Introduction to Deep Learning

Arijit Mondal
Dept. of Computer Science \& Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

Deep Feedforward Networks

Deep feedforward networks

- Also known as feedforward neural network or multilayer perceptron

Deep feedforward networks

- Also known as feedforward neural network or multilayer perceptron
- Goal of such network is to approximate some function f^{*}
- For classifier, \boldsymbol{x} is mapped to category y ie. $y=f^{*}(\boldsymbol{x})$
- A feedforward network maps $y=f(\boldsymbol{x} ; \boldsymbol{\theta})$ and learns $\boldsymbol{\theta}$ for which the result is the best function approximation

Deep feedforward networks

- Also known as feedforward neural network or multilayer perceptron
- Goal of such network is to approximate some function f^{*}
- For classifier, \boldsymbol{x} is mapped to category y ie. $y=f^{*}(\boldsymbol{x})$
- A feedforward network maps $y=f(\boldsymbol{x} ; \boldsymbol{\theta})$ and learns $\boldsymbol{\theta}$ for which the result is the best function approximation
- Information flows from input to intermediate to output
- No feedback, directed acyclic graph
- For general model, it can have feedback and known as recurrent neural network

Deep feedforward networks

- Also known as feedforward neural network or multilayer perceptron
- Goal of such network is to approximate some function f^{*}
- For classifier, \boldsymbol{x} is mapped to category y ie. $y=f^{*}(\boldsymbol{x})$
- A feedforward network maps $y=f(\boldsymbol{x} ; \boldsymbol{\theta})$ and learns $\boldsymbol{\theta}$ for which the result is the best function approximation
- Information flows from input to intermediate to output
- No feedback, directed acyclic graph
- For general model, it can have feedback and known as recurrent neural network
- Typically it represents composition of functions
- Three functions $f^{(1)}, f^{(2)}, f^{(3)}$ are connected in chain
- Overall function realized is $f(x)=f^{(3)}\left(f^{(2)}\left(f^{(1)}(x)\right)\right)$
- The number of layers provides the depth of the model

Deep feedforward networks

- Also known as feedforward neural network or multilayer perceptron
- Goal of such network is to approximate some function f^{*}
- For classifier, \boldsymbol{x} is mapped to category y ie. $y=f^{*}(\boldsymbol{x})$
- A feedforward network maps $y=f(\boldsymbol{x} ; \boldsymbol{\theta})$ and learns $\boldsymbol{\theta}$ for which the result is the best function approximation
- Information flows from input to intermediate to output
- No feedback, directed acyclic graph
- For general model, it can have feedback and known as recurrent neural network
- Typically it represents composition of functions
- Three functions $f^{(1)}, f^{(2)}, f^{(3)}$ are connected in chain
- Overall function realized is $f(x)=f^{(3)}\left(f^{(2)}\left(f^{(1)}(x)\right)\right)$
- The number of layers provides the depth of the model
- Goal of NN is not to accurately model brain!

Multilayer neural network

Issues with linear FFN

- Fit well for linear and logistic regression
- Convex optimization technique may be used
- Capacity of such function is limited
- Model cannot understand interaction between any two variables

Overcome issues of linear FFN

- Transform x (input) into $\phi(x)$ where ϕ is nonlinear transformation

Overcome issues of linear FFN

- Transform x (input) into $\phi(x)$ where ϕ is nonlinear transformation
- How to choose ϕ ?

Overcome issues of linear FFN

- Transform x (input) into $\phi(x)$ where ϕ is nonlinear transformation
- How to choose ϕ ?
- Use a very generic ϕ of high dimension
- Enough capacity but may result in poor generalization
- Very generic feature mapping usually based on principle of local smoothness
- Do not encode enough prior information

Overcome issues of linear FFN

- Transform x (input) into $\phi(x)$ where ϕ is nonlinear transformation
- How to choose ϕ ?
- Use a very generic ϕ of high dimension
- Enough capacity but may result in poor generalization
- Very generic feature mapping usually based on principle of local smoothness
- Do not encode enough prior information
- Manually design ϕ
- Require domain knowledge

Overcome issues of linear FFN

- Transform x (input) into $\phi(x)$ where ϕ is nonlinear transformation
- How to choose ϕ ?
- Use a very generic ϕ of high dimension
- Enough capacity but may result in poor generalization
- Very generic feature mapping usually based on principle of local smoothness
- Do not encode enough prior information
- Manually design ϕ
- Require domain knowledge
- Strategy of deep learning is to learn ϕ

Goal of deep learning

- We have a model $y=f(x ; \boldsymbol{\theta}, \boldsymbol{w})=\phi(x ; \theta)^{T} w$
- We use θ to learn ϕ
- w and ϕ determines the output. ϕ defines the hidden layer
- It looses the convexity of the training problem but benefits a lot
- Representation is parameterized as $\phi(x, \theta)$
- $\boldsymbol{\theta}$ can be determined by solving optimization problem
- Advantages
- ϕ can be very generic
- Human practitioner can encode their knowledge to designing $\phi(\boldsymbol{x} ; \boldsymbol{\theta})$

Design issues of feedforward network

- Choice of optimizer
- Cost function
- The form of output unit
- Choice of activation function
- Design of architecture - number of layers, number of units in each layer
- Computation of gradients

Example

- Let us choose XOR function
- Target function is $y=f^{*}(x)$ and our model provides $y=f(x ; \theta)$
- Learning algorithm will choose the parameters θ to make f close to f^{*}

Example

- Let us choose XOR function
- Target function is $y=f^{*}(x)$ and our model provides $y=f(x ; \theta)$
- Learning algorithm will choose the parameters θ to make f close to f^{*}
- Target is to fit output for $\boldsymbol{X}=\left\{[0,0]^{T},[0,1]^{T},[1,0]^{T},[1,1]^{T}\right\}$
- This can be treated as regression problem and MSE error can be chosen as loss function
- MSE loss function $J(\boldsymbol{\theta})=\frac{1}{4} \sum_{x \in \boldsymbol{X}}\left(f^{*}(x)-f(x ; \theta)\right)^{2}$
- We need to choose $f(x ; \theta)$ where θ depends on w and b
- Let us consider a linear model $f(x ; w, b)=x^{\top} w+b$

Example

- Let us choose XOR function
- Target function is $y=f^{*}(x)$ and our model provides $y=f(x ; \theta)$
- Learning algorithm will choose the parameters θ to make f close to f^{*}
- Target is to fit output for $\boldsymbol{X}=\left\{[0,0]^{T},[0,1]^{T},[1,0]^{T},[1,1]^{T}\right\}$
- This can be treated as regression problem and MSE error can be chosen as loss function
- MSE loss function $J(\boldsymbol{\theta})=\frac{1}{4} \sum_{x \in \boldsymbol{X}}\left(f^{*}(x)-f(x ; \theta)\right)^{2}$
- We need to choose $f(x ; \theta)$ where θ depends on w and b
- Let us consider a linear model $f(x ; w, b)=x^{T} w+b$
- Solving these, we get $w=0$ and $b=\frac{1}{2}$

Simple feedforward network with hidden layer

- Let us assume that the hidden unit \boldsymbol{h} computes $f^{(1)}(x ; \boldsymbol{W}, \boldsymbol{c})$

