will

allow us to capture reachable database state semantics, and hence database invariant

in an abstract domain of interest.

The semantics of a method can be abstracted to set of interaction states by considering

their reachability on all possible execution of the method.

Definition 4.9 (Collecting Session Method Semantics) Let m be a method and X ∈ ℘(Σ)

be a set of interaction states. Then the collecting Session method semantics of mses,M[[mses]] ∈
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(℘(Σ)→ ℘(Σ)) is defined as

M[[mses]](X) =
{
〈e′, s′, ρd′ , Esc〉 | 〈e, s, ρd, Esc〉 ∈ X, vin ∈ Valin,S[[mses]](〈e, s, ρd〉) 3 〈e′, s′, ρd′〉

}

Reachable States Session Object Semantics. Let vin ∈ Valin and s ∈ Store. Let objses

is an object instance of Session class cses = 〈init, F, Mses〉. The reachable states fixpoint

semantics of objses, defined as a function Tr[[objses]] ∈ (Valin × Store → ℘(Σ)), is as

follows:

Tr[[objses]](vin , s) = lfp⊆
∅
λK .

(
I0 ∪

⋃
mses∈Mses

M[[mses](K )
)

Now, Tr[[objses]] is a sound approximation of its concrete semantics. That is,

αΣ(T [[objses]](vin , s)) ⊆ Tr[[objses]](vin , s) where

αΣ(T) = {σ ∈ Σ | ∃τ ∈ T. ∃i. τ(i) = σ and T is the sets of finite traces}

Reachable States Session Class Semantics. The reachable states semantics Sr[[cses]] ∈

℘(Σ) of Session class cses is defined as:

Sr[[cses]] =
⋃
{Tr[[objses]](vin , s) | objses is an instance of cses, vin ∈ Valin , s ∈ Store}

Observe that Sr[[cses]] is a sound approximation of the Session class concrete semantics,

i.e. αΣ(S[[cses]]) ⊆ Sr[[cses]]. It can be expressed in fixpoint form as

Sr[[cses]] = lfp⊆
∅
λK .

(
I[[init]] ∪

⋃
mses∈Mses

M[[mses]](K )
)

where I[[init]] = I0 ∈ ℘(Σ) are the states reached after an invocation of the class con-

structor.

State-based Session Class Invariant. The equations that characterize a Session class

invariant can be derived directly from the above defined fixpoint formulation of the

Session class reachable states. That is,

K = I[[init]] ∪
⋃

mses∈Mses

M[[mses]](K )
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In its turn, such an equation can be rewritten as the following system of recursive

equations, where n is the number of method calls of Session class cses.

K = K0 ∪

⋃
16i6n

Ki ,

K0 = I[[init]],

Ki = M[[msesi]](Ki−1), 1 6 i 6 n

A solution of the above system of equations is a tuple of sets of states 〈K , K0, K1 . . .Kn〉

where

• K are the states reached after the execution of a class constructor and at the entry

and exit point of any method in the Session class;

• K0 are the states reached after the execution of the Session class constructor;

• Ki are the states reached after the execution of the Session method msesi .

Let 〈D, v, ⊥, >, t, u〉 be an abstract domain approximating sets of interaction states,

establishing the following Galois connection:

〈℘(Σ), ⊆, ∅, Σ, ∩, ∪〉
α
−→
←−−
γ
〈D, v, ⊥, >, t, u〉 (4.1)

Let us consider the abstract counterpart of the constructor semantics so that the initial

states are approximated by a function I[[init]] ∈ D such that

I[[init]] ⊆ γ(I[[init]])

The collecting Session method semantics is approximated by an abstract semantic

function M[[msesi]] ∈ (D → D). In fact, M[[msesi]] is a sound approximation of the

collecting semantics of msesi . That is,

∀X ∈ ℘(Σ). M[[msesi]](X) ⊆ γ(M[[msesi]](α(X))) (4.2)

Given I[[init]] ∈ D and M[[msesi]] ∈ (D → D), the tuple 〈K , K 0, K 1 . . .Kn〉 ∈ D
n+2

is a
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solution of the following recursive equations system:

K = K 0 t

⊔
16i6n

K i ,

K 0 = I[[init]],

K i = M[[msesi]](K i−1), 1 6 i 6 n

Observe that Sr[[cses]] ⊆ γ(K ), I[[init]] ⊆ γ(K 0) andM[[msesi]](Sr[[cses]]) ⊆ γ(K i).

Therefore, for the verification of database invariant property, one has to choose ap-

propriate abstract domains such as the domains of Intervals, Octagons, Polyhedra, etc.

4.4 Conclusions

In this chapter, we define concrete and abstract semantics of HQL in terms of the

semantics of Session methods, objects and Session class. We show that the state

invariant property of Session class in a suitable abstract domain verifies the database

consistency w.r.t. a given set of integrity constraints.

85





C H A P T E R 5

Semantic-based Dependency

Computation of Database Applications

©

Preface
Syntax-based dependency computation often fails to generate an optimal set of depen-
dencies, which increases the susceptibility of false alarms in many software engineering
activities. This demands the need of semantics-based dependency computation taking
into account variables values rather than their syntactic structures. This chapter is
dedicated for this purpose. In particular, considering the previously defined abstract
semantics of database applications as the underlying basis, we instantiate semantics-
based dependency computation in various relational and non-relational abstract do-
mains tunable with respect to the precision and efficiency. We develop a prototype
semDDA, a semantics-based Database Dependency Analyzer, and we present experi-
mental evaluation results in various abstract domains to establish the effectiveness of
our approach. We show an improvement of the precision on an average of 6% in the
interval, 11% in the octagon, 21% in the polyhedra and 7% in the powerset of intervals
abstract domains, as compared to their syntax-based counterpart, for the chosen set of
Java Server Page (JSP)-based open-source database-driven web applications as part of
the GotoCode project.
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5.1 Introduction

Syntax-based construction of Dependency Graph depends on the computations of (i)

data-dependency among variables and statements based on the syntactic variables

presence in the statements and (ii) control-dependency based on the syntactic structure

of programs [100]. Interestingly, authors in [105], [63], [89] noticed that syntax-based

approach often fail to compute optimal set of dependencies, particularly when syntactic

presence of variables is not enough to represent relevancy. For instance, consider an

expression “e = x+2×w mod 2” where e is syntactically dependent on w but semantically

there is no such dependency as the evaluation of the expression “2 × w mod 2” is

always zero. Therefore, computation of such false dependencies focusing variables

value motivate researchers to refine syntax-based dependency graph into more refined

semantics-based dependency graph.

As we already stated in chapter 1 that the impact of precision of dependency infor-

mation may influences various applications like database code slicing, database leakage

analysis, data provenance, materialization view creation, etc. [23, 53, 55]. Let us again

highlight this using the following two database statements Q1 and Q2:

Q1 : UPDATE emp SET age := age + 1 WHERE age > 35 AND sal 6 2000

Q2 : SELECT MAX(sal), AVG(age) FROM emp WHERE age 6 30

Observe that Q2 is syntactically DD-Dependent on Q1 for ’age’ as it is a defined-variable

in Q1 and a used-variable in Q2. However, if we focus on the values of ’age’ in the

database, the part of age-values defined by Q1 is not overlapping with the age-values

subsequently used by Q2. Therefore, there exist no semantics-based dependency be-

tween Q1 and Q2.

Although [121] defines DD-dependency in terms of defined- and used-values of

databases, but their definition on PD-dependency rely on syntactic presence of vari-

ables and attributes in the statements. They refer Action-Condition rules to compute

overlapping of database-parts, however this fails to capture semantic independencies

when the application contains more than one defining database statements (in sequence)

for an attribute x which is subsequently used by another statement. The main reason

behind this is the flow-insensitivity of the Condition-Action rules, resulting into a set
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of false dependencies. Since then no significant contribution is found in this research

direction.

In this chapter, we put forward the notion of semantics-based dependency computa-

tion of database applications as a way to refine DOPDG by removing false dependencies.

To summarize, our contributions in this chapter are:

• Adapting the abstract semantics to define computable abstract semantics towards

independency computation of database applications, even in an undecidable sce-

nario when the input database instance is unknown.

• Design of an algorithm to compute semantics-based independencies among database

statements based on the abstract semantics.

• A detailed analytical study on precision vs. efficiency when computing depen-

dency in various well-suited non-relational and relational abstract domains, e.g.

Interval, Octagon, Polyhedra, Powerset domain.

• Development of a prototype semDDA, semantics-based Database Dependency

Analyzer, integrated with various abstract domains which enables users to per-

form precise dependency computation in various abstract domains of interest.

• Experimental evaluation on a set of open-source database-driven JSP web appli-

cations as part of the GotoCode project [1] using our semDDA tool1. Experiments

demonstrate the results in different abstract domains with a detailed compari-

son on precision and efficiency. This clearly shows that our technique improves

precision w.r.t. the proposal by Willmor et al. [121].

5.2 Related Works

Ferrante et al. [45] first introduced the notion of Program Dependency Graph (PDG)

aiming program optimization. Since then, PDG is playing crucial roles in a wide range

1Available at: https://github.com/angshumanjana/SemDDA.
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of software-engineering activities, e.g. program slicing [116], code-reuse [72], language-

based information flow security analysis [55,59,79], code-understanding [102]. Over the

time, various forms of dependency graphs for various programming languages are pro-

posed in order to address several language-specific problems. In [124], Zhao proposed

a static dependency analysis algorithm for concurrent Java programs based on Multi-

thread Dependency Graph (MDG). An MDG consists of a collection of TDGs (Thread

Dependency Graphs) each of which represents a single thread. Cheng [24] proposed a

PDG for parallel and distributed programs. In [49], the authors introduced the notion of

Concurrency Program Dependency Graph (CPDG) to represent concurrent programs

written using Unix primitives. It represents various aspects of concurrent programs in a

hierarchical fashion. Horwitz et al. [64] introduced System Dependency Graph (SDG) in

case of inter-procedural programs. Class Dependency Graph (ClDG) is introduced for

Object Oriented Programming (OOP) languages in [83]. Willmor et.al. [121] introduced

a variant of program dependency graph, known as Database-Oriented Program De-

pendency Graph (DOPDG), by considering two additional types of data dependencies:

Program-Database and Database-Database dependencies. The authors observed that,

although the generation of used and defined sets of variables is straightforward, but the

identification of overlap of database parts by different statements is more challenging.

To this aim, they refer to the Condition-Action rules introduced by Baralis and Widom

in [10]. The propagation algorithm based on Condition-Action rules predicts how the

action of one rule can affect the condition of another. In other words, the analysis checks

whether the condition sees any data inserted or deleted or modified due to the action.

Mastroeni and Zanardini [89] first introduced the notion of semantic data indepen-

dencies following the Abstract Interpretation framework at expression-level. This leads

to generate more precise semantics-based PDGs by removing false data dependencies

w.r.t. the traditional syntactic PDGs. [2] applied predicate transformer (weakest pre-

condition) to apply on dependency tree among a series of attribute-defining statements,

whereas [53] formalized the semantics for dependency refinement in a simple setting

following the Abstract Interpretation as an initial attempt.

The authors in [92] and [84] addressed a closely related problem, known as query

containment problem, which checks whether, for every database, the result of one

query is a subset of the result of another query. For instance, a query Q1 is contained

in a query Q2 if and only if the result of applying Q1 to any database D is contained
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in the result of applying Q2 to the same database D. Formally, a query Q1 is said to

be contained in a query Q2, denoted Q1 v Q2 ⇐⇒ ∀D Q1(D) ⊆ Q2(D) and Q1 ≡ Q2

⇐⇒ Q1 v Q2 ∧ Q2 v Q1, where Q(D) represents the result of query Q on database D.

The computational complexity of conjunctive query containment is NP-complete [92].

Query containment is useful for the various purposes of query optimization, detecting

independency of queries from database updates, rewriting queries using views, etc. As

dependency computations of database applications consider DML commands (INSERT,

UPDATE, DELETE), the solutions proposed in [84,92] for only conjunctive queries is, there-

fore, unable to provide a complete solution in our case which involves both write-write

and write-read operations.

The authors in [26] addressed an undecidable problem which aims to identify all pos-

sible values that may occur as results of string expressions. Few interesting applications

of the solution, among many others, include static analysis of validity of dynamically

generated XML documents in the JWIG extension of Java, static syntax checking of

dynamically generated queries in database programs. The authors proposed a static

analysis technique for extracting context-free grammar from a given program and ap-

plied a variant of the Mohri-Nederhof approximation algorithm to approximate the

possible values of string expressions in Java programs. A static analysis framework is

proposed in [37] to automatically identify possible SQL injection attacks, SQL query

performance optimization and data integrity violations in database programs. For this

purpose, the framework adapts data and control flow analysis of traditional optimizing

compilers techniques by leveraging understanding of data access APIs. [119] proposed

a sound static analysis technique for verifying the correctness of dynamically generated

SQL query strings in database applications. The technique is based on a combination of

automata-theoretic techniques and a variant of the context-free language reachability

algorithm. A new framework [80] is proposed for context-sensitive program analysis.

The concept of deductive database technology is used here to create a higher abstraction

for this cloning-based approach to context sensitivity. The framework allows users to

express whole-program analysis succinctly with a small number of Datalog rules that

operate on a cloned call graph. In [90], the authors proposed the constraint cover-

age criteria and the column coverage criteria for testing the specification of integrity

constraints in a relational database schema. They expressed integrity constraints as

predicates with constraint coverage, whereas they generated test requirements with
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0. public class saleOffer
{

1. public static void main(String[] args) throws SQLException
{

2. float x = 0.1;
3. float y = 0.05;
4. try

{
Statement con = DriverManager.getConnection("jdbc mysql: . . . ", "scott", "tiger").createStatement();
/ ∗ 5% discount offer based on the purchase amount. ∗ /

5. con
.executeQuery("UPDATE Sales SET purchase_amt = purchase_amt − y ∗ purchase_amt WHERE purchase_amt BETWEEN 1000 AND 3000 " );

/ ∗ 10% discount offer based on the purchase amount. ∗ /
6. con.executeQuery("UPDATE Sales SET purchase_amt = purchase_amt − x ∗ purchase_amt WHERE purchase_amt > 3000 ");

/ ∗ Free delivery offer. ∗ /
7. con.executeQuery("UPDATE Sales SET purchase_amt = purchase_amt − delivery_charge ");

. . .

. . .

. . .

11. ResultSet rs=con.executeQuery("SELECT cust_name, purchase_amt FROM Sales WHERE purchase_amt > 200 ");
. . .
. . .
. . .

/ ∗ Points increment based on the purchase amount and wallet balance. ∗ /
15. con

.executeUpdate("UPDATE Sales SET point = point + 2 WHERE (purchase_amt + wallet_bal) > 5000 AND (purchase_amt + wallet_bal) < 10000 ")
;

16. con.executeUpdate("UPDATE Sales SET point = point + 4 WHERE (purchase_amt + wallet_bal) > 10000 ");
}

catch
(Exception e)

{
. . .

} }}

Figure 5.1: Database Code Snippet Prog

the column coverage for checking integrity constraints.

5.3 A Running Example

Consider the database code snippet Prog depicted in Figure 5.1. The code implements a

module which provides a set of offers on various purchases made on an online shopping

system.

The main method of the class saleOffer updates the purchase amount (stored in the

attribute purchase_amt) depending on various discount offers. For instance, a customer

will get 5% discount if the purchase amount is between 1000 USD and 3000 USD.

Similarly, a 10% of discount is offered on the purchase amount more than 3000 USD. A

special offer on waiving delivery charges is also given for all customers (program point

7). Finally, the module increments the points accumulated by its customers depending

on both the purchase amount and the wallet balance at program points 15 and 16.

Observing the code carefully, we can identify a number of dependencies among the

statements in Prog. Some of them, although exist syntactically, may not be valid depen-
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dencies when we consider semantics of the program. For example, although statement

6 is syntactically DD-dependent on statement 5, but they are semantically independent

as the values of the attribute purchase_amt defined by statement 5 can never be used

by statement 6. In the subsequent sections, we pursue various existing approaches to

refine dependency information, and finally we propose an abstract interpretation-based

approach to approximate defined and used database parts by database statements (at

various levels of abstractions) and hence to compute semantics-based dependencies

among them based on the overlapping. We show, in section 5.7, how the proposed

approach effectively identifies false DD-dependencies in Prog.

5.4 Revisiting Syntax-based Dependency Computation in

Database Applications

This section briefly discusses the evolution of syntax-based Database-Oriented Pro-

gram Dependency Graph (DOPDG) construction and its limitations w.r.t. the literature.

Throughout this paper we shall use the terms “Program” and “Database Program” syn-

onymously. Similarly, we shall use the term “Statement” which synonymously refers

to either “imperative statement” or “database statement” depending on the context.

5.4.1 Pure Syntax-based DOPDGs

The construction of pure syntax-based Database-Oriented Program Dependency Graph

(DOPDG) is straightforward. It is an extension of traditional Program Dependency

Graphs (PDGs) [100] to the case of database programs, considering the following

three kinds of data-dependencies: (1) Program-Program dependency (PP-dependency)

which represents a dependency between two imperative statements, (2) Program-

Database dependency (PD-dependency) which represents a dependency between a

SQL statement and an imperative statement, and (3) Database-Database dependency

(DD-dependency) which represents a dependency between two SQL statements. This

is to observe that syntax-based PP-dependencies and control dependencies in DOPDGs

are the same as syntax-based data-dependencies and control-dependencies in PDGs
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respectively2. Let us define them below:

Definition 5.1 (Program-Program (PP) dependency [100]) An imperative statement I2 is

PP-dependent on another imperative statement I1 if there exists an application variable x such

that: (i) x is defined by I1, (ii) x is used by I2, and (iii) there is a x-definition free path from I1 to

I2.

Definition 5.2 (Program-Database (PD) dependency [121]) A database statement Q is

PD-dependent on an imperative statement I if there exists an application variable x such that:

(i) x is defined by I, (ii) x is used as an input to Q, and (iii) there is a x-definition free path from

I to Q. Similarly, an imperative statement I is PD-dependency on a database statement Q if

there exists an application variable x such that: (i) the execution of Q sets x to be equal to one

of the output of Q, (ii) x is used by I, and (iii) there is a x-definition free path from Q to I.