Simple feedforward network with hidden layer

- Let us assume that the hidden unit \boldsymbol{h} computes $f^{(1)}(x ; \boldsymbol{W}, \boldsymbol{c})$
- In the next layer $y=f^{(2)}(\boldsymbol{h} ; \boldsymbol{w}, \boldsymbol{b})$ is computed

Simple feedforward network with hidden layer

- Let us assume that the hidden unit \boldsymbol{h} computes $f^{(1)}(x ; \boldsymbol{W}, \boldsymbol{c})$
- In the next layer $y=f^{(2)}(\boldsymbol{h} ; \boldsymbol{w}, b)$ is computed
- Complete model $f(x ; W, \boldsymbol{c}, \boldsymbol{w}, b)=f^{(2)}\left(f^{(1)}(x)\right)$

Simple feedforward network with hidden layer

- Let us assume that the hidden unit \boldsymbol{h} computes $f^{(1)}(x ; W, c)$
- In the next layer $y=f^{(2)}(\boldsymbol{h} ; \boldsymbol{w}, b)$ is computed
- Complete model $f(x ; W, \boldsymbol{c}, \boldsymbol{w}, b)=f^{(2)}\left(f^{(1)}(x)\right)$
- Suppose $f^{(1)}(x)=W^{T} x$ and $f^{2}(\boldsymbol{h})=\boldsymbol{h}^{T} w$

Simple feedforward network with hidden layer

- Let us assume that the hidden unit \boldsymbol{h} computes $f^{(1)}(x ; \boldsymbol{W}, \boldsymbol{c})$
- In the next layer $y=f^{(2)}(\boldsymbol{h} ; \boldsymbol{w}, b)$ is computed
- Complete model $f(x ; W, \boldsymbol{c}, \boldsymbol{w}, b)=f^{(2)}\left(f^{(1)}(x)\right)$
- Suppose $f^{(1)}(x)=W^{T} x$ and $f^{2}(\boldsymbol{h})=\boldsymbol{h}^{T} w$ then $f(x)=$ $w^{\top} W^{\top} x$

Simple feedforward network with hidden layer

- Let us assume that the hidden unit \boldsymbol{h} computes $f^{(1)}(x ; \boldsymbol{W}, \boldsymbol{c})$
- In the next layer $y=f^{(2)}(\boldsymbol{h} ; \boldsymbol{w}, b)$ is computed
- Complete model $f(x ; W, \boldsymbol{c}, \boldsymbol{w}, b)=f^{(2)}\left(f^{(1)}(x)\right)$
- Suppose $f^{(1)}(x)=W^{T} x$ and $f^{2}(\boldsymbol{h})=\boldsymbol{h}^{T} w$ then $f(x)=$ $w^{\top} W^{\top} x$
- We need to have nonlinear function to describe the features
- Usually NN have affine transformation of learned parameters followed by nonlinear activation function

- Let us use $\boldsymbol{h}=g\left(\boldsymbol{W}^{\top} \boldsymbol{x}+\boldsymbol{c}\right)$
- Let us use ReLU as activation function $g(z)=\max \{0, z\}$
- g is chosen element wise $h_{i}=g\left(x^{\top} W_{i, i}+c_{i}\right)$

Simple feedforward network with hidden layer

- Complete network is $f(x ; W, c, w, b)=w^{T} \max \left\{0, \boldsymbol{W}^{T} x+\boldsymbol{c}\right\}+b$

Simple feedforward network with hidden layer

- Complete network is $f(x ; W, \boldsymbol{c}, \boldsymbol{w}, b)=\boldsymbol{w}^{T} \max \left\{0, \boldsymbol{W}^{\top} x+\boldsymbol{c}\right\}+b$
- A solution for XOR problem can be as follows
- $\boldsymbol{W}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], \boldsymbol{c}=\left[\begin{array}{c}0 \\ -1\end{array}\right], \boldsymbol{w}=\left[\begin{array}{c}1 \\ -2\end{array}\right], b=0$

Simple feedforward network with hidden layer

- Complete network is $f(x ; W, c, w, b)=w^{T} \max \left\{0, \boldsymbol{W}^{\top} x+c\right\}+b$
- A solution for XOR problem can be as follows
- $\boldsymbol{W}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], \boldsymbol{c}=\left[\begin{array}{c}0 \\ -1\end{array}\right], \boldsymbol{w}=\left[\begin{array}{c}1 \\ -2\end{array}\right], b=0$
- Now we have
- X

Simple feedforward network with hidden layer

- Complete network is $f(x ; W, \boldsymbol{c}, \boldsymbol{w}, b)=\boldsymbol{w}^{T} \max \left\{0, \boldsymbol{W}^{\top} x+\boldsymbol{c}\right\}+b$
- A solution for XOR problem can be as follows
- $\boldsymbol{W}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], \boldsymbol{c}=\left[\begin{array}{c}0 \\ -1\end{array}\right], \boldsymbol{w}=\left[\begin{array}{c}1 \\ -2\end{array}\right], b=0$
- Now we have
$\boldsymbol{X}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right]$,

Simple feedforward network with hidden layer

- Complete network is $f(x ; W, \boldsymbol{c}, \boldsymbol{w}, b)=\boldsymbol{w}^{T} \max \left\{0, \boldsymbol{W}^{\top} x+\boldsymbol{c}\right\}+b$
- A solution for XOR problem can be as follows
- $\boldsymbol{W}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], \boldsymbol{c}=\left[\begin{array}{c}0 \\ -1\end{array}\right], \boldsymbol{w}=\left[\begin{array}{c}1 \\ -2\end{array}\right], b=0$
- Now we have
$\boldsymbol{X}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right], \boldsymbol{X W}$

Simple feedforward network with hidden layer

- Complete network is $f(x ; W, \boldsymbol{c}, \boldsymbol{w}, b)=\boldsymbol{w}^{T} \max \left\{0, \boldsymbol{W}^{\top} x+\boldsymbol{c}\right\}+b$
- A solution for XOR problem can be as follows
- $\boldsymbol{w}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], \boldsymbol{c}=\left[\begin{array}{c}0 \\ -1\end{array}\right], \boldsymbol{w}=\left[\begin{array}{c}1 \\ -2\end{array}\right], b=0$
- Now we have
- $\boldsymbol{X}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right], \boldsymbol{X} \boldsymbol{W}=\left[\begin{array}{ll}0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2\end{array}\right]$,

Simple feedforward network with hidden layer

- Complete network is $f(x ; W, \boldsymbol{c}, \boldsymbol{w}, b)=\boldsymbol{w}^{\top} \max \left\{0, \boldsymbol{W}^{\top} x+\boldsymbol{c}\right\}+b$
- A solution for XOR problem can be as follows
- $\boldsymbol{W}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], \boldsymbol{c}=\left[\begin{array}{c}0 \\ -1\end{array}\right], \boldsymbol{w}=\left[\begin{array}{c}1 \\ -2\end{array}\right], b=0$
- Now we have
$\boldsymbol{X}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right], \boldsymbol{X W}=\left[\begin{array}{ll}0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2\end{array}\right]$, add bias \boldsymbol{c}