Definition 5.3 (Database-Database (DD) dependency) A database statement Q2 is DD-

dependent on another database statement Q1 for an attribute a (denoted Q1
a
−→ Q2) if the

following conditions hold: (i) a is defined by Q1, (ii) a is used by Q2, and (iii) there is no rollback

operation in between them, which undoes the effect of Q1 on a.

The syntax-based dependency computation depends on the syntactic presence of one

variable in the definition of another variable or on the control structure of the program.

LetC,Va andVd be the sets of statements, application-variables and database-attributes

in database programs. LetV = Va ∪Vd whereVa ∩Vd = ∅. The construction of syntax-

based DOPDG can be formalized based on the two following functions:

USE : C→ ℘(V) (5.1)

DEF : C→ ℘(V) (5.2)

which extract the set of variables (either application-variables or database-attributes)

used and defined in a statement c ∈ C.

The following example illustrates the construction of pure syntax-based DOPDG

using the above functions.

2In the rest of the paper, we represent DD-, PD-, control-dependencies by blue dashed-line, red
dotted-line and black line respectively.
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Figure 5.2: Pure Syntax-based DOPDG (F denotes attribute purchase_amt) of Prog

Example 22 Consider our running example Prog depicted in Figures 5.1. The control depen-

dencies 1→2, 1→3, 1→4, etc. are computed in similar way as in the case of traditional PDG.

The used and defined variables at each program point of Prog are computed as follows:

DEF(2) ={x} DEF(3) = {y}

DEF(4) ={purchase_amt, delivery_charge, cust_name,

wallet_bal, point}

DEF(5) ={purchase_amt} USE(5) = {purchase_amt, y}

DEF(6) ={purchase_amt} USE(6) = {purchase_amt, x}

DEF(7) ={purchase_amt}

USE(7) ={purchase_amt, delivery_charge}

USE(11)={purchase_amt, cust_name}

DEF(15)={point}

USE(15)={purchase_amt, wallet_bal, point}

DEF(16)={point}

USE(16)={purchase_amt, wallet_bal, point}

Observe that statement 4 defines all database attributes as it connects to the database,

resulting DEF(4) to contain all attributes. From the above information, the following data

dependencies are identified:

• DD-dependencies for purchase_amt: 4 5 , 4 6 , 4 7 , 4 11 ,
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4 15 , 4 16 , 5 6 , 5 7 , 5 11 , 5 15 , 5 16 ,

6 7 , 6 11 , 6 15 , 6 16 , 7 11 , 7 15 , 7 16 ,

• DD-dependencies for other attributes: 4 7 , 4 11 , 4 15 , 4 16 ,

15 16

• PD-dependencies for x and y: 2 6 , 3 5

The syntax-based DOPDG of Prog is depicted in Figure 5.2.

Limitations.

Syntax-based dependency computation often introduces false dependencies, leading

to an imprecise analysis. For instance, in Example 22, although the statement 6 is

syntactically DD-dependent on statement 5, however one can observe that the values

of the attribute purchase_amt defined by statement 5 can never be used by statement 6.

This is also true for 15 16 . Similarly observe that the redefinition of all values of

purchase_amt at program point 7 makes the statements 11, 15 and 16 data-independent

on statements 4, 5 and 6 for purchase_amt, which is not captured here.

5.4.2 An Improved Syntax-driven Construction of DOPDGs

The authors in [2] proposed an improvement over the syntax-driven DOPDG construc-

tion algorithm by tagging variables with labels which indicate whether a variable is

fully-defined or partially-defined. This enables us to (partially) identify a number of false

dependencies.

The modified definitions of USE and DEF functions are as follows:

USE : C→ ℘(V × L) (5.3)

DEF : C→ ℘(V × L) (5.4)

where L =
{
,

}
is a set of labels. The label associated with an attribute a indicates

that a is fully-defined – which means all values of a in the database are defined by the

database statement. On other hand, the label associated with a indicates that a is
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partially-defined – which means only a subset of the values of a in the database are

defined. Observe that these fully- and partially-defined distinctions are also applicable

to program variables representing collections, such as arrays, lists, etc. For ordinary

variable holding single value, the label is by default (i.e., fully-defined). Let us illustrate

this on our running example.

Example 23 Applying equations 5.3 and 5.4 on all statements in Prog of the running example,

we get the following information:

DEF(2) ={(x, )} DEF(3) = {(y, )}

DEF(4) ={(purchase_amt, ), (cust_name, ), (point, ),

(wallet_bal, ), (delivery_charge, )}

DEF(5) ={(purchase_amt, )}

USE(5) ={(purchase_amt, ), (y, )}

DEF(6) ={(purchase_amt, )}

USE(6) ={(purchase_amt, ), (x, )}

DEF(7) ={(purchase_amt, )}

USE(7) ={(purchase_amt, ), (delivery_charge, )}

USE(11)={(purchase_amt, ), (cust_name, )}

DEF(15)={(point, )}

USE(15)={(purchase_amt, ), (wallet_bal, ), (point, )}

DEF(16)={(point, )}

USE(16)={(purchase_amt, ), (wallet_bal, ), (point, )}

The above information results in the following refined set of data dependencies:

• DD-dependencies for purchase_amt: 4 5 , 4 6 , 4 7 , 5 6 , 5 7 ,

6 7 , 7 11 , 7 15 , 7 16 ,

• DD-dependencies for other attributes: 4 7 , 4 11 , 4 15 , 4 16 ,

15 16

• PD-dependencies for x and y: 2 6 , 3 5
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The label associated with purchase_amt in DEF(7) indicates that all values of pur-

chase_amt are defined at program point 7. This means that all definitions of purchase_amt

before 7 does not reach any of its use after 7, identifying false DD-dependencies 4 11 ,

5 11 , 6 11 , 4 15 , 5 15 , 6 15 , 4 16 , 5 16 and

6 16 for purchase_amt. Observe that the DD-dependency 4 11 exists for cust_name

and dependencies 4 15 , 4 16 exist for both wallet_bal and point. The improved

syntax-based DOPDG of Prog is depicted in Figures 5.3.
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Figure 5.3: Improved Syntax-based DOPDG of Prog (F denotes attribute purchase_amt)

Limitations.

This improved DOPDG construction approach also fails to compute optimal depen-

dency results, because of its syntactic bound. For example, the false DD-dependencies

5 6 for purchase_amt and 15 16 for point still remain unidentified.

5.4.3 DOPDG Construction on Condition-Action Rules

Although Willmor et al. [121] defined PD-dependency (Definition 5.2) in terms of syntax,

however interestingly they defined DD-dependency in terms of defined and used values

(see Definition 5.4). This leads to an improvement in the precision of DD-dependency

computation. However, the preciseness depends on how precisely one can identify the

overlapping of database-parts by various database operations.

Definition 5.4 (Database-Database (DD) dependency [121]) Let Q.SEL, Q.INS, Q.UPD

and Q.DEL denote the parts of database state which are selected, inserted, updated, and deleted

respectively by Q. A database statement Q1 is DD-dependent on another database statement
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Q2 iff (i) the database-part defined by Q2 overlaps the database-part used by Q1, i.e. Q1.SEL ∩

(Q2.INS ∪ Q2.UPD ∪ Q2.DEL) , ∅, and (ii) there is no roll-back operation in the execution

path p between Q2 and Q1 (exclusive) which reverses back the effect of Q2.

As a solution to compute this overlapping, Willmor et al. refer to the propagation

algorithm in [35] designed for the static analysis of Condition-Action rules in expert

database systems. The Condition-Action rules defined in an expert database system

enable it to react automatically in some situations without the need of user access. These

rules are, in general, expressed in the form Econd −→ Eact, where Eact represents an action

as data modification operation (e.g. INSERT, UPDATE and DELETE) and Econd represents

a condition. Formally, [10] considers an extended version of the relational algebra by

introducing an additional operator ε, known as attribute extension operator, in case of

database update. This operator is defined as ε[x = expr]e, where the expression expr is

evaluated over each tuple t of e and the resulting value is entered into the new attribute

x for t under the new schema schema(e)∪ {x}. Let us illustrate this with running example.

Example 24 Consider our running example in Section 5.3. Following the extended relational

algebra, we get the following Condition-Action rules at program points 5 and 6:

E5
cond → πpurchase_amt(σpurchase_amt>1000∧purchase_amt63000 Sales)

E5
act → ε[purchase_amt′ = purchase_amt − 0.05 ×

purchase_amt](σpurchase_amt>1000∧purchase_amt63000 Sales)

E6
cond → πpurchase_amt(σpurchase_amt>3000 Sales)

E6
act → ε[purchase_amt′ = purchase_amt − 0.1 ×

purchase_amt](σpurchase_amt>3000 Sales)

whereπ andσ are basic relational algebra operators for attribute projection and attribute selection

respectively.

The propagation algorithm predicts how the action of one rule can affect the condition

of another. In other words, the analysis checks whether a condition in one rule sees

any data inserted or deleted or modified due to an action in another. This considers

following three possibilities: (i) both the pre-defined part (i.e., database-part before

performing the action Eact) and the post-defined part (i.e., database-part obtained after
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performing the action Eact) are in use by the condition Econd; (ii) the pre-defined part is not

in use by Econd whereas the post-defined part is in use by Econd, (iii) the pre-defined part is

in use by Econd whereas the post-defined part is not in use by Econd. Let us illustrate this by

recalling the rules already defined in example 24. This is worthwhile to note here that

this kind of conditions verification makes the computational complexity exponential

w.r.t. the number of defining statements.

Example 25 Consider the Condition-Action rules at program points 5 and 6 of our running

example expressed in Example 24. Observe that the predicates (1000 6 purchase_amt 6 3000)

in E5
act and (purchase_amt > 3000) in E6

cond are contradictory – meaning that E5
act operates on

a part of data which is not accessed by E6
cond. In other words, the action E5

act does not affect the

condition E6
cond. Therefore, DD-dependency 5 6 is false. Similarly we can also identify

another false DD-dependency 15 16 . The refined set of data dependencies are:

• DD-dependencies for purchase_amt: 4 5 , 4 6 , 4 7 , 4 11 ,

4 15 , 4 16 , 5 7 , 5 11 , 5 15 , 5 16 , 6 7 ,

6 11 , 6 15 , 6 16 , 7 11 , 7 15 , 7 16

• DD-dependencies for other attributes: 4 7 , 4 11 , 4 15 , 4 16

• PD-dependencies for x and y: 2 6 , 3 5

Figure 5.4 depicts the refined DOPDG based on the above result.

Limitations.

The Condition-Action rules can be applied only on a single def-use pair at a time. This

fails to capture semantic independencies when a code contains more than one defining

database statements (in sequence) for an attribute which is subsequently used by an-

other database statement. The main reason behind this is the flow-insensitivity of this

approach. For instance, the approach fails to identify false DD-dependencies 4 11 ,

4 15 , 4 16 , 5 11 , 5 15 , 5 16 , 6 11 , 6 15 and

6 16 in Prog due to the presence of multiple definitions of purchase_amt by the

statements 5, 6 and 7 in sequence. Moreover, this approach incurs a high computational

overhead w.r.t. program size. Observe that the algorithm combining from sections 3.2
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Figure 5.4: Condition-Action Rules-based DOPDG of Prog (F denotes attribute pur-
chase_amt)

and 3.3 will identify a set of false dependencies which is same as the union of the results

obtained from both of the algorithms when applied individually.

5.5 Semantics-based Dependency: A Formalization in Con-

crete Domain

As witnessed in section 5.4, the DOPDG construction approaches based on the syntax

often fail to compute optimal set of dependencies. This motivates researchers towards

semantics-based dependency computation considering values rather than variables

[89]. For instance, consider an arithmetic expression “e = x2 + 4w mod 2 + z”. Although

in this expression e syntactically depends on w, semantically there is no dependency as

the evaluation of “4w mod 2” is always zero.

Given a SQL statement Q = 〈A, φ〉 and its target table t. Suppose ~x = USE(A), ~y =

USE(φ) and ~z = DEF(Q). According to the concrete semantics, suppose Tdba[[Q]](ρt, ρa) =

(ρt′ , ρa).

The used and defined part of t by Q are computed according to the following equations:

Adef(Q, t) = ∆(ρt′(~z), ρt(~z)) (5.5)

Ause(Q, t) = ρt↓φ(~x) ∪ ρt↓φ(~y) (5.6)
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where

t ↓ φ : Set of tuples in table t which satisfies the condition-part φ.

ρt↓φ(~x) : Values of ~x in (t ↓ φ).

ρt↓φ(~y) : Values of ~y in (t ↓ φ).

∆ : Computes the difference between the original database

state on which Q operates and the new database state

obtained after performing the action-part A.

In other words, the function Ause maps a query Q to the part of the database information

used by it, whereas the function Adef defines the changes occurred in the database states

when data is updated or deleted or inserted by Q. The following example illustrates

this.

Example 26 Let us consider the concrete database table t shown in Table 3.2(a) and the following

update statement:

Qupd : UPDATE t SET sal := sal + 100 WHERE age > 35

where A = UPDATE(〈sal〉, 〈sal + 100〉) and φ = age > 35. According to equations 5.5 and 5.6,

the used-part and defined-part are as follows:

Ause(Qupd, t) = ρt↓(age>35)(sal) ∪ ρt↓(age>35)(age)

Adef(Qupd, t) = ∆(ρt′(sal), ρt(sal))

These are depicted in Tables 5.1(a) and 5.1(b) respectively where we have denoted Ause(Qupd, t)

and Adef(Qupd, t) by red color.

(a) Ause(Qupd, t)
eid sal age dno
1 1500 35 10
2 800 28 20
3 2500 50 10
4 3000 62 10

(b) Adef(Qupd, t)
eid sal age dno
1 1600 35 10
2 800 28 20
3 2600 50 10
4 3100 62 10

Table 5.1: The used and defined part of t by Qupd (marked with red color)

Given two database statements Q1 = 〈A1, φ1〉 and Q2 = 〈A2, φ2〉 such that target(Q1) = t

and Tdba[[Q1]](ρt, ρa) = (ρt′ , ρa) and target(Q2) = t′. Following the equations 5.5 and
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5.6, we can compute the defined part of t by Q1 as Adef(Q1, t) and used-part of t′ by Q2

as Ause(Q2, t′). Therefore, we can say Q2 is DD-dependent on Q1 when Adef(Q1, t) and

Ause(Q2, t′) overlap with each other, i.e. Ause(Q2, t′) ∩ Adef(Q1, t) , ∅. Observe that Q1 is

either UPDATE, INSERT and DELETE statement which defines the database. This is defined

in Definition 5.5.

Definition 5.5 (Semantics-based DD-dependency [53]) A SQL statement Q2 = 〈A2, φ2〉

with target(Q2) = t′ is DD-dependent for Υ on another SQL statement Q1 = 〈A1, φ1〉 with

target(Q1) = t (denoted Q1
Υ
−→ Q2) if Q1 ∈ {Qupd,Qins,Qdel} and Tdba[[Q1]](ρt, ρa) = (ρt′ , ρa)

and the overlapping-part Υ = Ause(Q2, t′) ∩ Adef(Q1, t) , ∅.

When an initial database instance is unknown, due to infiniteness of the concrete do-

mains, the computation of concrete semantics of database programs and hence Ause,

Adef and Υ become undecidable problem. Nevertheless, in case of finite large scale

databases, these semantics-based dependency computations also incur in high compu-

tational overhead. To ameliorate this performance bottleneck, we apply the Abstract

Interpretation theory [30] to compute abstract semantics of database languages, in a

decidable way, as a sound approximation of its concrete counterparts.

5.6 Semantics-based Abstract dependency: A Sound Ap-

proximation

In this section, we define abstract semantics of database statements for independency

computation in various non-relational and relational abstract domains. Finally, we

present the computation of abstract dependencies among statements identifying their

approximated used and defined database-parts based on the abstract semantics.

5.6.1 Defining Abstract Semantics of Database Statements towards

Independency Computation

Since our objective is to compute semantics-based DD-independencies, it is important

to identify database-parts (identified by the condition φ) before and after performing

the action A. With this objective, unlike equation 3.3 which results in a single abstract
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: ρo – Abstract database state which does not satisfy φ

: ρ� – Abstract database state which satisfies φ

: ρ� – Abstract database after action occurs on ρ�

Figure 5.5: Generic visual representation of 〈ρo, ρ�, ρ�〉

state ρ, we define a variant of the abstract transition relation as follows:

T dep : C × Σdba 7→ (Edbs × Edbs × Edbs) (5.7)

which results in a three-tuple 〈ρo, ρ�, ρ�〉 of abstract database states, where ρo, ρ�, ρ� ∈

Edbs. The first component ρo represents an abstract database state which does not

satisfyφ, whereas the second component ρ� represents an abstract database state which

satisfies φ. Observe that an abstract database-part which may or may not satisfy φ (due

to abstraction) will be included in both ρo and ρ�. The third component ρ� is obtained

after performing an action A on ρ�. These are depicted in Figure 5.5.

The abstract semantics of database statements for independency computation in

various abstract domains following equation 5.7 is defined as follows:

5.6.1.1 Domain of Intervals

In order to compute semantics-based DD-independencies, we define T dep, according

to equations 5.7, in I for database statements as follows:

T dep[[〈A, φ〉]]ρ

=T dep[[〈A, φ〉]](ρd , ρa)

=T dep[[〈A, φ〉]](ρt , ρa)

where t = target(〈A, φ〉) and ∃t ∈ d : t ∈ γ(t)

=
〈
ρFM , ρTM , ρTM′

〉
(5.8)
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where

• T f [[φ]](ρt , ρa) = (ρTM , ρa)

• T f [[¬φ]](ρt , ρa) = (ρFM , ρa)

• Tc[[A]](ρTM , ρa) = (ρTM′ , ρa)

Let us now define T dep for UPDATE, DELETE, INSERT and SELECT.

UPDATE statement:

T dep[[
〈
UPDATE(~vd, ~e), φ

〉
]](ρt , ρa) =

〈
ρFM , ρTM , ρTM′

〉

where T f [[¬φ]](ρt , ρa) = (ρFM , ρa)

T f [[φ]](ρt , ρa) = (ρTM , ρa)

Tc[[UPDATE(~vd,~e)]](ρTM , ρa)

= (ρTM[~vd ← Te[[~e]](ρTM , ρa)], ρa)

= (ρTM′ , ρa)

INSERT statement:

T dep[[
〈
INSERT(~vd, ~e), f alse

〉
]](ρt , ρa) =

〈
ρt , ρ⊥ , ρnew

〉

where T f [[¬ f alse]](ρt , ρa) = (ρt , ρa)

T f [[ f alse]](ρt , ρa) = (ρ⊥ , ρa)

Tc[[INSERT(~vd , ~e)]](ρ⊥ , ρa)

= (ρ⊥[~vd ← Te[[~e]](ρ⊥ , ρa)] , ρa)

= (ρnew , ρa)

where ρ⊥ maps the attributes to the bottom element in the abstract domain which rep-

resents “undefined” values.
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DELETE statement:

T dep[[
〈
DELETE(~vd), φ

〉
]](ρt , ρa) =

〈
ρFM , ρTM , ρ⊥

〉

SELECT statement:

T dep[[
〈
SELECT

(
va, f (~e′), r(~h(~x)), φ2, g(~e)

)
, φ1

〉
]](ρt , ρa)

=
〈
ρFM , ρTM , ρTM

〉
Observe that the select operation does not change any information.

Example 27 Consider the abstract state ρ = 〈ρt , ρa〉 and ρa = 〈x 7→ [100, 100]〉 where t is

depicted in Table 3.3(b), as defined in Example 16. Consider the following statements:

Qupd =UPDATE t SET sal = sal + x WHERE sal > 1500

Qins =INSERT INTO t (eid, sal, age, dno)VALUES(5, 2700, 52, 20)

Qdel =DELETE FROM t WHERE age > 61

Qsel =SELECT age FROM t WHERE age 6 50

The abstract syntax of the statements are:

Qupd =〈UPDATE(〈sal〉, 〈sal + x〉), sal > 1500〉

Qins =〈INSERT(〈eid, sal, age, dno〉, 〈5, 2700, 52, 20〉), f alse〉

Qdel =〈DELETE(〈eid, sal, age, dno〉), age > 61〉

Qsel =〈SELECT(〈age〉), age 6 50〉

Abstract semantics of Qupd w.r.t. ρ is

T dep[[
〈
UPDATE(〈sal〉, 〈sal + x〉), sal > 1500

〉
]](ρt , ρa)

=
〈
ρFM , ρTM , ρTM′

〉
where ρFM , ρTM and ρTM′ are shown in Table 3.5 of Example 16.
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The abstract semantics of Qins w.r.t. ρ is

T dep[[
〈
INSERT(〈eid, sal, age, dno〉, 〈5, 2700, 52, 20〉), f alse

〉
]](ρt, ρa)

=
〈
ρt , ρ⊥ , ρnew

〉
where

ρnew =ρ⊥
[
eid← [5, 5], sal ← [2700, 2700], age ← [52, 52],

dno← [20, 20]
]

The abstract semantics of Qdel w.r.t. ρ is

T dep[[
〈
DELETE(〈eid, sal, age, dno〉), age > 61

〉
]](ρt , ρa)

=
〈
ρFM , ρTM , ρ⊥

〉
where

ρTM = T f [[ age > 61 ]](ρt) = ρt

[
age ← [61, 62]

]
ρFM = T f [[¬(age > 61) ]](ρt) = ρt

[
age ← [28, 60]

]
The abstract semantics of Qsel w.r.t. ρ is

T dep[[
〈
SELECT(〈age〉), age 6 50

〉
]](ρt , ρa) =

〈
ρFM , ρTM , ρTM

〉
where

ρTM = T f [[ age 6 50 ]](ρt) = ρt

[
age ← [28, 50]

]
ρFM = T f [[¬( age 6 50) ]](ρt) = ρt

[
age ← [51, 62]

]

5.6.1.2 Relational Abstract Domain of Octagons

To yield more precise analysis as compared to the interval abstract domain, Antoine

Miné [94] proposed a weakly relational abstract domain – the domain of octagons –

which allows an analyzer to discover automatically common errors, such as division

by zero, out-of-bound array access or deadlock, and more generally to prove safety

properties of programs.

Like for the interval domain, the following transition relation is defined, according to
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equation 5.7, to compute semantics-based DD-independency in the domain of octagons:

T dep : C ×M⊥ 7→ (M⊥ ×M⊥ ×M⊥)

Below is the definition of T dep for various database statements in octagon domain.

1. UPDATE:

T dep[[〈UPDATE(~vd, ~e), φ〉]]m =



〈
mF, mT, mT′

〉
if φ ∈

{
kixi + k jx j 6

k
}

where xi, x j ∈ V and ki, k j ∈

[−1, 0, 1] and k ∈ R

〈m,m,m′〉 otherwise

where

T f [[¬φ]]m = mF and T f [[φ]]m = mT

Tc[[UPDATE(~vd, ~e)]]mT = mT

[
~vd ← Te[[~e]]mT

]
= mT′

Tc[[UPDATE(~vd,~e)]]m = m′

2. INSERT: T dep[[
〈
INSERT(~vd,~e), f alse

〉
]]m =

〈
m, m⊥, mnew

〉
where

T f [[¬ f alse]]m = m and T f [[ f alse]]m = m⊥ and

Tc[[INSERT(~vd,~e)]]m⊥ = m⊥[~vd ← Te[[~e]]m⊥] = mnew

where m⊥ represents bottom element that contains an unsatisfiable set of constraints.

3. DELETE:

T dep[[〈DELETE(~vd), φ〉]]m =



〈
mF, mT, m⊥

〉
if φ ∈

{
kixi + k jx j 6

k
}

where xi, x j ∈ V and ki, k j ∈

[−1, 0, 1] and k ∈ R

〈m,m,m⊥〉 otherwise
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4. SELECT:

T dep[[
〈
SELECT

(
va, f (~e′), r(~h(~x)), φ2, g(~e)

)
, φ1

〉
]]m =



〈
mF, mT, mT

〉
if φ ∈

{
kixi + k jx j 6 k

}
where

xi, x j ∈ V and ki, k j ∈ [−1, 0, 1] and k ∈ R

〈m,m,m〉 otherwise

Observe that φ ∈ {kixi + k jx j 6 k} checks whether the condition in WHERE clause of

database statement respects the form of octagonal constraints.

Example 28 Consider the concrete database table t shown in Table 3.3(a), and its corresponding

abstract representation in the form of CDBM mt in the domain of octagons as

mt
rep
=
{
− eid 6 −1, eid 6 4,−sal 6 −800, sal 6 3000,

− age 6 −28, age 6 62,−dno 6 −10, dno 6 20
}
.

Consider the following statements:

Qupd =UPDATE t SET sal = sal + x WHERE age > 35

Qins =INSERT INTO t(eid, sal, age, dno)VALUES(5, 2700, 52, 20)

Qdel =DELETE FROM t WHERE age > 61

Qsel =SELECT sal FROM t WHERE age 6 50

The abstract syntax are

Qupd =〈UPDATE(〈sal〉, 〈sal + 100〉), age > 35〉

Qins =〈INSERT(〈eid, sal, age, dno〉, 〈5, 2700, 52, 20〉), f alse〉

Qdel =〈DELETE(〈eid, sal, age, dno〉), age > 61〉

Qsel =〈SELECT(〈sal〉), age 6 50〉

The abstract semantics of the Qupd with respect to mt is

T dep[[
〈
UPDATE(〈sal〉, 〈sal + 100〉), age > 35

〉
]]mt =

〈
mF,mT,mT′

〉
where mT, mF and mT′ are depicted in example 18.
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The abstract semantics of the Qins w.r.t. mt is

T dep[[
〈
INSERT(〈eid, sal, age, dno〉, 〈5, 2700, 52, 20〉), f alse

〉
]]mt

=
〈
mt, m⊥, mnew

〉
where

mnew
rep
=
{
− eid 6 −5, eid 6 5,−sal 6 −2700, sal 6 2700,

− age 6 −52, age 6 52,−dno 6 −20, dno 6 20
}

The abstract semantics of the Qdel w.r.t. mt is

T dep[[
〈
DELETE(〈eid, sal, age, dno〉), age > 61

〉
]]mt

=
〈
mF, mT, m⊥

〉
where

mT
rep
=
{
− eid 6 −1, eid 6 4,−sal 6 −800, sal 6 3000, age 6 62,

− age 6 −61,−dno 6 −10, dno 6 20
}

mF
rep
=
{
− eid 6 −1, eid 6 4,−sal 6 −800, sal 6 3000, age 6 60,

− age 6 −28,−dno 6 −10, dno 6 20
}

The abstract semantics of the Qsel w.r.t. mt is

T dep[[
〈
SELECT(〈age〉), age 6 50

〉
]]mt =

〈
mF, mT, mT

〉
where

mT
rep
=
{
− eid 6 −1, eid 6 4,−sal 6 −800, sal 6 3000, age 6 50,

− age 6 −28,−dno 6 −10, dno 6 20
}

mF
rep
=
{
− eid 6 −1, eid 6 4,−sal 6 −800, sal 6 3000, age 6 62,

− age 6 −51,−dno 6 −10, dno 6 20
}

5.6.1.3 Relational Abstract Domain of Polyhedra

The preciseness of the analysis in relational abstract domain improves significantly if

more number of relations among variables or attributes are in consideration when an-

alyzing the programs. Thus, the analysis in the polyhedra abstract domain, although
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computationally costly, improves the precision significantly compared to the octagon

abstract domain. P. Cousot and N. Halbwachs in their seminal work [36] first intro-

duced the polyhedra abstract domain for static determination of linear equality and

inequality relations among program variables, and over the past several decades this

has been widely used in several engineering problems such as static analysis of gated

Data Dependence Graphs (gated DDGs) [66], Information flow analysis to detect pos-

sible information leakages combining symbolic propositional formulas domain and

numerical polyhedra domain [122], Hybrid systems verification tool SpaceEx [46], etc.

Let us define the transition relation T dep : C×P 7→ (P×P×P) to compute semantics-

based DD-independency in the domain of polyhedra for database statements:

1. UPDATE: T dep[[〈UPDATE(~vd,~e), φ〉]]P =
〈
PF, PT, PT′

〉
where

T f [[¬φ]]P = PF.

T f [[φ]]P = PT

Tc[[UPDATE(~vd,~e)]]PT = Tc[[~vd = ~e]]PT = PT′

We denote by the notation ~vd=~e a series of assignments 〈v1= e1, v2= e2, . . . , vn= en〉where

~vd = 〈v1, v2, . . . , vn〉 and~e=〈e1, e2, . . . , en〉, which follow the transition semantic definition

for the assignment statement.

2. INSERT: T dep[[〈INSERT(~vd,~e), f alse〉]]P =
〈
P, P⊥, Pnew

〉
where

T f [[¬ f alse]]P = P

T f [[ f alse]]P = P⊥

Tc[[INSERT(~vd,~e)]]P⊥ = P⊥
[
~vd ← Te[[~e]]P⊥

]
= Pnew

Pnew represents a polyhedron corresponding to the new inserted tuple values.

3. DELETE: T dep[[〈DELETE(~vd), φ〉]]P =
〈
PF, PT, P⊥

〉
4. SELECT: T dep[[

〈
SELECT

(
va, f (~e′), r(~h(~x)), φ2, g(~e)

)
, φ1

〉
]]P =

〈
PF, PT, PT

〉
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Example 29 Consider the database table t in Table 3.3(a) and its corresponding abstract repre-

sentation Pt =(Θ,n) in the form of polyhedron, where

Pt =
{
eid > 1,−eid > −4, sal > 800,−sal > −3000,

age > 28,−age > −62, dno > 10,−dno > −20
}

Consider the following statements:

Qupd =UPDATE t SET sal = sal + sal × 0.2 WHERE dno + age > 60

Qins =INSERT INTO t (eid, sal, age, dno)VALUES(5, 2700, 52, 20)

Qdel =DELETE FROM t WHERE age > 61

Qsel =SELECT age FROM t WHERE age + dno 6 60

The equivalent abstract syntax are:

Qupd =〈UPDATE(〈sal〉, 〈sal + sal × 0.2〉), dno + age > 60〉

Qins =〈INSERT(〈eid, sal, age, dno〉, 〈5, 2700, 52, 20〉), f alse〉

Qdel =〈DELETE(〈eid, sal, age, dno〉), age > 61〉

Qsel =〈SELECT(〈age〉), age + dno 6 60〉

The abstract semantics of Qupd w.r.t. Pt is

T dep[[
〈
UPDATE(〈sal〉, 〈sal + sal × 0.2〉), dno + age > 60

〉
]]Pt =

〈
PF, PT, PT′

〉
where

PT =
{
eid > 1,−eid > −4, sal > 800,−sal > −3000, age > 40,

− age > −62, dno > 10,−dno > −20, dno + age > 60
}

PF =
{
eid > 1,−eid > −4, sal > 800,−sal > −3000, age > 28,

− age > −49, dno > 10,−dno > −20,−dno − age > −59
}

PT′ =
{
eid > 1,−eid > −4, sal > 960,−sal > −3600, age > 40,
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− age > −62, dno > 10,−dno > −20, dno + age > 60
}

The abstract semantics of Qins w.r.t. Pt is

T dep[[
〈
INSERT(〈eid, sal, age, dno〉, 〈5, 2700, 52, 20〉), f alse

〉
]]Pt =

〈
Pt, P⊥, Pnew

〉
where

Pnew =
{
eid > 5,−eid > −5, sal > 2700,−sal > −2700, age > 52,

− age > −52, dno > 20,−dno > −20
}

The abstract semantics of Qdel w.r.t. Pt is

T dep[[
〈
DELETE(〈eid, sal, age, dno〉), age > 61

〉
]]Pt =

〈
PF, PT, P⊥

〉
where

PT =
{
eid > 1,−eid > −4, sal > 800,−sal > −3000, age > 61,

− age > −62, dno > 10,−dno > −20
}

PF =
{
eid > 1,−eid > −4, sal > 800,−sal > −3000, age > 28,

− age > −60, dno > 10,−dno > −20
}

The abstract semantics of Qsel w.r.t. Pt is

T dep[[
〈
SELECT(〈age〉), age + dno 6 60

〉
]]Pt =

〈
PF, PT, PT

〉
where

PT =
{
eid > 1,−eid > −4, sal > 800,−sal > −3000, age > 28,

− age > −50, dno > 10,−dno > −20,−dno − age > −60
}

PF =
{
eid > 1,−eid > −4, sal > 960,−sal > −3600, age > 51,

− age > −62, dno > 10,−dno > −20, dno + age > 61
}
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5.6.1.4 Powerset of Interval Domain

Due to the scattered nature of data in the database, the semantics-based dependency

analysis of database applications in the above-mentioned abstract domains may often

be highly over-approximated. Thus powerset abstract domains, on top of the existing

relational- and non-relational abstract domains, may capture the database values as a

way of refined approximation, improving the analysis results significantly.

To compute semantics-based dependencies, we adapt equation 5.7 for identifying

used and defined database-parts in powerset abstract domain. Given the semantic do-

main ℘(I), the abstract state is defined as ρ = (ρt, ρa) where ρt : attr(t) → ℘(I) and

ρa : Va → ℘(I).

Like other domains, according to equation 5.7, the abstract semantics in the power-

set abstract domain for database statements are similarly defined below:

UPDATE: T dep[[
〈
UPDATE(~vd, ~e) , φ

〉
]](ρt , ρa) =

〈
ρFM , ρTM , ρTM′

〉
where T f [[¬φ]](ρt, ρa) = (ρFM , ρa)

T f [[φ]](ρt , ρa) = (ρTM , ρa)

Tc[[UPDATE(~vd,~e)]](ρTM , ρa)

= (ρTM[~vd ← Te[[~e]](ρTM , ρa)] , ρa)

= (ρTM′ , ρa)

INSERT: T dep[[
〈
INSERT(~vd, ~e), f alse

〉
]](ρt , ρa) =

〈
ρt , ρ⊥, ρnew

〉
where T f [[¬ f alse]](ρt , ρa) = (ρt , ρa)

T f [[ f alse]](ρt , ρa) = (ρ⊥ , ρa) where ρ⊥ : attr(t)→ ∅

Tc[[INSERT(~vd,~e)]](ρ⊥ , ρa)

= (ρ⊥[~vd ← Te[[~e]](ρ⊥ , ρa)] , ρa)

= (ρnew , ρa)

DELETE: T dep[[
〈
DELETE(~vd), φ

〉
]](ρt , ρa) =

〈
ρFM , ρTM , ρ⊥

〉
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SELECT: T dep[[
〈
SELECT

(
va, f (~e′), r(~h(~x)), φ2, g(~e)

)
, φ1

〉
]](ρt , ρa) =

〈
ρFM , ρTM , ρTM

〉

5.6.2 Algorithm to Compute Abstract Semantics of Database Appli-

cations

We now design the algorithm CompAbsSem, depicted in Algorithm 1, which makes

use of the semantics function T dba and computes abstract states w.r.t. abstract domain

D at each program point of the database program. The algorithm is based on the data

flow analysis considering various control-flow nodes: start, DB-connect, assignment,

test, update, delete, insert, select, join, end. We denote by pred(ci) and AS(ci) the set

of predecessor of ci and the abstract state at ci respectively. The algorithm starts in

step 2 with undefined abstract state at each program point and then applies in step

3 all the data-flow equations (defined in steps 4-25) until least fixed point solution

is reached. After obtaining the abstract state at each program point in the form of

collecting semantics, step 26 applies T dep in order to get state-representation in the

form of three-tuples 〈ρo, ρ�, ρ�〉 (as defined in equation 5.7). This abstract semantics is

used to compute used- and defined-parts and hence the semantics-based independencies

(described next). Observe that if the initial database is unknown then the domain range

of each attribute and other integrity constraints are considered to represent the initial

abstraction of database as an overapproximation of all possible initial database states,

as defined in steps 1 and 9.