Simple feedforward network with hidden layer

- Complete network is $f(x ; W, \boldsymbol{c}, \boldsymbol{w}, b)=\boldsymbol{w}^{\top} \max \left\{0, \boldsymbol{W}^{\top} x+\boldsymbol{c}\right\}+b$
- A solution for XOR problem can be as follows
- $\boldsymbol{W}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], \boldsymbol{c}=\left[\begin{array}{c}0 \\ -1\end{array}\right], \boldsymbol{w}=\left[\begin{array}{c}1 \\ -2\end{array}\right], b=0$
- Now we have
- $\boldsymbol{X}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right], \boldsymbol{X W}=\left[\begin{array}{ll}0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2\end{array}\right]$, add bias $\boldsymbol{c}\left[\begin{array}{cc}0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1\end{array}\right]$,

Simple feedforward network with hidden layer

- Complete network is $f(x ; W, \boldsymbol{c}, \boldsymbol{w}, b)=\boldsymbol{w}^{\top} \max \left\{0, \boldsymbol{W}^{\top} x+\boldsymbol{c}\right\}+b$
- A solution for XOR problem can be as follows
- $\boldsymbol{W}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], \boldsymbol{c}=\left[\begin{array}{c}0 \\ -1\end{array}\right], \boldsymbol{w}=\left[\begin{array}{c}1 \\ -2\end{array}\right], b=0$
- Now we have
- $\boldsymbol{X}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right], \boldsymbol{X W}=\left[\begin{array}{ll}0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2\end{array}\right]$, add bias $\boldsymbol{c}\left[\begin{array}{cc}0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1\end{array}\right]$, apply \boldsymbol{h}

Simple feedforward network with hidden layer

- Complete network is $f(x ; \boldsymbol{W}, \boldsymbol{c}, \boldsymbol{w}, b)=\boldsymbol{w}^{\top} \max \left\{0, \boldsymbol{W}^{\top} \boldsymbol{x}+\boldsymbol{c}\right\}+b$
- A solution for XOR problem can be as follows
- $\boldsymbol{W}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], \boldsymbol{c}=\left[\begin{array}{c}0 \\ -1\end{array}\right], \boldsymbol{w}=\left[\begin{array}{c}1 \\ -2\end{array}\right], b=0$
- Now we have
- $\boldsymbol{X}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right], \boldsymbol{X W}=\left[\begin{array}{ll}0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2\end{array}\right]$, add bias $\boldsymbol{c}\left[\begin{array}{cc}0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1\end{array}\right]$, apply $\boldsymbol{h}\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1\end{array}\right]$,

Simple feedforward network with hidden layer

- Complete network is $f(x ; \boldsymbol{W}, \boldsymbol{c}, \boldsymbol{w}, b)=\boldsymbol{w}^{\top} \max \left\{0, \boldsymbol{W}^{\top} \boldsymbol{x}+\boldsymbol{c}\right\}+b$
- A solution for XOR problem can be as follows
- $\boldsymbol{W}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], \boldsymbol{c}=\left[\begin{array}{c}0 \\ -1\end{array}\right], \boldsymbol{w}=\left[\begin{array}{c}1 \\ -2\end{array}\right], b=0$
- Now we have
- $\boldsymbol{X}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right], \mathbf{X W}=\left[\begin{array}{ll}0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2\end{array}\right]$, add bias $\boldsymbol{c}\left[\begin{array}{cc}0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1\end{array}\right]$, apply $\boldsymbol{h}\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1\end{array}\right]$, multiply
with \boldsymbol{w}

Simple feedforward network with hidden layer

- Complete network is $f(x ; \boldsymbol{W}, \boldsymbol{c}, \boldsymbol{w}, b)=\boldsymbol{w}^{\top} \max \left\{0, \boldsymbol{W}^{\top} \boldsymbol{x}+\boldsymbol{c}\right\}+b$
- A solution for XOR problem can be as follows
- $\boldsymbol{W}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], \boldsymbol{c}=\left[\begin{array}{c}0 \\ -1\end{array}\right], \boldsymbol{w}=\left[\begin{array}{c}1 \\ -2\end{array}\right], b=0$
- Now we have
- $\boldsymbol{X}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right], \boldsymbol{X W}=\left[\begin{array}{ll}0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2\end{array}\right]$, add bias $\boldsymbol{c}\left[\begin{array}{cc}0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1\end{array}\right]$, apply $\boldsymbol{h}\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1\end{array}\right]$, multiply with $\boldsymbol{w}\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right]$

Gradient based learning

- Similar to machine learning tasks, gradient descent based learning is used - Need to specify optimization procedure, cost function and model family
- For NN, model is nonlinear and function becomes nonconvex
- Usually trained by iterative, gradient based optimizer
- Solved by using gradient descent or stochastic gradient descent (SGD)

Gradient descent

- Suppose we have a function $y=f(x)$, derivative (slope at point x) of it is $f^{\prime}(x)=\frac{d y}{d x}$
- A small change in the input can cause output to move to a value given by $f(x+\epsilon) \approx$ $f(x)+\epsilon f^{\prime}(x)$
- We need to take a jump so that y reduces (assuming minimization problem)
- We can say that $f\left(x-\epsilon \operatorname{sign}\left(f^{\prime}(x)\right)\right)$ is less than $f(x)$
- For multiple inputs partial derivatives are used ie. $\frac{\partial}{\partial x_{i}} f(x)$
- Gradient vector is represented as $\nabla_{x} f(x)$
- Gradient descent proposes a new point as $x^{\prime}=x-\epsilon \nabla_{x} f(x)$ where ϵ is the learning rate

Stochastic gradient descent

- Large training set are necessary for good generalization
- Typical cost function used for optimization is $J(\theta)=\frac{1}{m} \sum_{i=1}^{m} L\left(x^{(i)}, y^{(i)}, \theta\right)$
- Gradient descent requires computing of $\nabla_{\theta} J(\theta)=\frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L\left(x^{(i)}, y^{(i)}, \theta\right)$

Stochastic gradient descent

- Large training set are necessary for good generalization
- Typical cost function used for optimization is $J(\theta)=\frac{1}{m} \sum_{i=1}^{m} L\left(x^{(i)}, y^{(i)}, \theta\right)$
- Gradient descent requires computing of $\nabla_{\theta} J(\theta)=\frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L\left(x^{(i)}, y^{(i)}, \theta\right)$
- Computation cost is $O(m)$

Stochastic gradient descent

- Large training set are necessary for good generalization
- Typical cost function used for optimization is $J(\boldsymbol{\theta})=\frac{1}{m} \sum_{i=1}^{m} L\left(\boldsymbol{x}^{(i)}, y^{(i)}, \boldsymbol{\theta}\right)$
- Gradient descent requires computing of $\nabla_{\theta} J(\boldsymbol{\theta})=\frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L\left(x^{(i)}, y^{(i)}, \boldsymbol{\theta}\right)$
- Computation cost is $O(m)$
- For SGD, gradient is an expectation estimated from a small sample known as minibatch $\left(\mathbb{B}=\left\{x^{(1)}, \ldots, x^{\left(m^{\prime}\right)}\right\}\right)$
- Estimated gradient is $g=\frac{1}{m^{\prime}} \sum_{i=1}^{m^{\prime}} \nabla_{\theta} L\left(x^{(i)}, y^{(i)}, \boldsymbol{\theta}\right)$
- New point will be $\boldsymbol{\theta}=\boldsymbol{\theta}-\epsilon \boldsymbol{g}$