5.6.3 Approximating used- and defined Database Parts in Various Ab-

stract Domains

Given a database statement Q, let ρ = 〈ρo, ρ�, ρ�〉 be an abstract state at Q obtained by

following Algorithm 1. In order to determine abstract DD-dependency between two

database statements, we need to identify abstract database-parts to be defined or used by

Q. To this aim, let us define sound abstract functions Adef and Ause w.r.t. their concrete

counterparts already defined in equations 5.5 and 5.6 respectively. Suppose DQ and UQ

denote the defined and the used abstract database-parts by Q respectively. Therefore,

DQ = Adef(Q, ρ) = 〈ρ�, ρ�〉 (5.9)
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Algorithm 1: CompAbsSem
Input: Database program P containing n statements, Initial database dB, and

Abstract domain D.
Output: Abstract state at each program point of P

Compute ρ = 〈ρdB, ρa〉 using the abstraction function α following the Galois
connection

〈
(℘(D),⊆), α, γ, (D,v)

〉
as formalized in Definition 3.1.

∀i ∈ [1, . . . ,n], AS(ci) := ⊥. ; // Initializing AS(ci) as initial abstract collecting

semantics.

Apply data flow equations defined in steps 4 - 25 until least fix-point is reached.
for i =1 to n do

; // Defining data flow equation for CFG-node corresponding to a statement ci in P.

switch (ci)
case start:

AS(ci)=⊥
case DB-connect:

AS(ci)=〈ρdB, ρa〉

case assignment:
AS(ci) =

⊔
c j∈pred(ci)

{
T dba[[x = e]](ρ) | ρ ∈ AS(c j)

}
case test:

AS(ci) =
⊔

c j∈pred(ci)

{
T dba[[b]](ρ) | ρ ∈ AS(c j)

}
case update:

AS(ci) =
⊔

c j∈pred(ci)

{
T dba[[UPDATE(~vd, ~e), φ〉]](ρ) | ρ ∈ AS(c j)

}
case delete:

AS(ci) =
⊔

c j∈pred(ci)

{
T dba[[DELETE(~vd), φ〉]](ρ) | ρ ∈ AS(c j)

}
case insert:

AS(ci) =
⊔

c j∈pred(ci)

{
T dba[[INSERT(~vd, ~e), f alse〉]](ρ) | ρ ∈ AS(c j)

}
case select:

AS(ci) =
⊔

c j∈pred(ci)

{
T dba[[〈SELECT

(
va, f (~e′), r(~h(~x)), φ2, g(~e)

)
, φ1〉]](ρ)

| ρ ∈ AS(c j)
}

case join:
AS(ci)=

⊔
c j∈pred(ci) AS(c j)

case end:
AS(ci)=

⊔
c j∈pred(ci) AS(c j)

Apply the abstract transition relation T dep on the abstract state AS(c j) obtained at
each program point.
End
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SQL Abstract Domain of Intervals ρ Abstract Domain of Octagons ρ Abstract Domain of Polyhedra ρ Powerset of Interval ρI
Abstract state defined-/ used-part Abstract state defined-/ used-part Abstract state defined-/ used-part defined-/ used-part

Update
〈
ρFM , ρTM , ρTM′

〉
Adef(Qupd , ρ) = 〈ρTM , ρTM′

〉

〈
mF ,mT ,m′T

〉
Ade f (Qupd , ρ) = 〈mT ,m′T〉

〈
PF , PT , P

′

T

〉
Ade f (Qupd , ρ) = 〈PT , P

′

T〉 Ade f (Qupd , ρI) = 〈ρTM , ρTM′
〉

Qupd Ause(Qupd , ρ) = 〈ρTM〉 Ause(Qupd , ρ) = 〈mT〉 Ause(Qupd , ρ) = 〈PT〉 Ause(Qupd , ρI) = 〈ρTM〉

Delete
〈
ρFM , ρTM , ρ⊥

〉
Ade f (Qdel , ρ) = 〈ρTM , ∅〉

〈
mF ,mT ,m⊥

〉
Ade f (Qdel , ρ) = 〈mT , ∅〉

〈
PF , PT , P⊥

〉
Ade f (Qdel , ρ) = 〈PT , ∅〉 Ade f (Qdel , ρI) = 〈ρTM , ∅〉

Qdel Ause(Qdel , ρ) = 〈ρTM〉 Ause(Qdel , ρ) = 〈mT〉 Ause(Qdel , ρ) = 〈PT〉 Ause(Qdel , ρI) = 〈ρTM〉

Insert
〈
ρt , ρ⊥ , ρnew

〉
Ade f (Qins , ρ) = 〈∅, ρnew〉

〈
mt ,m⊥ ,mnew

〉
Ade f (Qins , ρ) = 〈∅,mnew〉

〈
Pt , P⊥ , Pnew

〉
Ade f (Qins , ρ) = 〈∅, Pnew〉 Ade f (Qins , ρI) = 〈∅, ρnew〉

Qins Ause(Qins , ρ) = 〈∅〉 Ause(Qins , ρ) = 〈∅〉 Ause(Qins , ρ) = 〈∅〉 Ause(Qins , ρI) = 〈∅〉

Select
〈
ρFM , ρTM , ρTM

〉
Ade f (Qsel , ρ) = 〈∅, ∅〉

〈
mF ,mT ,mT

〉
Ade f (Qsel , ρ) = 〈∅, ∅〉

〈
PF , PT , PT

〉
Ade f (Qsel , ρ) = 〈∅, ∅〉 Ade f (Qsel , ρI) = 〈∅, ∅〉

Qsel Ause(Qsel , ρ) = 〈ρTM〉 Ause(Qsel , ρ) = 〈mT〉 Ause(Qsel , ρ) = 〈PT〉 Ause(Qsel , ρI) = 〈ρTM〉

Table 5.2: Abstract defined- and used-part of database by SQL statements in various
abstract domains

UQ = Ause(Q, ρ) = 〈ρ�〉 (5.10)

Observe that Ause maps a query Q to the abstract database-part used by it, whereas

Adef defines the changes occurred in the abstract database states after performing the

action in Q. We represent DQ in the form of two-tuple where ρ� and ρ� respectively

represent the true-part before and the updated-part after executing Q on the abstract

database. Note that although the defined-part can be computed by following the ab-

stract difference operation ∆ (corresponding to ∆ defined in equation 5.5), however to

avoid computational complexity in dependency computation, we keep both of these

separated. Table 5.2 depicts defined and used parts by different database statements in

various abstract domains.

5.6.4 Dependency Computations

We are now in a position to compute DD-independencies among database statements

based on the information on used- and defined-parts as obtained in the previous section.

Let ρQ1 = 〈ρQ1

o , ρ
Q1

�
, ρQ1

�
〉 and ρQ2 = 〈ρQ2

o , ρ
Q2

�
, ρQ2

�
〉 be the abstract states at Q1 and Q2

respectively. The defined-part by Q1 and the used-part by Q2 are :

DQ1 = Adef(Q1, ρ
Q1) = 〈ρQ1

�
, ρQ1

�
〉

UQ2 = Ause(Q2, ρ
Q2) = 〈ρQ2

�
〉

The semantic dependence and independence of Q2 on Q1 are determined based on the

following four cases:

Case − 1. ρQ1

�
u ρQ2

�
, ∅ ∧ ρQ1

�
u ρQ2

�
= ∅
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Case − 2. ρQ1

�
u ρQ2

�
= ∅ ∧ ρQ1

�
u ρQ2

�
, ∅

Case − 3. ρQ1

�
u ρQ2

�
, ∅ ∧ ρQ1

�
u ρQ2

�
, ∅

Case − 4. ρQ1

�
u ρQ2

�
= ∅ ∧ ρQ1

�
u ρQ2

�
= ∅

The pictorial representation of the above cases are depicted in Figure 5.6. Observe that

only case 4 indicates a semantic independency between Q1 and Q2 whereas all other

cases indicate a semantic dependency between them. Therefore, Q2 is DD-independent

ρQ1
�

ρQ2
�

ρQ1
�

ρQ2
�

x

y

(a) case 1

ρQ1
�

ρQ2
�

ρQ1
�

ρQ2
�

x

y

(b) case 2

ρQ1
�

ρQ2
�

ρQ1
�

ρQ2
�

x

y

(c) case 3

ρQ1
�

ρQ2
�

ρQ1
�

ρQ2
�

x

y

(d) case 4 (Independency exist)

Figure 5.6: Representations of independence and dependencies

on Q1 iff DQ1 u UQ2 = ∅; that is

ρQ1

�
u ρQ2

�
= ∅ ∧ ρQ1

�
u ρQ2

�
= ∅ (5.11)

Theorem 5.1 states that, given an abstract domain, equation 5.11 is necessary and

sufficient condition for abstract DD-independency. Observe that this theorem does not

establish anything about its soundness w.r.t. its concrete counterpart.

Theorem 5.1 Given an abstract domain, the necessary and sufficient condition for a database

statement Q2 to be abstract DD-independent on another statement Q1 is ρQ1

�
u ρQ2

�
= ∅∧ ρQ1

�
u

ρQ2

�
= ∅.

Proof 2 Consider two database statements Q1 = 〈A1, φ1〉 and Q2 = 〈A2, φ2〉. Given the

abstract states ρ and ρ′ at Q1 and Q2 respectively which are obtained in step 25 of Algorithm
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1. Let the abstract semantics applying T dep in step 26 be T dep[[Q1]]ρ = 〈ρQ1

o , ρ
Q1

�
, ρQ1

�
〉 and

T dep[[Q2]]ρ′ = 〈ρQ2

o , ρ
Q2

�
, ρQ2

�
〉. Intuitively, we can say that Q2 is abstract DD-dependent on

Q1 when any modification on the abstract database by Q1 affects the abstract database-part to be

accessed by Q2. The following three kinds of affects may happen on Q2 due to Q1:

1. Inclusion of new information: Because of the modification by Q1 some new data may be

accessed by Q2 satisfying φ2. This is captured in Case-2.

2. Removal of existing information: As a result of the modification done by Q1 some infor-

mation (which was previously accessed by Q2) now can not be accessed by Q2 due to the

unsatisfiability of φ2. This is captured in Case-1.

3. Access of modified information: Q2 can access now modified values, instead of their orig-

inal values, of some attributes due to the application of Q1. This is captured in Case-3.

Therefore, we can say Q2 is semantically abstract DD-independent on Q1 when the above

three affects do not take place. In other words, the abstract database-part ρQ2

�
accessed by Q2

overlaps with the parts ρQ1

�
and ρQ1

�
referred by Q1 operations. This is captured in Case-4.

Algorithm to Compute Semantics-based DD-dependencies. The algorithm sem-

DOPDG in Algorithm 2 takes a list of used- and defined-parts at each program point of the

database program P and computes semantic-based DD-dependency among database

statements. The algorithm, in step 2, first identifies all database statements present in

the program. Step 5 inside the loops checks whether the defined-part by Qi overlaps

with the used-part by Q j, and accordingly DD-dependency edge is created between

them in step 6 and the flag is set to true in step 7. If dependency exists between Qi

and Q j and flag is true, then in the next step 11 the algorithm checks the condition

DQi v DQ j in order to verify whether defined-part at program point Qi is fully covered

by the defined-part at program point Q j. If yes, the execution immediately breaks the

inner loop and does not check for dependency of the subsequent database statements

(after Q j) on Qi, and hence disregards the false dependencies which may occur due to

redefinition of attributes values by Q j.
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Algorithm 2: semDOPDG
Input: used- and defined-parts at each program point in the database program P.
Output: Semantic-based DD-dependency

Set flag=true
Identify database statements present in P. Let m be the number of database
statements.
for i =1 to m-1 do

for j=i+1 to m do
if DQi u UQ j , ∅ then

Add edges from ith statement to jth statement (i→ j)
Set flag = true;

else
Set flag = false;

if flag==true then
if DQi v DQ j then

break;

End

5.7 Illustration on the Running Example

Now we illustrate our approach on the running example Prog in section 5.3. The

semantic-based data independencies are computed applying the following steps in

different abstract domains:

• Compute abstract semantics using Algorithm 1 at each program point of Prog.

• Compute defined- and used-parts based on the abstract semantics.

• Refinement of syntactic dependencies in Prog based on the semantics-based inde-

pendencies using Algorithm 2.

A comparative result of the analysis in various abstract domains is depicted in Table

5.3. Let us explain briefly few scenarios by illustrating our approach.

For the sake of simplicity, since statements 5 and 6 involve only the attribute ‘pur-

chase_amt’ and the applications variables ‘x’ and ‘y’, let us consider the abstract initial

state ρ taking those variables into account with an assumption that purchase_amt is

typed with unsigned smallint. Therefore, ρ = (ρdB , ρa) and T dba[[4]](ρ) = ρ4 where

ρ4
dB

= 〈purchase_amt 7→ [0, 65000]〉. and ρa = 〈x 7→ [0.1, 0.1], y 7→ [0.05, 0.05]〉.
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5.7 Illustration on the Running Example

Dependency pure syntax-based Improved syntax-
based

Condition-Action
rule-based

Interval domain Octagon domain Polyhedra domain

DD-
dependency

4 {5, 6, 7, 11, 15, 16}

5 {6, 7, 11, 15, 16}

6 {7, 11, 15, 16}

7 {11, 15, 16}

15 16

4 {5, 6, 7, 11, 15, 16}

5 {6, 7}

6 7

7 {11, 15, 16}

15 16

4 {5, 6, 7, 11, 15, 16}

5 {7, 11, 15, 16}

6 {7, 11, 15, 16}

7 {11, 15, 16}

4 {5, 6, 7, 11, 15, 16}

5 7

6 7

7 {11, 15, 16}

15 16

4 {5, 6, 7, 11, 15, 16}

5 7

6 7

7 {11, 15, 16}

4 {5, 6, 7, 11, 15, 16}

5 7

6 7

7 {11, 15, 16}

PD-
dependency

2 6 , 3 5 2 6 , 3 5 2 6 , 3 5 2 6 , 3 5 2 6 , 3 5 2 6 , 3 5

Table 5.3: Representation of dependency results on Prog in various approaches

The abstract semantics of statement 5 is

T dba[[5]](ρ4) = ρ5 and T dep[[5]](ρ4) =
〈
ρ5

FM
, ρ5

TM
, ρ5

TM′

〉
where ρ5

FM
is obtained from ρ4

dB
where the condition is not satisfied. This creates two

intervals (purchase_amt← [0, 999]) and (purchase_amt← [3001, 65000]). Therefore, ρ5
FM

is represented using two abstract tuples l1 and l2 such that ρ5
FM

=ρ4
dB

[
l1(purchase_amt←

[0, 999]), l2(purchase_amt← [3001, 65000])
]
. The part for which the condition evaluates

to true isρ5
TM

=ρ4
dB

[
purchase_amt← [1000, 3000]

]
and thereforeρ5

TM′
=ρTM

[
purchase_amt←

[950, 2850]
]
.

Similarly, abstract semantics of the statement 6 is

T dba[[6]](ρ5) = ρ6 and T dep[[6]](ρ5) =
〈
ρ6

FM
, ρ6

TM
, ρ6

TM′

〉
where ρ6

FM
=ρ5

dB

[
purchase_amt ← [0, 3000]

]
, ρ6

TM
= ρ5

dB

[
purchase_amt ← [3001, 65000]

]
and ρ6

TM′
= ρTM

[
purchase_amt← [2701, 58500]

]
.

The defined-part by statement 5 and the used-part by statement 6 are defined as fol-

lows:

D5 = Ade f (ρ
5, 5) = 〈ρ5

TM
, ρ5

TM′
〉 and U6 = Ause(ρ

6, 6) = 〈ρ6
TM
〉

Therefore, the dependency 5 6 does not exist semantically as

D5
u U6 = ∅ =⇒ ρ5

TM
u ρ6

TM
= ∅ ∧ ρ5

TM′
u ρ6

TM
= ∅

This way one can easily capture semantics independencies. Note that interval
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analysis is not yet an optimal setting to capture all such independencies in Prog, for

instance 15 16 .

On the other hand, consider the domain of polyhedra. Consider the statements 15

and 16 which involve attributes ‘purchase_amt’, ‘wallet_bal’ and ‘point’. Let us consider

the abstract initial database state in the form of polyhedron PdB based on the assump-

tion that purchase_amt is typed with unsigned smallint and the integrity constraints

0 6 point 6 100 and 100 6 wallet_bal 6 90000 are defined on ‘point’ and ‘wallet_bal’.

Therefore, the abstract state at program point 4 is:

P11
dB =

{
purchase_amt > 0,−purchase_amt > −65000, point > 0,

− point > −100,wallet_bal > 100,−wallet_bal > −90000
}

The abstract semantics of statement 15 is defined as:

T dba[[15]](P11
dB) = P15

dB and T dep[[15]](P11
dB) =

〈
P15

F , P
15
T , P

15
T′

〉
where

P15
F =

{
purchase_amt > 0,−purchase_amt > −65000, point > 0,

− point > −100,wallet_bal > 100,−wallet_bal > −90000
}

P15
T =

{
purchase_amt > 0,−purchase_amt > −9899, point > 0,

− point > −100,wallet_bal > 100,−wallet_bal > −9999,

5000 6 purchase_amt + wallet_bal 6 9999
}

P15
T′ =

{
purchase_amt > 0,−purchase_amt > −9899, point > 2,

− point > −102,wallet_bal > 100,−wallet_bal > −9999,

5000 6 purchase_amt + wallet_bal 6 9999
}

Similarly, abstract semantics of statement 16 is:

T dba[[16]](P15
dB) = P16

dB and T dep[[16]](P15
dB) =

〈
P16

F , P
16
T , P

16
T′

〉
where

P16
F =

{
purchase_amt > 0,−purchase_amt > −9899, point > 0,

− point > −100,wallet_bal > 100,−wallet_bal > −9999
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purchase_amt + wallet_bal 6 9999
}

P16
T =

{
purchase_amt > 0,−purchase_amt > −65000, point > 0,

− point > −100,wallet_bal > 100,−wallet_bal > −90000

purchase_amt + wallet_bal > 10000
}

P16
T′ =

{
purchase_amt > 0,−purchase_amt > −65000, point > 4,

− point > −104,wallet_bal > 100,−wallet_bal > −90000

purchase_amt + wallet_bal > 10000
}

The defined-part by statement 15 and the used-part by statement 16 are computed as

follows:

D15 = Ade f (P15, 15) = 〈P15
T , P15

T′〉 and U16 = Ause(P6, 16) = 〈P16
T 〉

Therefore the dependency 15 16 does not exist semantically, as

D15
u U16 = ∅ =⇒ P15

T u P16
T = ∅ ∧ P15

T′ u P16
T = ∅

This way other data independencies can also be captured under polyhedral analysis.

5.8 Soundness of the Analysis

Lemma 5.1 Let ρ be an abstract state. The abstract semantic function T dep is sound w.r.t. γ

if ∀Q ∈ Q, ∀ρ ∈ γ(ρ): Tdep[[Q]]ρ ⊆ γ(T dep[[Q]]ρ).

Proof 3 Given an abstract state ρ and a database statement Q = 〈A, φ〉 ∈ Q, the abstract

semantic function T dep on ρ computes abstract database state in the form of three-tuple as

follows:

T dep[[Q]]ρ = T dep[[〈A, φ〉]]ρ = 〈ρo, ρ�, ρ�〉

where ρo represents abstract database state which must (or may) not satisfy φ, whereas ρ�
represents abstract database state which must (or may) satisfyφ. ρ� is obtained after performing

an action A on ρ�. Now let ρ be a concrete state such that ρ ∈ γ(ρ), the concrete semantics
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similarly is defined as

Tdep[[Q]]ρ = Tdep[[〈A, φ〉]]ρ = 〈ρo, ρ�, ρ�〉

where ρo, ρ� represent concrete database state based on the satisfaction and dissatisfaction of

φ respectively, and ρ� is obtained after performing A on ρ�. Like in lemma 3.1, because of

three-valued logic of φ due to the imprecision introduced in the abstract domain and the local

correctness of the operations in A, we get ρo ∈ γ(ρo), ρ� ⊆ γ(ρ�) and ρ� ⊆ γ(ρ�), which implies

that Tdep[[Q]]ρ ⊆ γ(T dep[[Q]]ρ).

Lemma 5.2 Let ρ be an abstract state. The abstract function Adef is sound w.r.t. γ if ∀ρ ∈

γ(ρ), ∀Q ∈ Q: γ(Adef(Q, ρ)) ⊇ Adef(Q, ρ)

Proof 4 Given a database statement Q = 〈A, φ〉 ∈ Q and an abstract state ρ, the abstract

semantics (based on equation 5.7) is defined as T dep[[Q]]ρ = T dep[[〈A, φ〉]]ρ = 〈ρo, ρ�, ρ�〉. As

per the equation 5.9, the abstract defined-part is

Adef(Q, ρ) = 〈ρ�, ρ�〉

Now given a concrete state ρ = (ρt , ρa) ∈ γ(ρ), we get the concrete semantics of Q, according

to equation 3.1, as Tdba[[Q]]ρ = Tdba[[〈A, φ〉]](ρt , ρa) = (ρt′ , ρa). Alternatively, Tdep on

ρ computes concrete semantics of Q as Tdep[[Q]]ρ = Tdep[[〈A, φ〉]]ρ = 〈ρo, ρ�, ρ�〉. As per

the equation 5.5, we can define the defined-part in the concrete domain by defining ∆, which

computes the difference between database states before and after applying Q, in the form below:

Adef(Q, ρt) = ∆(ρt′ , ρt) = 〈ρ�, ρ�〉

Assuming the local correctness of φ and A, we get ρ� ⊆ γ(ρ�) and ρ� ⊆ γ(ρ�) respectively.

Therefore, γ(Adef(Q, ρ)) ⊇ Adef(Q, ρ).

Lemma 5.3 Let ρ be an abstract state. The abstract function Ause is sound w.r.t. γ if ∀ρ ∈

γ(ρ), ∀Q ∈ Q: γ(Ause(Q, ρ)) ⊇ Ause(Q, ρ)

Proof 5 Proof is same as lemma 5.2.
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5.9 Extension of Dependency Analysis to HQL

Soundness. The semantics-based independency computation is sound if and only if

an absence of dependency in the abstract domain guarantees that no dependency is

present in the concrete domain.

Theorem 5.2 (Soundness of semantic independencies) Given two database statements

Q1 and Q2, let ρ and ρ′ be the abstract states at Q1 and Q2 respectively. The computation

of semantic independency is sound if

∀X ∈ γ(Adef(Q1, ρ)),∀Y ∈ γ(Ause(Q2, ρ
′)) :

X ∩ Y ⊆ γ(Adef(Q1, ρ) u Ause(Q2, ρ
′))

which implies Adef(Q1, ρ) u Ause(Q2, ρ
′) = ∅ ⇒ X ∩ Y = ∅.

Proof 6 Consider two database statements Q1 and Q2. Let ρ = 〈ρo, ρ�, ρ�〉 and ρ′ =

〈ρ′o, ρ
′

�
, ρ′
�
〉 be the abstract states at Q1 and Q2 respectively, which are obtained by apply-

ing Algorithm 1. According to equations 5.9 and 5.10, we get the defined-part by Q1 and

the used-part by Q2 as Adef(Q1, ρ) = 〈ρ�, ρ�〉 and Ause(Q2, ρ
′) = 〈ρ′

�
〉 respectively. Now, the

semantics independency in abstract domain can be defined as ρ� u ρ′� = ∅ ∧ ρ� u ρ
′

�
= ∅.

Given the concrete states ρ = 〈ρo, ρ�, ρ�〉 and ρ′ = 〈ρ′o, ρ
′

�, ρ
′

�〉 where ρ ∈ γ(ρ) and ρ′ ∈

γ(ρ′), the semantics independency between Q1 and Q2 in the concrete domain is defined as

ρ� ∩ ρ′� = ∅∧ ρ� ∩ ρ′� = ∅. From lemma 5.2 and 5.3, we get γ(Adef(Q1, ρ)) ⊇ Adef(Q1, ρ) and

γ(Ause(Q2, ρ
′)) ⊇ Ause(Q2, ρ′) respectively. This implies that γ(Adef(Q1, ρ) u Ause(Q2, ρ

′)) ⊇

Adef(Q1, ρ) ∩ Ause(Q2, ρ′). Therefore, Ade f (Q1, ρ) u Ause(Q2, ρ
′) = ∅ ⇒ X ∩ Y = ∅ where

X = Adef(Q1, ρ) ∈ γ(Adef(Q1, ρ)) and Y = Ause(Q2, ρ′) ∈ γ(Ause(Q2, ρ
′)).

5.9 Extension of Dependency Analysis to HQL

As dependency analysis of HQL follows similar approach as in the case of SQL, let

us now provide a brief description on how to achieve this in case of HQL. Recall the

equations 4.1 and 4.2 in chapter 4 and the equation 5.7 in section 5.6.1. The equations

4.1 establishes the Galois Connection showing the abstraction of concrete interaction

states. Based on this, the equation 4.2 defines a sound approximation of session meth-

ods semantics w.r.t. their concrete counterparts. Since an abstract interaction state
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〈e, s, ρd, Esc〉 involves an abstract database state ρd, the abstract semantics of session

methods can easily be defined in terms of three components by following equation 5.7.

5.10 Implementation and Experimental Evaluation

We have implemented a prototype tool SemDDA3 – Semantics-based Database Depen-

dency Analyzer – following the Algorithms 1 and 2, to perform experimental evaluation

on a set of open-source database-driven JSP web applications as part of the GotoCode

project [1]4, 5.

5.10.1 The SemDDA Tool

The aim of designing SemDDA is to provide a user-friendly interface for the users to

compute both syntax and semantic-based DD-dependency in various abstract domains

of interest. The current implementation is in its preliminary stage which accepts only

database-driven JSP codes. We provide a modular-based design and implementation

of our tool, facilitating an easy expansion in future. The tool consists of two major com-

ponents: (i) Syntax-based module, and (ii) Semantic-based module. Figure 5.7 depicts

the overall architecture of the tool, where database program and underlying database

are provided as input and a set of syntax-based dependencies and its refinement based

on the abstract semantics are generated as output. The code is implemented in Java

version 1.7. We used Eclipse version 4.2 as the development platform and Java applet

technology for designing User Interfaces of semDDA.

(i) Proformat: The module “Proformat” accepts database code written in JSP embed-

ding SQL, and preprocesses it to add line numbers (starting from zero) to all statements,

ignoring comments. Assuming input programs syntactically correct, the module sepa-

rates program’s statements based on the predefined delimiters and right braces. During

this process, it also computes Non-Comment Lines of Code (NCLOC) and the number

of SQL statements present in the program. In particular, the presence of Data Manip-

ulation Language (DML) statements is identified based on the presence of keywords

3The source code is available on github: https://github.com/angshumanjana/SemDDA.
4The original website ‘‘http://www.gotocode.com’’ does no longer exist at this moment. We have

archived the benchmark codes at ‘‘https://github.com/angshumanjana/GotoCode’’.
5 These benchmark codes are used by many authors in their experiments, such as [16, 56, 57, 106].
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Figure 5.7: Architecture of SemDDA

such as SELECT, UPDATE, DELETE and INSERT in the statements.

(ii) ExtractInfo: This module extracts detail information about input programs, i.e. con-

trol statements, defined variables, used variables, etc. for all statements in the program.

Modules “Proformat” and “ExtractInfo” currently support only JSP embedded database

code. The extension of these modules to support other programming languages does

not require major design efforts, and it is currently in the to-do list for the next version

of our analyser.

(iii) Dependency: The “Dependency” module computes syntax-based dependencies

among program statements using the information computed by “ExtractInfo” module.

(iv) Tuning: At this preliminary stage of implementation, this module supports three

abstract domains (Interval, Octagon, and Polyhedra). The module automatically picks

the best domain based on the attribute relationships present in SQL statements. If none

of the statements contains any relationship among attributes, then "Tuning" module

automatically picks interval domain. On the other hand, either octagon or polyhedra

abstract domain is chosen if at least one SQL statement contains respectively octagonal

or polyhedral form of constraint. Moreover, users can also select one of the abstract

domains of her choice based on the importance of computational cost and analysis-

precision.
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(v) Abstraction: The module “Abstraction” computes abstract semantics in the chosen

abstract domain based on the data-flow analysis. Currently the module supports

intervals, octagons, polyhedra, and powerset of intervals abstract domains.

(vi) Overlap: Finally this module identifies false dependency (if any) based on the

semantics-based approximation of used and defined parts and their overlapping.

Limitations of SemDDA: The current implementation of SemDDA consider only database

code written in JSP embedding SQL. At this stage, the tool does not support the follow-

ings: (i) dynamically generated queries, (ii) HQL queries, (iii) nested queries and (iv)

string data-type.

5.10.2 Experimental Results

We have used semDDA to perform experiments on a set of benchmark programs which

are open-source database-driven web applications in JSP as part of the GotoCode project

[1]. A brief description of these benchmark codes are mentioned in Table 5.4. The

experiment is performed on a system configured with Intel i3 processor, 1.80GHz clock

speed, Windows 7 Professional 64-bit Operating System with 8GB RAM.

In the following sections, we provide experimental results in various approaches on

a set of benchmark codes under consideration.

5.10.2.1 DD-dependency results in pure syntax-based approach

The DD-dependency results on the benchmark codes in pure syntax-based approach is

depicted in the 5th column of Table 5.5. It is worthwhile to mention that, for the given

benchmark codes, the improved syntax-based approach generates same results as that

by pure syntax-based approach.

5.10.2.2 DD-dependency results in Condition-Action rules-based approach

We implemented Condition-Action rules using Satisfiability Modulo Theories (SMT). In

particular, we used Z3 [39], a high-performance SMT Solver implemented in C++ and

developed by Microsoft Research. For this purpose, we performed the following steps:

(i) Selection of database statements in pairs according to their order of occurrences in

the program, (ii) Conversion of these database statements into Static Single Assignment
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Applications
Names

Number
of
Files
Tested

Descriptions

Events 1 It is a basic online event management system. It includes many
features like event information (event name, year, presenter,
etc.), users administration, etc.

Ledger 1 It is an example implementation of a web-based ledger which
allows a user to track bank deposits, withdrawals, commission
and view current balance.

Portal 2 It is a fully functional online web-based Portal which is useful
for small organizations, clubs, user groups, and schools. It pro-
vides several functionalities like user registration, news section,
list of club officers and etc. The considering files mainly work
on the administration of club officers and members.

EmplDir 2 It is a basic employee directory that may use as an online system
for small companies. It serves deferent searching facilities (e.g.
by name, email) to the user. The selected files are dealing to
store the employee and departmental information.

Bookstore 2 It is an online store system that keeps various books informa-
tion, articles and other items. It has many features like user
registrations, shopping cart, administration of credit card types
and etc. It utilizes VeriSign’s payflow link system to verify and
charge credit cards.

BugTrack 3 It is a basic fully functional web-based bug tracking system
which may useful for small teams working on software projects.
It keeps projects information and its associated employee’s de-
tail (consider files work for this purpose), also provides many
searching options.

Table 5.4: Description of the benchmark programs [1]
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Applications
(File Names)

N
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LO
C

N
um

be
r

of
SQ
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ts
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um

be
r

of
A

tt
ri

bu
te

s Number of DD-dependencies
Pure
Syntax-
based

Condition-
Action
Rule-
based

Interval
Do-
main

Octagon
Do-
main

Polyhedra
Domain

Powerset
of In-
tervals

Events (Event-
New.jsp)

334 6 5 8 6 8 6 6 8

Ledger
(Ledger-
Record.jsp)

436 9 8 22 18 22 22 16 22

Portal (EditOf-
ficer.jsp)

300 7 4 21 21 19 19 19 19

Portal (Edit-
Members.jsp)

362 10 5 16 15 14 14 14 14

EmplDir (Dep-
sRecord.jsp)

285 4 3 9 8 9 8 8 9

EmplDir
(Emp-
sRecord.jsp)

435 9 7 23 21 23 22 14 23

Bookstore
(Editorial-
sRecord.jsp)

294 6 3 5 4 4 4 4 4

Bookstore
(Book-
Maint.jsp)

357 6 5 10 7 7 7 7 6

BugTrack (Pro-
jectMaint.jsp)

307 7 4 15 13 15 13 13 15

BugTrack
(Employ-
eeMaint.jsp)

316 6 5 12 11 12 10 10 12

BugTrack (Bu-
gRecord.jsp)

336 6 4 9 8 8 8 8 7

Table 5.5: DD-dependency results in various approaches (NCLOC denotes Non-
Comment Lines of Code)
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(SSA) form, (iii) Generation of Verification Condition (VC) from each pair by extracting

predicates from the action- and condition-parts of the first statement and the condition-

part of the second statement in the pair, and finally (iv) Dependency verification based

on the satisfiability of VCs using Z3 tool. We used the online version of the Z3 tool

available at “https://rise4fun.com/z3”. We encoded VCs by following Z3 language

syntax (which is an extension of the one defined by the SMT-LIB 2.0 standard). After

compilation and execution by Z3, the output “UNSAT” for a pair indicates that the

second database statement is not dependent on the first one in the pair. Let us explain

this with the following simple example.

Example 30 Consider the following pair of database statements:

Q1 : UPDATE emp SET hra = hra + 100 WHERE da + hra > 1000

Q2 : SELECT hra FROM emp WHERE da + hra 6 5000

The equivalent SSA form of these statements are:

Q1 : UPDATE emp SET hra2 = hra1 + 100 WHERE da1 + hra1 > 1000

Q2 : SELECT hra2 FROM emp WHERE da1 + hra2 6 5000

The VC of this pair of statements is:

Vc = (hra2 == hra1 + 100) ∧ (da1 + hra1 > 1000) ∧ (da1 + hra2 6 5000)

The encoded version of Vc in Z3 is:

1. (declare − const hra1 Int)

2. (declare − const hra2 Int)

3. (declare − const da1 Int)

4. (push)

5. (assert (= (+ hra1 100) hra2))

6. (assert (>= (+ hra1 da1) 1000))

7. (assert (<= (+ hra2 da1) 5000))

131

https://rise4fun.com/z3


Semantic-based Dependency Computation of Database Applications

8. (check − sat)

As the Z3 reports this formula as satisfiable (Z3 output is “SAT”), this indicates that Q2

depend on Q1.

The DD-dependency results on the benchmark codes using this approach is depicted

in the 6th column of Table 5.5. This shows an improvement in the precision over

the syntax-based results. In fact, on the given benchmark codes, an average of 12%

improvement is observed as compared to the syntax-based approach.

5.10.2.3 Results based on the Abstract Semantics

Columns 7th, 8th, 9th and 10th of Table 5.5 depict DD-dependency results in the do-

mains of intervals, octagons, polyhedra and powerset of intervals respectively. It is

worthwhile to note that the analysis-results for five benchmark codes (’EditOfficer’,

’EditMember’, ’BookMaint’, ’EditorialsRecord’, ’BugRecord’) in the interval domain

improves w.r.t. their syntax-based results. On the other hand, analysis in the domain

of octagons for ’EmployeeMaint’, ’ProjectMaint’, ’EventNew’ and ’EmployeeMaint’ re-

sults in more precise dependency information compared to that in the interval domain,

due to the presence of restricted attributes relationship (which involves at most two

attributes) in SQL statements. Similarly, polyhedra domain analysis captures more pre-

cise DD-dependency results, shown in the case of ’LedgerRecord’ and ’EmpsRecord’,

compared to their interval and octagon counterparts, as they allow unrestricted relation-

ship among attributes. We obtain an improvement in the precision for two benchmark

codes ’BugRecord’ and ’BookMaint’ w.r.t. the analysis-results in other domains when

we consider an abstract representation of initial databases in the powerset of intervals

domain. Overall, we achieved an improvement in the precision on an average of 6%

in the interval domain, 11% in the octagon, 21% in the polyhedra domain and 7% in

the powerset of intervals domain, as compared to the syntax-based approach for the

chosen set of benchmark codes. Figure 5.8 compares all DD-dependency results.