Cost function

- Similar to other parametric model like linear models
- Parametric model defines distribution $p(\boldsymbol{y} \mid \boldsymbol{x} ; \boldsymbol{\theta})$
- Principle of maximum likelihood is used (cross entropy between training data and model prediction)
- Instead of predicting the whole distribution of y, some statistic of y conditioned on x is predicted
- It can also contain regularization term

Maximum likelihood estimation

- Consider a set of m examples $\mathbb{X}=\left\{x^{(1)}, \ldots, x^{(m)}\right\}$ drawn independently from the true but unknown data generating distribution $p_{\text {data }}(x)$
- Let $p_{\text {model }}(x ; \boldsymbol{\theta})$ be a parametric family of probability distribution

Maximum likelihood estimation

- Consider a set of m examples $\mathbb{X}=\left\{x^{(1)}, \ldots, x^{(m)}\right\}$ drawn independently from the true but unknown data generating distribution $p_{\text {data }}(x)$
- Let $p_{\text {model }}(\boldsymbol{x} ; \boldsymbol{\theta})$ be a parametric family of probability distribution
- Maximum likelihood estimator for θ is defined as
$\boldsymbol{\theta}_{M L}=\arg \max _{\boldsymbol{\theta}} p_{\text {model }}(\mathbb{X} ; \boldsymbol{\theta})=\arg \max _{\boldsymbol{\theta}} \prod_{i=1}^{m} p_{\text {model }}\left(\boldsymbol{x}^{(i)} ; \boldsymbol{\theta}\right)$

Maximum likelihood estimation

- Consider a set of m examples $\mathbb{X}=\left\{x^{(1)}, \ldots, x^{(m)}\right\}$ drawn independently from the true but unknown data generating distribution $p_{\text {data }}(x)$
- Let $p_{\text {model }}(\boldsymbol{x} ; \boldsymbol{\theta})$ be a parametric family of probability distribution
- Maximum likelihood estimator for θ is defined as
$\boldsymbol{\theta}_{M L}=\arg \max _{\boldsymbol{\theta}} p_{\text {model }}(\mathbb{X} ; \boldsymbol{\theta})=\arg \max _{\boldsymbol{\theta}} \prod_{i=1}^{m} p_{\text {model }}\left(\boldsymbol{x}^{(i)} ; \boldsymbol{\theta}\right)$
- It can be written as $\theta_{M L}=\arg \max _{\theta} \sum_{i=1}^{m} \log p_{\text {model }}\left(x^{(i)} ; \boldsymbol{\theta}\right)$

Maximum likelihood estimation

- Consider a set of m examples $\mathbb{X}=\left\{x^{(1)}, \ldots, x^{(m)}\right\}$ drawn independently from the true but unknown data generating distribution $p_{\text {data }}(x)$
- Let $p_{\text {model }}(\boldsymbol{x} ; \boldsymbol{\theta})$ be a parametric family of probability distribution
- Maximum likelihood estimator for θ is defined as
$\boldsymbol{\theta}_{M L}=\arg \max _{\boldsymbol{\theta}} p_{\text {model }}(\mathbb{X} ; \boldsymbol{\theta})=\arg \max _{\boldsymbol{\theta}} \prod_{i=1}^{m} p_{\text {model }}\left(\boldsymbol{x}^{(i)} ; \boldsymbol{\theta}\right)$
- It can be written as $\theta_{M L}=\arg \max _{\theta} \sum_{i=1}^{m} \log p_{\text {model }}\left(\boldsymbol{x}^{(i)} ; \boldsymbol{\theta}\right)$
- By dividing m we get $\boldsymbol{\theta}_{M L}=\arg \max _{\boldsymbol{\theta}} \mathbb{E}_{\boldsymbol{X} \sim \hat{p}_{\text {data }}} \log p_{\text {model }}(\boldsymbol{x} ; \boldsymbol{\theta})$

Maximum likelihood estimation

- Consider a set of m examples $\mathbb{X}=\left\{x^{(1)}, \ldots, x^{(m)}\right\}$ drawn independently from the true but unknown data generating distribution $p_{\text {data }}(x)$
- Let $p_{\text {model }}(x ; \boldsymbol{\theta})$ be a parametric family of probability distribution
- Maximum likelihood estimator for θ is defined as
$\boldsymbol{\theta}_{M L}=\arg \max _{\boldsymbol{\theta}} p_{\text {model }}(\mathbb{X} ; \boldsymbol{\theta})=\arg \max _{\boldsymbol{\theta}} \prod_{i=1}^{m} p_{\text {model }}\left(\boldsymbol{x}^{(i)} ; \boldsymbol{\theta}\right)$
- It can be written as $\theta_{M L}=\arg \max _{\theta} \sum_{i=1}^{m} \log p_{\text {model }}\left(\boldsymbol{x}^{(i)} ; \boldsymbol{\theta}\right)$
- By dividing m we get $\boldsymbol{\theta}_{M L}=\arg \max _{\boldsymbol{\theta}} \mathbb{E}_{\boldsymbol{X} \sim \hat{p}_{\text {data }}} \log p_{\text {model }}(\boldsymbol{x} ; \boldsymbol{\theta})$
- We need to minimize $-\arg \max _{\boldsymbol{\theta}} \mathbb{E}_{\boldsymbol{X} \sim \hat{p}_{\text {data }}} \log p_{\text {model }}(\boldsymbol{x} ; \boldsymbol{\theta})$

Conditional log-likelihood

- In most of the supervised learning we estimate $P(y \mid x ; \theta)$
- If X be the all inputs and Y be observed targets then conditional maximum likelihood estimator is $\boldsymbol{\theta}_{M L}=\arg \max _{\boldsymbol{\theta}} P(\boldsymbol{Y} \mid \boldsymbol{X} ; \boldsymbol{\theta})$
- If the examples are assumed to be i.i.d then we can say
$\boldsymbol{\theta}_{M L}=\arg \max _{\boldsymbol{\theta}} \sum_{i=1}^{m} \log P\left(\boldsymbol{y}^{(i)} \mid \boldsymbol{x}^{(i)} ; \boldsymbol{\theta}\right)$

Linear regression as maximum likelihood

- Instead of producing single prediction \hat{y} for a given x, we assume the model produces conditional distribution $p(y \mid x)$
- For infinitely large training set, we can observe multiple examples having the same x but different values of y
- Goal is to fit the distribution $p(y \mid x)$

Linear regression as maximum likelihood

- Instead of producing single prediction \hat{y} for a given x, we assume the model produces conditional distribution $p(y \mid x)$
- For infinitely large training set, we can observe multiple examples having the same x but different values of y
- Goal is to fit the distribution $p(y \mid x)$
- Let us assume, $p(y \mid x)=\mathcal{N}\left(y ; \hat{y}(x ; w), \sigma^{2}\right)$

Linear regression as maximum likelihood

- Instead of producing single prediction \hat{y} for a given x, we assume the model produces conditional distribution $p(y \mid x)$
- For infinitely large training set, we can observe multiple examples having the same x but different values of y
- Goal is to fit the distribution $p(y \mid x)$
- Let us assume, $p(y \mid x)=\mathcal{N}\left(y ; \hat{y}(x ; w), \sigma^{2}\right)$
- Since the examples are assumed to be i.i.d, conditional log-likelihood is given by

$$
\sum_{i=1}^{m} \log p\left(\boldsymbol{y}^{(i)} \mid \boldsymbol{x}^{(i)} ; \boldsymbol{\theta}\right)
$$

Linear regression as maximum likelihood

- Instead of producing single prediction \hat{y} for a given x, we assume the model produces conditional distribution $p(y \mid x)$
- For infinitely large training set, we can observe multiple examples having the same x but different values of y
- Goal is to fit the distribution $p(y \mid x)$
- Let us assume, $p(y \mid x)=\mathcal{N}\left(y ; \hat{y}(x ; w), \sigma^{2}\right)$
- Since the examples are assumed to be i.i.d, conditional log-likelihood is given by

$$
\sum_{i=1}^{m} \log p\left(\boldsymbol{y}^{(i)} \mid \boldsymbol{x}^{(i)} ; \boldsymbol{\theta}\right)=-m \log \sigma-\frac{m}{2} \log (2 \pi)-\sum_{i=1}^{m} \frac{\left\|\hat{y}^{(i)}-y^{(i)}\right\|^{2}}{2 \sigma^{2}}
$$

Learning conditional distributions with max likelihood

- Usually neural networks are trained using maximum likelihood. Therefore the cost function is negative log-likelihood. Also known as cross entropy between training data and model distribution
- Cost function $J(\boldsymbol{\theta})=-\mathbb{E}_{\boldsymbol{X}, \boldsymbol{Y} \sim \hat{p}_{\text {data }}} \log p_{\text {model }}(\boldsymbol{y} \mid \boldsymbol{x})$
- Uniform across different models
- Gradient of cost function is very much crucial
- Large and predictable gradient can serve good guide for learning process
- Function that saturates will have small gradient
- Activation function usually produces values in a bounded zone (saturates)
- Negative log-likelihood can overcome some of the problems
- Output unit having exp function can saturate for high negative value
- Log-likelihood cost function undoes the exp of some output functions

Learning conditional statistics

- Instead of learning the whole distribution $p(y \mid x ; \theta)$, we want to learn one conditional statistics of y given x
- For a predicting function $f(\boldsymbol{x} ; \boldsymbol{\theta})$, we would like to predict the mean of \boldsymbol{y}

Learning conditional statistics

- Instead of learning the whole distribution $p(\boldsymbol{y} \mid \boldsymbol{x} ; \boldsymbol{\theta})$, we want to learn one conditional statistics of y given x
- For a predicting function $f(\boldsymbol{x} ; \boldsymbol{\theta})$, we would like to predict the mean of \boldsymbol{y}
- Neural network can represent any function f from a very wide range of functions
- Range of function is limited by features like continuity, boundedness, etc.

Learning conditional statistics

- Instead of learning the whole distribution $p(\boldsymbol{y} \mid \boldsymbol{x} ; \boldsymbol{\theta})$, we want to learn one conditional statistics of y given x
- For a predicting function $f(\boldsymbol{x} ; \boldsymbol{\theta})$, we would like to predict the mean of \boldsymbol{y}
- Neural network can represent any function f from a very wide range of functions
- Range of function is limited by features like continuity, boundedness, etc.
- Cost function becomes functional rather than a function

Learning conditional statistics

- Instead of learning the whole distribution $p(\boldsymbol{y} \mid x ; \boldsymbol{\theta})$, we want to learn one conditional statistics of y given x
- For a predicting function $f(\boldsymbol{x} ; \boldsymbol{\theta})$, we would like to predict the mean of \boldsymbol{y}
- Neural network can represent any function f from a very wide range of functions
- Range of function is limited by features like continuity, boundedness, etc.
- Cost function becomes functional rather than a function
- Need to solve the optimization problem $f^{*}=\arg \min _{f} \mathbb{E}_{\boldsymbol{X}, \boldsymbol{\gamma} \sim p_{\text {data }}}\|\boldsymbol{y}-f(\boldsymbol{x})\|^{2}$
- Using calculus of variation, it gives $f^{*}(x)=\mathbb{E}_{\boldsymbol{Y} \sim p_{\text {data }}(\boldsymbol{y} \mid \boldsymbol{x})}[y]$
- Mean of \boldsymbol{y} for each value of \boldsymbol{x}
- Using a different cost function $f^{*}=\arg \min _{f} \mathbb{E}_{\boldsymbol{X}, \boldsymbol{Y} \sim p_{\text {data }}}\|\boldsymbol{y}-f(\boldsymbol{x})\|_{1}$

Learning conditional statistics

- Instead of learning the whole distribution $p(\boldsymbol{y} \mid x ; \boldsymbol{\theta})$, we want to learn one conditional statistics of y given x
- For a predicting function $f(\boldsymbol{x} ; \boldsymbol{\theta})$, we would like to predict the mean of \boldsymbol{y}
- Neural network can represent any function f from a very wide range of functions
- Range of function is limited by features like continuity, boundedness, etc.
- Cost function becomes functional rather than a function
- Need to solve the optimization problem $f^{*}=\arg \min _{f} \mathbb{E}_{\boldsymbol{X}, \boldsymbol{\gamma} \sim p_{\text {data }}}\|\boldsymbol{y}-f(\boldsymbol{x})\|^{2}$
- Using calculus of variation, it gives $f^{*}(x)=\mathbb{E}_{\boldsymbol{Y} \sim p_{\text {data }}(\boldsymbol{y} \mid x)}[y]$
- Mean of \boldsymbol{y} for each value of \boldsymbol{x}
- Using a different cost function $f^{*}=\arg \min _{f} \mathbb{E}_{\boldsymbol{X}, \boldsymbol{Y} \sim p_{\text {data }}}\|\boldsymbol{y}-f(\boldsymbol{x})\|_{1}$
- Median of \boldsymbol{y} for each value of \boldsymbol{x}

Calculus of variation

- Let us consider functional $J[y]=\int_{x_{1}}^{x_{2}} L\left(x, y(x), y^{\prime}(x)\right) d x$

Calculus of variation

- Let us consider functional $J[y]=\int_{x_{1}}^{x_{2}} L\left(x, y(x), y^{\prime}(x)\right) d x$
- Let $J[y]$ has local minima at f. Therefore, we can say $J[f] \leq J[f+\varepsilon \eta]$ - η is an arbitrary function of \boldsymbol{x} such that $\eta\left(x_{1}\right)=\eta\left(x_{2}\right)=0$ and differentiable

Calculus of variation

- Let us consider functional $J[y]=\int_{x_{1}}^{x_{2}} L\left(x, y(x), y^{\prime}(x)\right) d x$
- Let $J[y]$ has local minima at f. Therefore, we can say $J[f] \leq J[f+\varepsilon \eta]$
- η is an arbitrary function of \boldsymbol{x} such that $\eta\left(x_{1}\right)=\eta\left(x_{2}\right)=0$ and differentiable
- Let us assume $\Phi(\varepsilon)=J[f+\varepsilon \eta]$. Therefore, $\left.\Phi^{\prime}(0) \equiv \frac{d \Phi}{d \varepsilon}\right|_{\varepsilon=0}=\left.\int_{x_{1}}^{x_{2}} \frac{d L}{d \varepsilon}\right|_{\varepsilon=0} d x$