Table 5.6 reports the execution time (in milliseconds) of the analysis in the interval,

octagon, polyhedra and powerset of intervals abstract domains. This is to mention

that we do not observe any notable variation in the execution time across multiple

trials. The variation of execution time for various benchmarks is depicted in Figure
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Figure 5.8: Comparative analysis of DD-dependency results in various approaches.

5.9. Observe that we represent along y-axis the execution time (in milliseconds) in log10

scale, as the data range over several orders of magnitude. The reason behind the massive

growth of execution time in polyhedra domain for ’EmpsRecord’ and ’LedgerRecord’ is

exponential time complexity of the analysis w.r.t. the number of attributes (as reported

in Table 5.5).

File Names(.jsp) Abstract Domains
Interval Octagon Polyhedra Powerset of

Intervals
EventNew 167 194 345 171
LedgerRecord 204 312 7943737 211
EditOfficer 86 91 201 87
EditMembers 116 178 354 119
DepsRecord 96 110 163 98
EmpsRecord 192 254 366314 197
EditorialsRecord 76 103 160 77
BookMaint 110 162 432 113
ProjectMaint 80 81 189 81
EmployeeMaint 126 169 986 129
BugRecord 94 97 157 97

Table 5.6: Execution time (in milliseconds) in various Abstract Domains.

To finally conclude, our observation on the experimental evaluation results in-

dicates that proper tuning of abstract domains from coarse to fine level in precision,

perhaps compromising the computational costs, plays a crucial role to meet the analysis-

objectives.
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Figure 5.9: Analysis Time (in log10 scale) in various Abstract Domains

5.11 Conclusions

In this chapter, we propose a novel approach to compute semantics-based independen-

cies among database program statements, based on the Abstract Interpretation theory.

This steers construction of semantic-based dependency graphs with a more precise set

of dependencies. Most importantly, this serves as a powerful basis to give solution

even in case of undecidable scenario when no initial database state is provided. The

comparative study among various approaches and various abstract domains in terms

of precision and efficiency clearly indicates that a trade-off in choosing appropriate

abstract domains or their combination is very crucial to meet the objectives.
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C H A P T E R 6

Policy-based Database Code Slicing

©

Preface
Program slicing is a static analysis technique which is widely used in various software

engineering activities, e.g. debugging, testing, code-understanding, code-optimization,

etc. It extracts from programs a subset of statements which is relevant to a given be-

havior. In this chapter, we introduce a new form of code slicing, known as policy-based

slicing, of database applications based on the refined notion of dependency graph. We

show how the use of semantics-based dependency, together with semantic relevancy

of statements, may improve the precision of the slice w.r.t. a given policy.
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6.1 Introduction

Program slicing [116] is a static analysis technique that extracts from programs the

statements which are relevant to a given behavior. It allows engineers to address sev-

eral software-related problems, including program understanding, debugging, main-

tenance, parallelization, integration, software measurement, etc. [15, 53, 62, 78].

Works on program slicing have been starting with the pioneering work of Mark

Weiser in the 1981 [120]. He presented in his seminal paper an iterative, static and

backward slicing technique which is based on data flow analysis and on the influence

of predicates on statement execution. The slice is computed as the set of all statements

of the program that might affect directly or indirectly the value of the variable in the

set V just before the execution of the statement p for all inputs. In contrast, in case

of dynamic slicing [78], programmers are more interested in a slice that preserves the

program’s behavior for a specific program input rather than for all program inputs.

Over the past, various forms of slicing are introduced [71, 78, 120]. A forward

slice [14] contains those statements of the program which are affected by the slicing

criterion, whereas program chopping [71] is a kind of "filtered" slice that extracts all

the program statements that serve to transmit effects from a given source element s to

a given target element t. The authors in [88] defined the base vocabulary and slicing

criteria for static [120], dynamic [78], quasi static [117], simultaneous dynamic [58], and

conditioned slicing [18] using formal notation. They defined the conditioned slice as

a general purpose slice, whereas other slice types are specializations of conditioned

slicing.

The existing slicing techniques in the literature mostly use dependency graphs for

the efficient computation of program slices. For instance, PDG, SDG, ClDG and DOPDG

are well suited for intra-, inter-, object-oriented and database code slicing respectively.

As industries and organizations often introduce new policies or modify their existing

policies, maintenance of associated large-scale complex database programs to reflect

these changes becomes a tedious task. This forces software engineers to continuously

examine codes in order to identify only the relevant part which should participates in

this process. To accelerate this, in this chapter, we introduce a new form of program

slicing, known as policy-based slicing, of database programs. We restrict ourselves

to the policies defined only on the underlying database. For example, let us suppose
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that the company decides to introduce a new policy which respects the consistency of

employees salary structure, defined below:

The salary of employees of age less or equal to 40 cannot have a salary greater than

75% of the maximum salary of the same category.

Formally, we can write it as:

∀te ∈ temp,∃t j ∈ tjob.
(
te.t jid = t j.t jobid ∧ te.tsal 6 (75×t j.tmaxsl)

100 ∧ te.tage 6 40
)

where temp

and tjob represent the underlying database tables.

In particular, our main contributions in this chapter are:

• We propose the construction of syntax-based dependency graph for HQL, by

extending its variant for object-oriented languages.

• We show how the use of semantics-based dependency, together with semantic

relevancy of statements, may improve the precision of the slice w.r.t. a given

policy.

As usual, the primary steps involved in the computation of slice w.r.t. a policy ψ are:

1. Construction of syntax-based dependency graph.

2. Refinement of the graph by computing semantics-based dependencies.

3. Computation of slice by traversing the graph either backward (in case of backward

slicing) or forward (in case of forward slicing) direction from the node of reference

w.r.t. all variables involved in the policy.

Let us consider two cases, one for SQL and another for HQL, to demonstrate these.

6.2 Slicing of SQL

Recall the database code Prog already depicted in Figure 5.1 of chapter 5. Let us assume

that, according to the company policyψ, the module increments ‘point’ by 2 and 4 when

(5000 6 purchase_amt + wallet_bal < 10000) and (purchase_amt + wallet_bal > 10000)

respectively. Let us suppose that the company decides to revise this existing policy ψ

into a new one ψ1 which is defined below:
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For the customer of purchase amount and wallet balance summation is more than

or equal to 10000 should have point incremented by 5.

In order to respect ψ1, some specific statements in Prog need to be changed. Therefore,

we need to perform a slicing of Prog w.r.t. ψ1 to extract only those relevant part.

Let us follow the steps mentioned before.

1. Construction of syntax-based dependency graph.

We recall the construction of syntax-based DOPDG of Prog from chapter 5 and let us

show the graph again below:
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Figure 6.1: Syntax-based DOPDG (F denotes attribute purchase_amt) of Prog

2. Refinement of the graph by computing semantics-based dependencies.

As already illustrated in chapter 5, after refining false dependencies 5 6 , 4 11 ,

5 11 , 6 11 , 4 15 , 5 15 , 6 15 , 4 16 , 5 16 , 6 16

and 15 16 , we obtained a refined version of semantics-based DOPDG which is

depicted in Figure 6.2.

3. Computation of backward slice w.r.t. ψ1.

Since our objective is to extract all statements relevant to ψ1, we consider the node 16

corresponding to the last statements of Prog as the point of reference and we take into

consideration the attributes point, purchase_amt, wallet_bal involved in ψ1. Therefore,

the slicing criterion is denoted as 〈16, {point, purchase_amt,wallet_bal}〉. The backward
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Figure 6.2: Refined semantics-based DOPDG (Fdenotes attribute purchase_amt) of Prog

0. public class saleOffer
{

1. public static void main(String[] args) throws SQLException
{

2. float x = 0.1;
3. float y = 0.05;
4. try

{
Statement con = DriverManager.getConnection("jdbc mysql: . . . ", "scott", "tiger").createStatement();

5. con
.executeQuery("UPDATE Sales SET purchase_amt = purchase_amt − y ∗ purchase_amt WHERE purchase_amt BETWEEN 1000 AND 3000 ");

6. con.executeQuery("UPDATE Sales SET purchase_amt = purchase_amt − x ∗ purchase_amt WHERE purchase_amt > 3000 ");

7. con.executeQuery("UPDATE Sales SET purchase_amt = purchase_amt − delivery_charge ");

16. con.executeUpdate("UPDATE Sales SET point = point + 4 WHERE (purchase_amt + wallet_bal) > 10000 ");
}

catch
(Exception e)

{
. . .

} }}

Figure 6.3: Slice of Prog w.r.t. ψ1

slice after traversing the refined DOPDG w.r.t. the slicing criteria is shown in Figure

6.3.

Observe that the preciseness is improved over its syntactic slice after disregarding

the statement 15.

6.3 Slicing of HQL

We observe that none of the existing syntax-based graph construction approaches are

directly applicable to the case of HQL due to the correspondence between high-level

application variables with the low-level database attributes through hibernate (session)

interface. Moreover, we have to treat transient objects and persistent objects differently

during the construction of dependency graph.
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1. class Serv {
2. public static void main(String arg[]){
3. Configuration cfg =new Configuration();
4. cfg.Configure("hibernate.cfg.xml");
5. Session ses =(cfg.buildSessionFactory()).openSession();
6. Transaction tr = ses.beginTransaction();
7. int i = (new Scanner(System.in)).nextInt();
8. if(i==1){
9. int id_v = getparam(...);

10. List ls = ( ses.createQuery("SELECT a.jname FROM emp e INNER JOIN e.Job a WHERE
e.eid = :xid").setParameter("xid", id_v)).list();

11. Object obj = (Object)ls;
12. System.out.println((String)obj);}
13. if(i==2){
14. int id_v = getparam(...);
15. int sal_v = getparam(...);
16. int r1 = (ses.createQuery("UPDATE emp e SET e.sal= e.sal+:xsal WHERE e.sal>1500")

.setParameter("xsal",sal_v)).executeUpdate();}
17. if(i==3){
18. int id_v = getparam(...);
19. int r2 = (ses.createQuery("DELETE FROM emp e WHERE e.sal61000"))

.executeUpdate();}
20. tr.commit();
21. ses.close(); } }

(a) Class Serv

teid t jid tsal tage
1 3 1200 35
2 2 600 28
3 4 1000 30
4 1 2500 45
5 1 1600 20

(b) Database dB: Table temp

t jobid t jname tjcat tmaxsl tminsl
1 Asst.Prof A 3000 1000
2 HR C 1000 500
3 Asso.Prof A 3000 1000
4 Registrar B 2000 800
5 Prof. A 3000 1000

(c) Database dB: Table tjob

Figure 6.4: An example of HQL code and underlying database

Let us first demonstrate the construction of syntax-based dependency graph of HQL

codes using a suitable example and then the computation of slice on its refined version

w.r.t. a given policy.

Example 31 Consider an enterprise information system depicted in Figure 6.4 where the HQL

program Serv performs three different operations (select, update, delete) on employees informa-

tion stored in the database dB (Tables 6.4(b) and 6.4(c)) based on the user choice. Observe that

the fields eid, jid, sal, age of POJO class emp in Serv correspond to the attributes teid, t jid, tsal,

tage of the database table temp respectively. Similarly the fields jobid, jname of POJO class

Job in Serv correspond to the attributes t jobid, t jname of the database table tjob respectively.

This mapping is defined in a mapping file of hibernate framework. Let us consider the policy ψ2

below:

The salary of employees of age less or equal to 40 cannot have a salary greater than

75% of the maximum salary of the same category.
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Figure 6.5: Syntax-based dependency graph of Serv

We now follow the same steps, mentioned before, to compute slice of Serv w.r.t. ψ2:

1. Construction of syntax-based dependency graph.

The syntax-based dependency of Serv is depicted in Figure 6.5. We consider the fol-

lowing three types of dependencies in HQL programs:

(a) Intra-class Intra-method Dependencies: These represent the dependencies within

the same method of a class, and it follows the Program Dependency Graph-based

approach [100]. We denote these dependencies by dotted edges. Edges 7 - 13, 7 - 17, 7 -

8, 18 - 19, etc., are of this type.

(b) Intra-class Inter-method Dependencies: These represent the dependencies be-

tween statements of two different methods within the same class and are constructed

by following System Dependency Graph-based approach [64]. We denote these depen-

dencies by long-dash-dotted edges. There is no edge of this type in our example.
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(c) Inter-class Inter-method Dependencies:

Through transient objects. Inter-class Inter-method dependencies occur in OOP when

a method in one class calls another method in other class. This is done by calling

the method through an object of the called-class. Therefore, additional in-parameters

corresponding to the object-fields through which the method is called, must be con-

sidered [83]. Note that, in this scenario, a constructor-call during object creation is

also a part of the graph which follows the same representation as of other inter-class

inter-method calls. We denote these dependencies by long-dash-dotted edges (as in

the case of Intra-class Inter-method Dependencies). Edges 3 - 4, 5 - 21, 6 - 20, 5 - 6, 4 -

5, etc., are of this type. Observe that node 4 calls “configure()” method on the object

“cfg” which is received from node 3. It configures the “cfg” object using “XML” file

and acts as a source for newly-configured “cfg” object. For the sake of simplicity, we

do not include here the details of the calling scenario by node 4. Similarly, we hide the

details of the calling-scenarios by the nodes 5 (which creates the session object by calling

openSession()), 6 (which creates the transaction object by calling beginTransaction()),

20 (when calling commit()) and 21 (when calling close()) respectively.

Through session objects. Various Session methods are used to convert objects from

transient state to persistent state and to perform various operations, like select, update,

delete on the persistent objects in the database. In other words, Hibernate Session

serves as an intermediate way for the interaction between high-level HQL variables

and the database attributes. As creation of a Session object implicitly establishes

connection with the database, we consider the nodes which create Session objects as

the sources of the database (hence database-attributes). For instance, the node 5 acts

as a source of dB. When Session methods (save(), creatQuery()) are called through

Session objects, either a transient object (in case of save()) or an object-oriented variant

of SQL statement (in case of createQuery()) are passed as a parameter. For instance,

see the nodes 10, 16, 19. The presence of HQL variables in the parameter which have

a mapping with the database attributes leads to a number of dependencies shown

by dash-lines between 5 - 10, 5 - 16 and 5 - 19. We call such dependencies as session-

database dependencies. These edges are labeled with used- and defined- HQL variables

present in the parameter which have a correspondence with database attributes. For
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Figure 6.6: Refined semantics-based dependency graph of Serv

instance, in case of obj passed to save(), all database attributes corresponding to object

fields act as defined variables, whereas in case of update and delete as parameters in the

createQuery(), the variables in the WHERE clause act as used variables and the variables

in the action part act as defined variables. For SELECT, all variables in the parameter act

as used variables.

Observe that for the sake of simplified representation, we hide the detail calling

scenario of createQuery() by nodes 10, 16, 19. The edges connecting the node 5 and dB

indicates propagation and synchronization of memory and database states.

2. Refinement of the graph by computing semantics-based dependencies.

The semantics-based dependency analysis in the domain of polyhedra detects a false

dependency 16→ 19. The refined form of the graph is depicted in Figure 6.6.

3. Computation of backward slice w.r.t. ψ2.

We consider the node 21 corresponding to the last statements of Serv and the at-

tributes tsal, tage, tmaxsl involved in ψ2. The backward slice w.r.t. the slicing criterion
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〈21, {tsal, tage, tmaxsl}〉 is shown in Figure 6.7.

Observe that the slice is more precise w.r.t. its syntactic varsion, as it does not contain

the statement 10.

1. class service {
2. public static void main(String arg[]){
3. Configuration cfg =new Configuration();
4. cfg.Configuration("hibernate.cfg.xml");
5. Session ses =(cfg.buildSessionFactory()).openSession();
7. int i = (new Scanner(System.in)).nextInt();
13. if(i==2){
14. int id_v = getparam(...);
15. int sal_v = getparam(...);
16. int r1 = (ses.createQuery("UPDATE emp e SET e.sal=

e.sal+:xsal WHERE e.sal>1500").setParameter("xsal",sal_v))
.executeUpdate();}

17. if(i==3){
18. int id_v = getparam(...);
19. int r2 = (ses.createQuery("DELETE FROM emp e WHERE

e.sal61000")).executeUpdate();}
21. ses.close(); } }

Figure 6.7: Slice of Serv w.r.t ψ2

6.4 Precision Improvement using Semantic Relevancy of

Database Statements w.r.t. Policy

Let us recall the formal definition of semantic relevancy from [53].

Definition 6.1 (Semantic Relevancy [53]) Let Σ` be the set of states possibly occurring at

program point `. A statement c at program point ` is semantically irrelevant w.r.t. a concrete

property ω if ∀ρ ∈ Σ`. ω(S[[c]]ρ) = ω(ρ), where S[[.]] is the semantic function.

Because of the computational complexity (in case of large database) and undecid-

ability in the concrete domain, by lifting the semantics to an abstract domain D,

we can define the semantic relevancy w.r.t. an abstract property ω in D as follows:

∀ρ ∈ Σ`. ω(S[[c]]ρ) = ω(ρ). The semantic irrelevancy in an abstract domain is sound by

its constructions [30, 53].

Consider the following database statement and the underlying database table Tab in

Figure 6.8(a).

Q : UPDATE Tab SET age = age+1 WHERE age 660

144



6.4 Precision Improvement using Semantic Relevancy of Database Statements w.r.t.
Policy

teid tsal tage
1 1200 55
2 1600 62
3 2000 45
4 800 18

(a) Table Tab

teid tsal tage
1 1200 56
2 1600 62
3 2000 46
4 800 19

(b) Result after execution of Q
on Tab

teid tsal tage
[1, 4] [800,

2000]
[18, 62]

(c) Abstract table Tab corre-
sponding to Tab

teid tsal tage
[1, 4] [800,

2000]
[19, 62]

(d) Result after execution of Q
on Tab

Figure 6.8: Concrete and Abstract Query Semantics.