Calculus of variation

- Let us consider functional $J[y]=\int_{x_{1}}^{x_{2}} L\left(x, y(x), y^{\prime}(x)\right) d x$
- Let $J[y]$ has local minima at f. Therefore, we can say $J[f] \leq J[f+\varepsilon \eta]$
- η is an arbitrary function of \boldsymbol{x} such that $\eta\left(x_{1}\right)=\eta\left(x_{2}\right)=0$ and differentiable
- Let us assume $\Phi(\varepsilon)=J[f+\varepsilon \eta]$. Therefore, $\left.\Phi^{\prime}(0) \equiv \frac{d \Phi}{d \varepsilon}\right|_{\varepsilon=0}=\left.\int_{x_{1}}^{x_{2}} \frac{d L}{d \varepsilon}\right|_{\varepsilon=0} d x=0$

Calculus of variation

- Let us consider functional $J[y]=\int_{x_{1}}^{x_{2}} L\left(x, y(x), y^{\prime}(x)\right) d x$
- Let $J[y]$ has local minima at f. Therefore, we can say $J[f] \leq J[f+\varepsilon \eta]$
- η is an arbitrary function of \boldsymbol{x} such that $\eta\left(x_{1}\right)=\eta\left(x_{2}\right)=0$ and differentiable
- Let us assume $\Phi(\varepsilon)=J[f+\varepsilon \eta]$. Therefore, $\left.\Phi^{\prime}(0) \equiv \frac{d \Phi}{d \varepsilon}\right|_{\varepsilon=0}=\left.\int_{x_{1}}^{x_{2}} \frac{d L}{d \varepsilon}\right|_{\varepsilon=0} d x=0$
- Now we can say, $\frac{d L}{d \varepsilon}=\frac{\partial L}{\partial y} \frac{d y}{d \varepsilon}+\frac{\partial L}{\partial y^{\prime}} \frac{d y^{\prime}}{d \varepsilon}$

Calculus of variation

- Let us consider functional $J[y]=\int_{x_{1}}^{x_{2}} L\left(x, y(x), y^{\prime}(x)\right) d x$
- Let $J[y]$ has local minima at f. Therefore, we can say $J[f] \leq J[f+\varepsilon \eta]$
- η is an arbitrary function of \boldsymbol{x} such that $\eta\left(x_{1}\right)=\eta\left(x_{2}\right)=0$ and differentiable
- Let us assume $\Phi(\varepsilon)=J[f+\varepsilon \eta]$. Therefore, $\left.\Phi^{\prime}(0) \equiv \frac{d \Phi}{d \varepsilon}\right|_{\varepsilon=0}=\left.\int_{x_{1}}^{x_{2}} \frac{d L}{d \varepsilon}\right|_{\varepsilon=0} d x=0$
- Now we can say, $\frac{d L}{d \varepsilon}=\frac{\partial L}{\partial y} \frac{d y}{d \varepsilon}+\frac{\partial L}{\partial y^{\prime}} \frac{d y^{\prime}}{d \varepsilon}$
- As we have $y=f+\varepsilon \eta$ and $y^{\prime}=f^{\prime}+\varepsilon \eta^{\prime}$, therefore, $\frac{d L}{d \varepsilon}$

Calculus of variation

- Let us consider functional $J[y]=\int_{x_{1}}^{x_{2}} L\left(x, y(x), y^{\prime}(x)\right) d x$
- Let $J[y]$ has local minima at f. Therefore, we can say $J[f] \leq J[f+\varepsilon \eta]$
- η is an arbitrary function of \boldsymbol{x} such that $\eta\left(x_{1}\right)=\eta\left(x_{2}\right)=0$ and differentiable
- Let us assume $\Phi(\varepsilon)=J[f+\varepsilon \eta]$. Therefore, $\left.\Phi^{\prime}(0) \equiv \frac{d \Phi}{d \varepsilon}\right|_{\varepsilon=0}=\left.\int_{x_{1}}^{x_{2}} \frac{d L}{d \varepsilon}\right|_{\varepsilon=0} d x=0$
- Now we can say, $\frac{d L}{d \varepsilon}=\frac{\partial L}{\partial y} \frac{d y}{d \varepsilon}+\frac{\partial L}{\partial y^{\prime}} \frac{d y^{\prime}}{d \varepsilon}$
- As we have $y=f+\varepsilon \eta$ and $y^{\prime}=f^{\prime}+\varepsilon \eta^{\prime}$, therefore, $\frac{d L}{d \varepsilon}=\frac{\partial L}{\partial y} \eta+\frac{\partial L}{\partial y^{\prime}} \eta^{\prime}$

Calculus of variation

- Now we have

$$
\left.\int_{x_{1}}^{x_{2}} \frac{d L}{d \varepsilon}\right|_{\varepsilon=0} d x=\int_{x_{1}}^{x_{2}}\left(\frac{\partial L}{\partial f} \eta+\frac{\partial L}{\partial f^{\prime}} \eta^{\prime}\right) d x
$$

Calculus of variation

- Now we have

$$
\left.\int_{x_{1}}^{x_{2}} \frac{d L}{d \varepsilon}\right|_{\varepsilon=0} d x=\int_{x_{1}}^{x_{2}}\left(\frac{\partial L}{\partial f} \eta+\frac{\partial L}{\partial f^{\prime}} \eta^{\prime}\right) d x=\int_{x_{1}}^{x_{2}}\left(\frac{\partial L}{\partial f} \eta-\eta \frac{d}{d x} \frac{\partial L}{\partial f^{\prime}}\right) d x+\left.\frac{\partial L}{\partial f^{\prime}} \eta\right|_{x_{1}} ^{x_{2}}
$$

Calculus of variation

- Now we have

$$
\left.\int_{x_{1}}^{x_{2}} \frac{d L}{d \varepsilon}\right|_{\varepsilon=0} d x=\int_{x_{1}}^{x_{2}}\left(\frac{\partial L}{\partial f} \eta+\frac{\partial L}{\partial f^{\prime}} \eta^{\prime}\right) d x=\int_{x_{1}}^{x_{2}}\left(\frac{\partial L}{\partial f} \eta-\eta \frac{d}{d x} \frac{\partial L}{\partial f^{\prime}}\right) d x+\left.\frac{\partial L}{\partial f^{\prime}} \eta\right|_{x_{1}} ^{x_{2}}
$$

- Hence

$$
\int_{x_{1}}^{x_{2}} \eta\left(\frac{\partial L}{\partial f}-\frac{d}{d x} \frac{\partial L}{\partial f^{\prime}}\right) d x=0
$$

Calculus of variation

- Now we have

$$
\left.\int_{x_{1}}^{x_{2}} \frac{d L}{d \varepsilon}\right|_{\varepsilon=0} d x=\int_{x_{1}}^{x_{2}}\left(\frac{\partial L}{\partial f} \eta+\frac{\partial L}{\partial f^{\prime}} \eta^{\prime}\right) d x=\int_{x_{1}}^{x_{2}}\left(\frac{\partial L}{\partial f} \eta-\eta \frac{d}{d x} \frac{\partial L}{\partial f^{\prime}}\right) d x+\left.\frac{\partial L}{\partial f^{\prime}} \eta\right|_{x_{1}} ^{x_{2}}
$$

- Hence

$$
\int_{x_{1}}^{x_{2}} \eta\left(\frac{\partial L}{\partial f}-\frac{d}{d x} \frac{\partial L}{\partial f^{\prime}}\right) d x=0
$$