Suppose the company policy ψ3 (defined on Tab) says that employee’s ages must

belong to the range 18 and 62 (i.e. 18 6 tage 6 62). We denote by ρD the state of the

database D which includes the state of Tab. The semanticsof Q in σD, i.e. S[[Q]]σD yields

the result shown in Figure 6.8(b). We observe that the policy ψ3 is satisfied before and

after the execution of Q, i.e. ψ3(ρD) = ψ3(S[[Q]]ρD). Therefore, Q is irrelevant w.r.t. ψ3,

assuming ρD is the only state that occurs at the program point of Q.

Although this example is trivial to compute the irrelevancy of Q in concrete domain,

in case of very large database (or even when database state depends on run-time

inputs) the irrelevancy can be computed in an abstract domain of interest. For instance,

consider the abstract domain of intervals. The abstract table Tab corresponding to Tab

in the abstract domain is shown in Table 6.8(c).

The corresponding abstract state which include Tab is denote by ρD. The abstract

semantics S[[Q]]ρD where Q is

Q : UPDATE Tab SET age = age + [1, 1] WHERE age 6 [60, 60]

yields the abstract result depicted in Figure 6.8(d). We observe thatψ3(ρD) = ψ3(S[[Q]]ρD).

By following [53], we can prove the soundness, i.e.

(ψ3(ρD) = ψ3(S[[Q]]ρD)) =⇒ ∀Q ∈ γ(Q),∀ρD ∈ γ(ρD) : ψ3(ρD) = ψ3(S[[Q]]ρD)

where γ is a concretization function [30].

Let us illustrate the precision improvement of the slice of HQL code serv (in Figure

6.4) w.r.t. ψ2 using the notion of semantic relevancy in the domain of polyhedra.
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Example 32 The initial polyhedron1 corresponding to the database dB (Figure 6.4(b)) is PdB =

〈{teid > 1,−teid > −5, tsal > 600,−tsal > −2500, tage > 20,−tage > −45}, 3〉. The pictorial
representation is shown in Figure 6.9(a).

The abstract syntax of Session methods msel, mupd and mdel at program points 10, 16, 19

respectively in Serv are:

msel ::= 〈C, φ, OP〉 where C = {emp, Job}, φ = {eid = jobid, eid = id_v},

OP = SEL( f ( ~exp′), r(~h(~x)), φ′, g( ~exp)〉 = SEL(id, ALL(id( jname)), true, id)〉,

and id denotes identity function.

mupd ::= 〈{emp}, {e.sal > 1500}, UPD(〈sal〉, 〈sal + sal_v〉)〉

mdel ::= 〈{emp}, {e.sal 6 1000}, DEL()〉

The transition semantics on PdB are:

Thql[[msel]]PdB

=Thql[[〈{emp, Job}, {eid = jobid, eid = id_v}, SEL(id, ALL(id( jname)), true, id)〉]]PdB

=Tsql[[〈{temp, tjob}, {teid = t jobid, teid = tid_v}, SELECT(id, ALL(id(t jname)), true, id)〉]]PdB

={PdB}

Note that, select operation does not change the database, hence the polyhedron remains unchanged

(see Figure 6.9(b)).

Thql[[mupd]] =Thql[[〈{emp}, {e.sal > 1500}, UPD(〈sal〉, 〈sal + sal_v〉)〉]]PdB

=Tsql[[〈{temp}, {tsal > 1500}, UPDATE(〈tsal〉, 〈tsal + sal_v〉)〉]]PdB

={P′T, PF} where

PT = PdB u {tsal > 1500}

P′T = Tsql[[tsal := tsal + sal_v]](PT)

= 〈{teid > 1, −teid > −5, tage > 20, −tage > −45, tsal > 600}, 3〉.

PF = {PdB u ¬(tsal > 1500)}

1For the sake of simplicity, we consider the polyhedron in the space involving only three attributes
teid, tsal and tage.
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= 〈{teid > 1,−teid > −5, tsal > 600,−tsal > −1499, tage > 20,−tage > −45}, 3〉

Note that, since the updation of tsal depends on run-time input, we project-out the upper

bound of the attribute from the set of restraints in P′T in order to guarantee the soundness. The

polyhedron representation of P’T is shown in Figure 6.9(c).

Thql[[mdel]] =Thql[[〈{emp}, {e.sal 6 1000}, DEL()]]PdB

=Tsql[[〈{temp}, {tsal 6 1000}, DELETE()]]PdB = {PT, PF} where

PT = PdB u {tsal 6 1000}

= 〈{teid > 1, −teid > −5, tage > 20, −tage > −45, tsal > 600,−tsal > −1000}, 3〉.

PF = {PdB u ¬(tsal 6 1000)}

= 〈{teid > 1,−teid > −5, tsal > 1001,−tsal > −2500, tage > 20,−tage > −45}, 3〉

Observe that the initial polyhedron of dB is covered by the polyhedron representingψ2. This can
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Figure 6.9: Polyhedra representation of temp on various operation (msel,mudp,mdel).

verified by performing the operations, e.g. interaction, emptiness checking, etc. on the polyhedra

domain. Therefore, initially ψ2 is satisfied by dB. The abstract semantics-based analysis proves

that mdel does not change the initial polyhedron PdB (see Figure 6.9). Therefore it is semantically

irrelevant w.r.t. ψ2. Therefore, the semantics-based slice, disregarding this irrelevant statement,
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1. class service {
2. public static void main(String arg[]){
3. Configuration cfg =new Configuration();
4. cfg.Configuration("hibernate.cfg.xml");
5. Session ses =(cfg.buildSessionFactory()).openSession();
7. int i = (new Scanner(System.in)).nextInt();

13. if(i==2){
14. int id_v = getparam(...);
15. int sal_v = getparam(...);
16. int r1 = (ses.createQuery("UPDATE emp e SET e.sal=e.sal+:xsal WHERE e.sal>1500")

.setParameter("xsal",sal_v)).executeUpdate();}
21. ses.close(); } }

Figure 6.10: Slice of Serv considering semantics relevancy w.r.t. ψ2

is shown in Figure 6.10. This indeed improves the precision of the slice.

6.5 Discussions and Conclusions

Policy-based slicing is comparable with conditioned slicing and specification-based

slicing (several variants exist, e.g. precondition-, postcondition-, contract-, assertion-

based, etc.) [19]. The method defined for finding a conditioned slice is to use symbolic

execution and reject infeasible paths based on the constraints defined by the first order

logic equations. Specification-based slicing approach is proposed based on the ax-

iomatic semantics (weakest precondition or strongest postcondition computations) in

program verification. All these approaches use SMT solver which has exponential com-

plexity [77]. Our proposal is based on the semantic analysis in various non-relational

and relational abstract domains in the Abstract Interpretation framework. We experi-

ence that semantics-based dependency, together with semantic relevancy of statements

triggers a generation of more precise slices w.r.t. their syntax-based results.
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C H A P T E R 7

Data Leakage Analysis of Database

Applications

©

Preface
Language-based information-flow security analysis has emerged as a promising tech-

nique to detect possible information leakage in any software systems. Confidential

data stored in an underlying database may be leaked to an unauthorized user due to

improper coding of database applications. In this chapter, we extend the full power of

the proposed model in [55] to the case of HQL, particularly by focussing on the session

methods. We define the abstract semantics of HQL over the domain of propositional for-

mulae by considering variables dependencies at each program point. This allows us to

identify illegitimate information flow by checking the satisfiability of propositional for-

mulae with respect to a truth value assignment based on their security levels. Finally

we explain how the reduced product of the analysis-results obtained from symbolic

propositional formulae domain and numerical abstract domain may further improve

the precision.
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Data Leakage Analysis of Database Applications

7.1 Introduction

Information is considered as most valuable assets for any organization or enterprise.

Sensitive data may be leaked maliciously or even accidentally through a bug in the

program. For example, any health information processing system may release patients’

data, or any online transaction system may release customers’ credit card information

through covert channels, while processing. Confidentiality of sensitive information,

that refers to preventing information from being leaked to unauthorized users, is one of

the prime factors that needs to be maintained by information systems. Unauthorized

disclosure of sensitive information may put the whole system into risks. Therefore, pro-

tecting private data in computer systems is a promising field of research. While access

control and encryption prevent confidential information from being read or modified

by unauthorized users at source level, they do not regulate the information propa-

gation after it has been released for execution. Confidentiality may be compromised

during the flow of information along the control structure of any software systems [108].

Assuming variables ‘h’ and ‘l’ are private and public respectively, the following code

fragments depict two different scenarios (explicit/direct flow and implicit/indirect flow)

of information leakage:

l := h Explicit/Direct flow

if(h=0) l:=5; else l:=10; Implicit/Indirect flow

Observe that confidential value in ‘h’ can be deduced by attackers observing ‘l’ on the

output channel.

Secure information flow is comprised of two related aspects: information confi-

dentiality and information integrity. Confidentiality refers to limiting the access and

disclosure of sensitive information to authorized users only. For instance, when we pur-

chase something online, our private data, e.g. credit card number, must be sent only to

the merchant without disclosing to any third person during the transmission. Dually,

the notion of integrity indicates that data or messages cannot be modified undetectably

by any unauthorized person [122].

A wide range of language-based techniques are proposed in the past decades to

analyze this illegitimate flow in software products [51, 61, 85, 103, 108, 113]. Works in

this direction have been starting with the pioneering work of Dennings in the 1970s [40].

As a starting point, the analysis classifies the program variables into various security
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classes. The simplest one is to consider two: Public/Low (denoted L) and Private/High

(denoted H). Considering a mathematical lattice-model of security classes with order

L ≤ H, the secure information flow policy is defined on the lattice: an upward-flow in

the lattice is only permissible to preserve confidentiality. Dually, in case of integrity, the

lattice-model labels the variables as Tainted (denoted T) and Untainted (denoted U),

and follows a dual flow-policy.

The correctness is guaranteed by respecting the non-interference principle [85] that

says “a variation of confidential data does not cause any variation to public data”:

Given a program P and set of states Σ. The non-interference policy states that ∀σ1, σ2 ∈ Σ.

σ1 ≡L σ2 =⇒ [[P]]σ1 ≡L [[P]]σ2, where [[.]] is semantic function and ≡L represents low-

equivalence relation between states.

In practice, non-interference principle is restrictive and deemed to be impractical.

For instance, in password validation program all stored sensitive passwords are com-

pared with user-given text and a boolean value is transmitted on the public channel

as the result. To allow such intensional leakage, the notion of declassification [109] is

introduced, where controlled information release is permitted.

Most of the notable works are proposed for imperative, object-oriented, functional,

etc. [61, 103, 108]. In [55], authors proposed a framework to identify possible leakage

of database applications that covers only SQL statements. In this chapter, we extend

the full power of the proposed model in [55] to the case of HQL, focussing on Session

methods which act as persistent manager. This allows us to perform leakage analysis

of sensitive database information when is accessed through high-level HQL code. In

particular,

• We define the abstract transition semantics of HQL over the domain of proposi-

tional formulae, by considering variables’ dependencies at each program point.

• We use a truth assignment function that assigns each of the database and ap-

plication variables a truth value based on its sensitivity level, and checks the

satisfiability of propositional formula in order to identify any possible informa-

tion leakage.

• We show how the use of abstract semantics at various levels of abstraction of

numerical domain can improve the analysis precision when combined with the

results in the propositional formula domain. To this aim, we define a reduce
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product operation among the results obtained in various abstract domains, in

order to exclude pointless dependency for the variables which have same value

during the execution.

7.2 Related Works

A comprehensive survey on language-based information-flow analysis is reported in

[108]. Most popular static analysis techniques are based on type systems [108,113,118],

dependency graphs [20, 60, 85], formal approaches [4, 41, 74, 122, 123], etc. Besides the

conservative nature of static analysis, the run-time monitoring systems detect unau-

thorized information flow dynamically; however, precision of the analysis completely

depends on the execution overload, and of course, it is very prone to false nega-

tive [9, 112].

The security type system considers various security types (e.g., low and high) and

a collection of typing rules which determine the type of expressions/commands to

guarantee a secure information flow [108,113,118]. Some of the typing rules from [108]

are mentioned below:

• Expression Type:
`exp: high

h<Var(exp)
`exp: low

• Explicit-flow Rules: [pc]`h:=exp
`exp: low

[low]`l:=exp

• Implicit-flow Rules: `exp: pc [pc]` c1 [pc]` c2

[pc]`i f exp then c1 else c2

`exp: pc [pc]` c
[pc]`while exp do c

• Subsumption Rule: [high]`c
[low]`c

The notation [pc] denotes the security context which can be either [low] or [high]. Ac-

cording to the subsumption rule, if a program is typable in a high context then it is also

typable in a low context. This allows to reset the program security context to low after

a high conditional or a loop.

Although type-based approach is provably sound, but a major drawback is the lack

of expressiveness. Moreover, it is not flow-sensitive which may produce false alarm.

For instance, consider the following code:
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1 if(h=1) then

2 l:= 10;

3 else l:= 5;

. . . . . .

7 l:= 0;

8 output l;

Although the program is secure with respect to the classical noninterference principle as

the output is always zero, but the type-based approach produces false alarm according

to the implicit-flow rule.

As information flow is closely related to the dependency information of programs,

the notion of Program Dependency Graph (PDG) is used widely to capture illegitimate

flow in programs [20, 60, 61, 85]. For instance, in PDG-based approaches, the above

code is secure as there is no path 1 ∗

−→ 8 in the corresponding PDG. Various extensions

of PDG exist, for example System Dependency Graph (SDG) in case of inter-procedural

call to capture context-sensitivity, Class Dependency Graph (ClDG) in case of Object-

Oriented Languages to capture object-sensitivity on dynamic dispatch, etc [60]. Once

the dependency graph of a program is constructed, static analysis is performed on the

graph to identify the presence of possible insecure flow. An worth mentioning approach

is backward slicing which collects all possible paths (or source-nodes) influencing

(directly/indirectly) the observable nodes: to be secure, the levels of variables in a

path must not exceed the levels of observable variables in the output-node of that path.

In other words, slicing helps to partition any insecure program (as a whole) in to secure

and insecure part [20]. Semantics-based improvement (e.g. path-conditions) is also

proposed to disregard semantically unreachable paths [60].

Approaches based on formal techniques, e.g. Abstract Interpretation theory, Hoare

Logic, Model Checking, etc. are proposed in [4,41,74,122,123] to analyze secure informa-

tion flow in software products. Leino and Joshi [74] first introduced a semantics-based

approach to analyzing secure information flow based on the semantic equivalence of

programs. [122,123] defined the concrete semantics of programs and lift it to an abstract

domain suitable for flow analysis. In particular, they consider the domain of propo-

sitional formula representing variables’ dependency. The abstract semantics is further

refined by combining with numerical abstract domain which improves the precision

of the analysis. A variety of logical forms are proposed to characterize information
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flow security. Amtoft and Banerjee [4] defined prelude semantics by treating program

commands as prelude transformer. They introduced a logic based on the Abstract

Interpretation of prelude semantics that makes independency between program vari-

ables explicit. They used Hoare logic and applied this logic to forward program slicing:

forward l-slice is independent of h variables and is secure from information leakage.

Authors in [5] defines a set of proof rules for secure information flow based on axiomatic

approach. Recently, [41] proposed a model checking-based approach for reactive sys-

tems. The authors in [110] proposed a framework for information flow control in a

functional language with language-integrated queries (with Microsoft’s LINQ on the

backend). They developed a security type system with a treatment of algebraic data

types and pattern matching by reusing the existing type systems. A major drawback

of this approach is the flow-insensitivity which may produce false alarm.

7.3 Information Leakage Analysis of SQL

In this section, we recall from [55] the abstract transition semantics of SQL statements

over the domain of propositional formulae and assignment of truth values to each

variable considering its sensitivity to detect possible information leakage.

7.3.1 Abstract Semantics of SQL

In [55] authors used the Abstract Interpretation theory to define an abstract semantics

of SQL embedded program using symbolic domain of positive propositional formulae

in the form ∧
0≤i≤n, 0≤ j≤m

{yi → z j}

which means that the values of variable z j possibly depend on the values of variable

yi. The computation of abstract semantics of a program in the propositional formulae

domain provides a sound approximation of variables dependency, which allows to

capture possible information flow in the program. The information leakage analysis is

then performed by checking the satisfiability of formulae after assigning truth values

to variables based on their sensitivity levels.

Let Pos andL be the domain of propositional formulae and the set of program points
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respectively. Let in : C 7−→ L and f in : C 7−→ L be two functions where in[[c]] and

f in[[c]] denote the sets of initial and final labels of statement c ∈ C respectively. The

set of variables appearing in a statement is determined by the function V : C 7−→ V,

where V = Va ∪Vd.

An abstract state ρ ∈ Σ ≡ L × Pos is a pair 〈`, ψ〉 where ψ ∈ Pos represents the

variables dependency, in the form of propositional formulae, among program variables

up to the program label ` ∈ L.

The abstract labeled transition semantics T [[c]] of a statement c is a set of transitions

between abstract states ρ1 and ρ2, denoted by ρ1
c
−→ ρ2. Table 7.1 depicts abstract

labeled transition semantics of various statements in database applications, where the

function BV(c) denotes the “defined variables” in statement c. Let SF(ψ) denotes the set

of subformulas in ψ, and the operator 	 is defined by ψ1 	 ψ2 =
∧(

SF(ψ1)\SF(ψ2)
)
.

7.3.2 Assigning Truth Values

Let Γ : V → {L,H} be a function that assigns to each of the database and application

variables in a program P a security class, either public (L) or private (H). We say that

program P respects the confidentiality property, if and only if there is no information

flow from private to public variables. To verify this property, a corresponding truth

assignment function Γ̂ is used:

Γ̂(x) =

 T if Γ(x) = H

F if Γ(x) = L

If Γ̂ does not satisfy any propositional formula in ψ of an abstract state, the analysis will

report a possible information leakage.

7.4 Information Leakage Analysis of HQL

The proposed abstract transition semantics of SQL can not be applied directly to the case

of HQL due to the presence and interaction of high-level HQL variables and database

attributes through Session methods. The new challenge in this scenario w.r.t. state-of-

the-art of information leakage detection is that we need to consider both application

variables and HQL variables (corresponding to the database attributes). Moreover, as
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T [[SELECT]]
de f
= T [[〈`5assign(va), `4 f (~e′), `3r(~h(~x)), `2φ′, `1 g(~e), `0φ〉]]

de f
= {〈`0, ψ〉

SELECT
−−−−−−−−→ 〈 f in[[SELECT]], ψ′〉}

where ψ′ =
∧{

y→ va.wi | y ∈ (V [[φ]] ∪ V [[~e]] ∪ V [[φ′]] ∪ V [[~e′]]) ∧ va.wi ∈ va.~w ∧ y , va.wi

}
∧∧{

zi → va.wi | zi ∈ V [[xi]] ∧ xi ∈ ~x ∧ va.wi ∈ va.~w
}
∧

(
ψ 	

∧
{u→ va.wi | u ∈ V ∧ va.wi ∈ va.~w}

)
T [[UPDATE]]
de f
= T [[〈`

′

~vd
upd
= ~e, `φ〉]]

de f
= {〈`, ψ〉

UPDATE
−−−−−−−−−→ 〈 f in[[UPDATE]], ψ′〉}

where ψ′ =
∧{

y→ z | y ∈ V [[φ]] ∧ z ∈ ~vd

}
∧∧{

yi → zi | yi ∈ V [[ei]] ∧ ei ∈ ~e ∧ zi ∈ ~vd

}
∧ ψ

T [[INSERT]]
de f
= T [[〈`

′

~vd
new
= ~e, `true〉]]

de f
= {〈`, ψ〉

INSERT
−−−−−−−−→ 〈 f in[[INSERT]], ψ′〉}

where ψ′ =
∧{

yi → zi | yi ∈ V [[ei]] ∧ ei ∈ ~e ∧ zi ∈ ~vd

}
∧ ψ

T [[DELETE]]
de f
= T [[〈`

′

del(~vd), `φ〉]]
de f
= {〈`, ψ〉

DELETE
−−−−−−−−→ 〈 f in[[DELETE]], ψ′〉}

where ψ′ =
∧{

y→ z | y ∈ V [[φ]] ∧ z ∈ ~vd

}
∧ ψ

T [[`skip]]
de f
= {〈`, ψ〉 → 〈 f in[[`skip]], ψ〉}

T [[`va = e]]
de f
= {〈`, ψ〉 → 〈 f in[[`va = e]], ψ′〉}

where ψ′ =
∧{

y→ va | y ∈ V [[e]] ∧ y , va
}
∧

(
ψ 	

∧
{u→ va | u ∈ V}

)
T [[i f `b then c1 else c2

`′endi f ]]
de f
= T [[c1]] ∪T [[c2]]⋃

{〈`, ψ〉 → 〈in[[c1]], ψ〉}
⋃
{〈`, ψ〉 → 〈in[[c2]], ψ〉}⋃

{〈`′, ψ〉 → 〈 f in[[i f `b then c1 else c2
`′endi f ]], ψ′〉}⋃

{〈`′, ψ〉 → 〈 f in[[i f `b then c1 else c2
`′endi f ]], ψ′′〉}

where ψ′ =
∧{

y→ z | y ∈ V [[b]] ∧ z ∈ BV(c1) ∧ y , z
}
∧ ψ

where ψ′′ =
∧{

y→ z | y ∈ V [[b]] ∧ z ∈ BV(c2) ∧ y , z
}
∧ ψ

T [[while `b do c `
′

done]]
de f
= T [[c]]

⋃
{〈`, ψ〉 → 〈in[[c]], ψ〉}

⋃
{〈`′, ψ〉 → 〈 f in[[while `b do c `

′

done]], ψ′〉}
where ψ′ =

∧{
y→ z | y ∈ V [[b]] ∧ z ∈ BV(c) ∧ y , z

}
∧ ψ

T [[c1; c2]]
de f
= T [[c1]] ∪T [[c2]]

Table 7.1: Definition of Abstract Transition Function T
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we are interested on persistent data, analyzing object-oriented features of HQL does

not meet our objectives neither. In this section, we extend information leakage analysis

to the case of HQL. The analysis is performed by (i) computing an overapproximation

of variables’ dependency at each program point, in the form of propositional formula,

(ii) checking the satisfiability on assigning truth values to variables, in order to identify

possible leakage of HQL.

7.4.1 Abstract Semantics of HQL

Methods in HQL include a set of imperative statements1. We assume, for the sake of

the simplicity, that attackers are able to observe public variables inside of the main

method only. Therefore, our analysis only aims at identifying variable dependency at

input-output labels of methods.

The abstract transition semantics of constructors and conventional methods are

defined below.

Definition 7.1 (Abstract Transition Semantics of Constructor) Consider a class c = 〈init, F, M〉

where init is a default constructor. Let ` be the label of init. The abstract transition semantics

of init is defined as

T [[`init]] = {(`, ψ)→ (Succ(`init), ψ)}

where Succ(`init) denotes the successor label of init. Observe that the default constructor is

used to initialize the objects-fields only, and it does not add any new dependency.

The abstract transition semantics of parameterized constructors are defined in the same

way as of class methods m ∈ M.

Definition 7.2 (Abstract Transition Semantics of Methods) Let U ∈ ℘(Var) be the set of

variables which are passed as actual parameters when invoked a method m ∈ M on an abstract

state (`, ψ) at program label `. Let V ∈ ℘(Var) be the formal arguments in the definition of m.

We assume that U ∩V = ∅. Let a and b be the variable returned by m and the variable to which

the value returned by m is assigned. The abstract transition semantics is defined as

T [[`m]] = {(`, ψ)→ (Succ(`m), ψ′)}

1For a detailed abstract transition semantics of imperative statements, see chapter 2.
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where ψ′ = {xi → yi | xi ∈ U, yi ∈ V} ∪ {a→ b} ∪ ψ and Succ(`m) is the label of the successor

of m.

Let us classify the high-level HQL variables into two distinct sets: Vard and Vara. The

variables which have a correspondence with database attributes belong to the set Vard.

Otherwise, the variables are treated as usual variables and belong to Vara. We denote

variables in Vard by the notation v, in order to differentiate them from the variables in

Vara. This leads to four types of dependency which may arise in HQL programs: x→ y,

x→ y, x→ y and x→ y, where x, y ∈ Vara and x, y ∈ Vard.

7.4.1.1 Definition of Abstract Transition Function T for Session Methods

The abstract labeled transition semantics of various Session methods are defined be-

low, where by Var(exp) and Field(c) we denote the set of variables in exp and the set of

class-fields in the class c respectively. The function Map(v) is defined as:

Map(v) =


v if v has correspondence with a database attribute,

v otherwise.

Notice that in the definition of T the notation ṽ stands for either v or v. Let SF(ψ) denotes

the set of subformulas inψ, and the operator	 is defined byψ1	ψ2 =
∧(

SF(ψ1)\SF(ψ2)
)
.

The transition semantics for Session method msave:

T [[`msave]]
de f
= T [[`(C, φ, SAVE(obj))]]
de f
= T [[`({c}, FALSE, SAVE(obj))]]
de f
= {〈`, ψ〉

SAVE
−−−→ 〈Succ(`msave), ψ〉}

The transition semantics for Session method mupd:

T [[`mupd]]
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de f
= T [[`(C, φ, UPD(~v, ~exp))]]
de f
= T [[`({c}, φ, UPD(~v, ~exp))]]
de f
= {〈`, ψ〉

UPD
−−→ 〈Succ(`mupd), ψ′〉}

where ψ′ =
∧{

ỹ→ zi | y ∈ Var[[φ]], ỹ = Map(y), zi ∈ ~v
}⋃∧{

ỹi → zi | yi ∈ Var[[expi]], expi ∈ ~exp, ỹi = Map(yi), zi ∈ ~v
}⋃

ψ′′

and ψ′′ =

 ψ 	
(̃
a→ zi | zi ∈ ~v ∧ a ∈ Var ∧ ã = Map(a)

)
if φ is TRUE by default.

ψ otherwise

The transition semantics for Session method mdel:

T [[`mdel]]
de f
= T [[`(C, φ, DEL())]]
de f
= T [[`({c}, φ, DEL())]]
de f
= {〈`, ψ〉

DEL
−−→ 〈Succ(`mdel), ψ′〉}

where ψ′ =
∧{

ỹ→ z | y ∈ Var[[φ]], ỹ = Map(y), z ∈ Field(c)
}⋃

ψ′′

and ψ′′ =

 ψ 	
(̃
a→ zi | zi ∈ ~v ∧ a ∈ Var ∧ ã = Map(a)

)
if φ is TRUE by default.

ψ otherwise

The transition semantics for Session method msel:

T [[`msel]]
de f
= T [[`(C, φ, SEL( f ( ~exp′), r(~h(~x)), φ, g( ~exp))]]
de f
= {〈`, ψ〉

SEL
−−−→ 〈Succ(`msel), ψ′〉}

where ψ′ =
∧{

ỹ→ z̃ | y ∈ (Var[[φ]] ∪ Var[[~e]] ∪ Var[[φ′]] ∪ Var[[~e′]]), z ∈ Var[[~x]],

ỹ = Map(y), z̃ = Map(z)
}⋃

ψ

7.4.2 Assigning Truth Values

We are now in position to use the abstract semantics defined in the previous section

to identify possible sensitive database information leakage through high-level HQL
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variables. After obtaining over-approximation of variable dependency at each program

points, we assign truth values to each variable based on their sensitivity level, and we

check the satisfiability of propositional formulae representing variable dependency

[122].

Since our main objective is to identify the leakage of sensitive database information

possibly due to the interaction of high-level variables, we assume, according to the pol-

icy, that different security classes are assigned to database attributes. Accordingly, we

assign security levels to the variables in Vard based on the correspondences. Similarly,

we assign the security levels of the variables in Vara based on their use in the program.

For instance, the variables which are used on output channels, are considered as pub-

lic variables. Observe that for the variables with unknown security class, it may be

computed based on the dependency of it on the other application variables or database

attributes of known security classes.

Let Γ : Var→ {L,H,N} be a function that assigns to each of the variables a security

class, either public (L) or private (H) or unknown (N).

After computing abstract semantics of HQL program P, the security class of vari-

ables with unknown level (N) in P are upgraded to either H or L, according to the

following function:

Upgrade(v) = Z if ∃ (u→ v) ∈ T [[P]]. Γ(u) = Z ∧ Γ(u) , N ∧ Γ(v) = N (7.1)

We say that programP respects the confidentiality property of database information,

if and only if there is no information flow from private to public attributes. To verify

this property, a corresponding truth assignment function Γ̂ is used:

Γ̂(x) =

 T if Γ(x) = H

F if Γ(x) = L

If Γ̂ does not satisfy any propositional formula in ψ of an abstract state, the analysis will

report a possible information leakage.
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class c1 {

private int id1, h1, l1;
c1 { }

public int getId() { return id1;}
public void setId(int id) { this.id1 = id;}
public int getHigh() {return h1;}
public void setHigh(int x) { this.h1 = x;}
public int getLow() { return l1;}
public void setLow(int y) { this.l1 = y;}

}

(a) POJO Class c1

class c2 {

private int id2, h2, l2;
c2 { }

public int getId() { return id2;}
public void setId(int id) { this.id2 = id;}
public int getHigh() {return h2;}
public void setHigh(int x) { this.h2 = x;}
public int getLow() { return l2;}
public void setLow(int y) { this.l2 = y;}

}

(b) POJO Class c2

1. public class ExClass{
2. public static void main(String[] args) {

3. Configuration cfg=new Configuration();
4. cfg.configure("hibernate.cfg.xml");
5. SessionFactory sf=cfg.buildSessionFactory();
6. Session ses=sf.openSession();
7. Transaction tr=ses.beginTransaction();

. . . . . .

. . . . . .

15. Query Q1 = session.createQuery(“SELECT id1, h1 FROM c1”);
16. List R1 = Q1.list();
17. for(Object[] obj:R1){
18. pk=(Int) obj[0];
19. val=(Int) obj[1];
20. Query Q2 = session.createQuery(“UPDATE c2 SET l2 = l2 +1 WHERE id2 = pk AND val=1000”);
21. int result = Q2.executeUpdate();}

. . . . . .

. . . . . .

30. tx.commit();
31. session.close();}}

(c) Class ExClass
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Q1 

  

UPDATE 

Q2 

Table corresponding to c1 

List R1 

Table corresponding to c2 

R1.[0]          R1.[1] 

 

R1.[0]         R1.[1] R1.[0]         R1.[1] 

Obj[0]= R1.[0] 
Obj[1]= R1.[1] 
pk= Obj[0] 
val= Obj[1] 

(d) Execution view

Figure 7.1: A HQL program and its execution view
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7.4.3 Illustration with Example

Let us consider an example in Figure 7.1(c). Here, values of the table corresponding to

the class c1 are used to make a list, and for each element of the list an update is performed

on the table corresponding to the class c2. Observe that there is an information-flow from

confidential (denoted by h) to public variables (denoted by l). In fact, the confidential

database information h1 which is extracted at statement 15, affects the public view of

the database information l2 at statement 20. This fact is depicted in Figure 7.1(d).

According to the policy, let the database attribute corresponding to variable h1 is

private, whereas the attributes corresponding to id1, id2 and l2 are public. Therefore,

Γ(h1) = H and Γ(id1) = Γ(id2) = Γ(l2) = L

For other variables in the program, the security levels are unknown. That is,

Γ(R1.[0]) = Γ(R1.[1]) = Γ(obj[0]) = Γ(obj[1]) = Γ(pk) = Γ(h2) = N

Considering the domain of positive propositional formulae, the abstract semantics

yields the following formulae at program point 20 in P:

id1 → R1.[0]; h1 → R1.[1]; R1.[0]→ obj[0]; R1.[1]→ obj[1];

obj[0]→ pk; obj[1]→ h2; pk→ l2; id2 → l2; h2 → l2;

According to equation 7.1, the security levels of the variables with unknown security

level N are upgraded as below:

Γ(R1.[0]) = L, Γ(R1.[1]) = H, Γ(obj[0]) = L, Γ(obj[1]) = H

Γ(pk) = L, Γ(h2) = H

Finally, we apply the truth assignment function Γ which does not satisfy the formula

h2 → l2, as Γ(h2) = T and Γ(l2) = F and T→ F is false.

Therefore, the analysis reports that the example program P is vulnerable to leakage

of confidential database data.

7.4.4 Improving the Analysis

The abstract semantics at various levels of abstraction of numerical domain which we

defined in chapter 5 can improve the precision of the above analysis results significantly.
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This can be done by using reduced Product the analysis results obtained at different

levels of abstractions [122]. Let us formally define this among the logical and numer-

ical domains analysis-results. Let N be the a numerical abstract domain of interest.

Suppose T ∗ and T represent the set of concrete traces and the set of abstract traces in

the propositional formulae domain respectively. Let (℘(T ∗), α0, γ0, ℘(T )) and (℘(T ∗),

α1, γ1, N ) be two Galois Connections, and let Υ : ℘(T ) ×N → ℘(T ) be a reduced

product operator defined as Υ(X,<) = X′, where X ∈ ℘(T ) is a set of partial traces,

< ∈ N , and

X
′ =

{
〈`i, ψk〉 | 〈`i, ψ j〉 ∈ X ∧ ψk = (ψ j 	 {x→ y | y ∈ <})

}

7.5 Conclusions

In this chapter, we propose a static analysis framework to perform information flow

analysis of database program based on the Abstract Interpretation theory. Our approach

captures information leakage on “permanent” data stored in a database when a database

application manipulates them. We explain how the reduced product of the analysis-

results form various abstract domains may improve the precision. This may also lead

to a refinement of the non-interference definition that focusses on confidentiality of the

data instead of variables.
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C H A P T E R 8

Conclusions and Future Directions

©

Preface
In this chapter, we conclude our research works and highlight the possible future re-

search scope.
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Conclusions and Future Directions

Dependency analysis of database programs plays crucial role in different fields of soft-

ware engineering. Some applications among many others include Program Slicing,

Language-based Information Flow Security Analysis, Data Provenance, Concurrent

System Modeling, Materialization View Creation. Although syntax-based dependency

computation is straightforward, its semantics-based refinement is quite challenging

when considering attributes’ values in possible database instances. This thesis pro-

poses a novel approach to compute semantics-based independency among database

statements, based on the Abstract Interpretation theory. To this aim, we define an ab-

stract semantics of database programs embedding SQL and HQL in various levels of

abstractions, ranging from the domain of intervals to the domain of polyhedra. This

computable abstract semantics serves as a powerful basis to design a static semantics-

based dependency analyzer for database applications, resulting into a more precise

dependency information by removing false alarms. This is also true for undecidable

scenarios when the input database instance is unknown. The comparative study among

various approaches and various abstract domains in terms of precision and efficiency

clearly indicates that a trade-off in choosing appropriate abstract domains or their com-

bination is very crucial to meet the objectives. There are many application areas where

false dependency information could lead to huge financial loss while proving crucial

properties of software products. Information flow security analysis of critical softwares

is one such example. In such case, precision dominates over the analysis cost and a

choice of stronger abstract domain, e.g. polyhedra domain, may be a good choice.

On the other hand, when development speed is an important factor, choice of weakly

relational or even non-relational abstract domain may be a wise decision. Experimental

evaluation on the benchmarks set reports a precision improvement in the range of 6%

- 21% under various levels of abstractions. This proves that the approach may impact

significantly when to deal with large-scale complex software systems involving huge

variables set and millions of lines of codes. Finally, we have demonstrated two case

studies - database code slicing and language-based information leakage analysis - of

our proposed dependency refinement approach.

In this research line, we identified the following interesting future scopes:

1. To broaden the application of this proposed analysis to other related software en-
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gineering problems, e.g. materialization view creation, data provenance, integrity

constraints verification, etc.

2. Designing of new ad-hoc abstract domains suitable for analysis and verification

of database programs in new applicative scenarios.

3. Extending the analysis to a distributed scenario with multiple transactions and

heterogeneous database systems.

4. Enhancement of SemDDA to support other popular mainstream languages C, C++,

Java, HQL, etc. Besides, we shall also consider sub-queries, dynamically gener-

ated queries, JOIN queries and string data-type along with numerical attributes.
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