- Euler-Lagrange equation

$$
\frac{\partial L}{\partial f}-\frac{d}{d x} \frac{\partial L}{\partial f^{\prime}}=0
$$

Example

- Let us consider distance between two points $A[y]=\int_{x_{1}}^{x_{2}} \sqrt{1+\left[y^{\prime}(x)\right]^{2}} d x$
- $y^{\prime}(x)=\frac{d y}{d x}, \quad y_{1}=f\left(x_{1}\right), \quad y_{2}=f\left(x_{2}\right)$

Example

- Let us consider distance between two points $A[y]=\int_{x_{1}}^{x_{2}} \sqrt{1+\left[y^{\prime}(x)\right]^{2}} d x$
- $y^{\prime}(x)=\frac{d y}{d x}, \quad y_{1}=f\left(x_{1}\right), \quad y_{2}=f\left(x_{2}\right)$
- We have, $\frac{\partial L}{\partial f}-\frac{d}{d x} \frac{\partial L}{\partial f^{\prime}}=0$ where $L=\sqrt{1+\left[f^{\prime}(x)\right]^{2}}$

Example

- Let us consider distance between two points $A[y]=\int_{x_{1}}^{x_{2}} \sqrt{1+\left[y^{\prime}(x)\right]^{2}} d x$
- $y^{\prime}(x)=\frac{d y}{d x}, \quad y_{1}=f\left(x_{1}\right), \quad y_{2}=f\left(x_{2}\right)$
- We have, $\frac{\partial L}{\partial f}-\frac{d}{d x} \frac{\partial L}{\partial f^{\prime}}=0$ where $L=\sqrt{1+\left[f^{\prime}(x)\right]^{2}}$
- As f does not appear explicitly in L, hence $\frac{d}{d x} \frac{\partial L}{\partial f^{\prime}}=0$

Example

- Let us consider distance between two points $A[y]=\int_{x_{1}}^{x_{2}} \sqrt{1+\left[y^{\prime}(x)\right]^{2}} d x$
- $y^{\prime}(x)=\frac{d y}{d x}, \quad y_{1}=f\left(x_{1}\right), \quad y_{2}=f\left(x_{2}\right)$
- We have, $\frac{\partial L}{\partial f}-\frac{d}{d x} \frac{\partial L}{\partial f^{\prime}}=0$ where $L=\sqrt{1+\left[f^{\prime}(x)\right]^{2}}$
- As f does not appear explicitly in L, hence $\frac{d}{d x} \frac{\partial L}{\partial f^{\prime}}=0$
- Now we have, $\frac{d}{d x} \frac{f^{\prime}(x)}{\sqrt{1+\left[f^{\prime}(x)\right]^{2}}}=0$

Example

- Taking derivative we get $\frac{d^{2} f}{d x^{2}} \cdot \frac{1}{\left[\sqrt{1+\left[f^{\prime}(x)\right]^{2}}\right]^{3}}=0$

Example

- Taking derivative we get $\frac{d^{2} f}{d x^{2}} \cdot \frac{1}{\left[\sqrt{1+\left[f^{\prime}(x)\right]^{2}}\right]^{3}}=0$
- Therefore we have, $\frac{d^{2} f}{d x^{2}}=0$

Example

- Taking derivative we get $\frac{d^{2} f}{d x^{2}} \cdot \frac{1}{\left[\sqrt{1+\left[f^{\prime}(x)\right]^{2}}\right]^{3}}=0$
- Therefore we have, $\frac{d^{2} f}{d x^{2}}=0$
- Hence we have $f(x)=m x+b \quad$ with $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad$ and $\quad b=\frac{x_{2} y_{1}-x_{1} y_{2}}{x_{2}-x_{1}}$

Output units

- Choice of cost function is directly related with the choice of output function
- In most cases cost function is determined by cross entropy between data and model distribution
- Any kind of output unit can be used as hidden unit

Linear units

- Suited for Gaussian output distribution
- Given features \boldsymbol{h}, linear output unit produces $\hat{\boldsymbol{y}}=\boldsymbol{W}^{T} \boldsymbol{h}+\boldsymbol{b}$
- This can be treated as conditional probability $p(\boldsymbol{y} \mid \boldsymbol{x})=\mathcal{N}(\boldsymbol{y} ; \hat{\boldsymbol{y}}, \boldsymbol{I})$
- Maximizing log-likelihood is equivalent to minimizing mean square error

Sigmoid unit

- Mostly suited for binary classification problem that is Bernoulli output distribution
- The neural networks need to predict $p(y=1 \mid x)$
- If linear unit has been chosen, $p(y=1 \mid \boldsymbol{x})=\max \left\{0, \min \left\{1, \boldsymbol{W}^{\top} \boldsymbol{h}+\boldsymbol{b}\right\}\right\}$
- Gradient?
- Model should have strong gradient whenever the answer is wrong
- Let us assume unnormalized \log probability is linear with $z=\boldsymbol{W}^{\top} \boldsymbol{h}+\boldsymbol{b}$
- Therefore, $\log \tilde{P}(y)=y z \Rightarrow \tilde{P}(y)=\exp (y z) \Rightarrow P(y)=\frac{\exp (y z)}{\sum_{y^{\prime} \in\{0,1\}} \exp \left(y^{\prime} z\right)}$
- It can be written as $P(y)=\sigma((2 y-1) z))$
- The loss function for maximum likelihood is

$$
J(\theta)=-\log P(y \mid x)=-\log \sigma((2 y-1) z)=\zeta((1-2 y) z)
$$

Softmax unit

- Similar to sigmoid. Mostly suited for multinoulli distribution
- We need to predict a vector \hat{y} such that $\hat{y}_{i}=P(Y=i \mid x)$
- A linear layer predicts unnormalized probabilities $z=\boldsymbol{W}^{T} \boldsymbol{h}+\boldsymbol{b}$ that is $z_{i}=\log \tilde{P}(y=$ $i \mid x)$
- Formally, $\operatorname{softmax}(z)_{i}=\frac{\exp z_{i}}{\sum_{j} \exp \left(z_{j}\right)}$
- Log in log-likelihood can undo exp $\log \operatorname{softmax}(z)_{i}=z_{i}-\log \sum_{j} \exp \left(z_{j}\right)$
- Does it saturate?
- What about incorrect prediction?
- Invariant to addition of some scalar to all input variables ie.
$\operatorname{softmax}(z)=\operatorname{softmax}(z+\boldsymbol{c})$

Hidden units

- Active area of research and does not have good guiding theoretical principle
- Usually rectified linear unit (ReLU) is chosen in most of the cases
- Design process consists of trial and error, then the suitable one is chosen
- Some of the activation functions are not differentiable (eg. ReLU)
- Still gradient descent performs well
- Neural network does not converge to local minima but reduces the value of cost function to a very small value

Generalization of ReLU

- ReLU is defined as $g(z)=\max \{0, z\}$
- Using non-zero slope, $h_{i}=g(z, \boldsymbol{\alpha})_{i}=\max \left(0, z_{i}\right)+\alpha_{i} \min \left(0, z_{i}\right)$
- Absolute value rectification will make $\alpha_{i}=-1$ and $g(z)=|z|$
- Leaky ReLU assumes very small values for α_{i}
- Parametric ReLU tries to learn α_{i} parameters
- Maxout unit $g(z)_{i}=\max _{j \in \mathbb{G}^{(i)}} z_{j}$
- Suitable for learning piecewise linear function

Logistic sigmoid \& hyperbolic tangent

- Logistic sigmoid $g(z)=\sigma(z)$
- Hyperbolic tangent $g(z)=\tanh (z)$
- $\tanh (z)=2 \sigma(2 z)-1$
- Widespread saturation of sigmoidal unit is an issue for gradient based learning
- Usually discouraged to use as hidden units
- Usually, hyperbolic tangent function performs better where sigmoidal function must be used
- Behaves linearly at 0
- Sigmoidal activation function are more common in settings other than feedforward network

Other hidden units

- Differentiable functions are usually preferred
- Activation function $h=\cos (W x+\boldsymbol{b})$ performs well for MNIST data set
- Sometimes no activation function helps in reducing the number of parameters
- Radial Basis Function - $\phi(\boldsymbol{x}, \boldsymbol{c})=\phi(\|x-\boldsymbol{c}\|)$
- Gaussian $-\exp \left(-(\varepsilon r)^{2}\right)$
- Softplus - $g(x)=\zeta(x)=\log (1+\exp (x))$
- Hard tanh $-g(x)=\max (-1, \min (1, x))$
- Hidden unit design is an active area of research

Architecture design

- Structure of neural network (chain based architecture)
- Number of layers
- Number of units in each layer
- Connectivity of those units
- Single hidden layer is sufficient to fit the training data
- Often deeper networks are preferred
- Fewer number of units
- Fewer number of parameters
- Difficult to optimize

Back propagation

- In a feedforward network, an input x is read and produces an output \hat{y}
- This is forward propagation
- During training forward propagation continues until it produces cost $J(\boldsymbol{\theta})$
- Back-propagation algorithm allows the information to flow backward in the network to compute the gradient
- Computation of analytical expression for gradient is easy
- We need to find out gradient of the cost function with respect to the parameters ie. $\nabla_{\theta} J(\theta)$

Computational graph

Chain rule of calculus

- Back-propagation algorithm heavily depends on it
- Let x be a real number and $y=g(x)$ and $z=f(g(x))=f(y)$
- Chain rule says $\frac{d z}{d x}=\frac{d z}{d y} \frac{d y}{d x}$
- This can be generalized: Let $x \in \mathbb{R}^{m}, y \in \mathbb{R}^{n}, g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ and $y=g(x)$ and $z=f(y)$

$$
\frac{\partial z}{\partial x_{i}}=\sum_{j} \frac{\partial z}{\partial y_{j}} \frac{\partial y_{j}}{\partial x_{i}}
$$

- In vector notation it will be where $\frac{\partial y}{\partial x}$ is the $n \times m$ Jacobian matrix of g

$$
\nabla_{x} z=\left(\frac{\partial y}{\partial x}\right)^{T} \nabla_{y} z
$$

Application of chain rule

- Let us consider $u^{(n)}$ be the loss quantity. Need to find out the gradient for this.
- Let $u^{(1)}$ to $u^{\left(n_{i}\right)}$ are the inputs
- Therefore, we wish to compute $\frac{\partial u^{(n)}}{\partial u^{(i)}}$ where $i=1,2, \ldots, n_{i}$
- Let us assume the nodes are ordered so that we can compute one after another
- Each $u^{(i)}$ is associated with an operation $f^{(i)}$ ie. $u^{(i)}=f\left(\mathbb{A}^{(i)}\right)$

Algorithm for forward pass

$$
\begin{aligned}
& \text { for } i=1, \ldots, n_{i} \text { do } \\
& \qquad u^{(i)} \leftarrow x_{i} \\
& \text { end for } \\
& \text { for } i=n_{i}+1, \ldots, n \text { do } \\
& \quad \mathbb{A}^{(i)} \leftarrow\left\{u^{(j)} \mid j \in \operatorname{Pa}\left(u^{(i)}\right)\right\} \\
& \quad u^{(i)} \leftarrow f^{(i)}\left(\mathbb{A}^{(i)}\right) \\
& \text { end for } \\
& \text { return } u^{(n)}
\end{aligned}
$$

Algorithm for backward pass

$$
\begin{aligned}
& \text { grad_table }\left[u^{(i)}\right] \leftarrow 1 \\
& \text { for } j=n-1 \text { down to } 1 \text { do } \\
& \qquad \text { grad_table }\left[u^{(j)}\right] \leftarrow \sum_{i: j \in \operatorname{Pa}\left(u^{(i)}\right)} \text { grad_table }\left[u^{(i)}\right] \frac{\partial u^{(i)}}{\partial u^{(j)}} \\
& \text { end for } \\
& \text { return grad_table }
\end{aligned}
$$

Computational graph \& subexpression

- We have $x=f(w), y=f(x), z=f(y)$

$$
\begin{aligned}
& \frac{\partial z}{\partial w} \\
= & \frac{\partial z}{\partial y} \frac{\partial y}{\partial x} \frac{\partial x}{\partial w} \\
= & f^{\prime}(y) f^{\prime}(x) f^{\prime}(w) \\
= & f^{\prime}(f(f(w))) f^{\prime}(f(w)) f^{\prime}(w)
\end{aligned}
$$

Forward propagation in MLP

- Input
- $\boldsymbol{h}^{(0)}=\boldsymbol{x}$
- Computation for each layer $k=1, \ldots, l$
- $\boldsymbol{a}^{(k)}=\boldsymbol{b}^{(k)}+\boldsymbol{W}^{(k)} \boldsymbol{h}^{(k-1)}$
- $\boldsymbol{h}^{(k)}=f\left(\boldsymbol{a}^{(k)}\right)$
- Computation of output and loss function
- $\hat{\boldsymbol{y}}=\boldsymbol{h}^{(I)}$
- $\boldsymbol{J}=L(\hat{\boldsymbol{y}}, \boldsymbol{y})+\lambda \Omega(\theta)$

Backward computation in MLP

- Compute gradient at the output
- $\boldsymbol{g} \leftarrow \nabla_{\hat{\boldsymbol{y}}} J=\nabla_{\hat{\boldsymbol{y}}} L(\hat{\boldsymbol{y}}, \boldsymbol{y})$
- Convert the gradient at output layer into gradient of pre-activation
- $\boldsymbol{g} \leftarrow \nabla_{\boldsymbol{a}^{(k)}} J=\boldsymbol{g} \odot f^{\prime}\left(\boldsymbol{a}^{(k)}\right)$
- Compute gradient on weights and biases
- $\nabla_{\boldsymbol{b}^{(k)}} J=\boldsymbol{g}+\lambda \nabla_{\boldsymbol{b}^{(k)}} \Omega(\theta)$
- $\nabla_{\boldsymbol{W}^{(k)}} J=\boldsymbol{g} \boldsymbol{h}^{(k-1) T}+\lambda \nabla_{\boldsymbol{W}^{(k)}} \Omega(\theta)$
- Propagate the gradients wrt the next lower level activation
- $g \leftarrow \nabla_{\boldsymbol{h}^{(k-1)}} J=\boldsymbol{W}^{(k) T} \boldsymbol{g}$

Example

Example

