Introduction to Deep Learning

Arijit Mondal
Dept. of Computer Science \& Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

Feature Engineering

Machine Learning

- A form of applied statistics with
- Increased emphasis on the use of computers to statistically estimate complicated function
- Decreased emphasis on proving confidence intervals around these functions
- Two primary approaches
- Frequentist estimators
- Bayesian inference

Types of Machine Learning Problems

- Supervised
- Unsupervised
- Other variants
- Reinforcement learning
- Semi-supervised

Learning algorithm

- A ML algorithm is an algorithm that is able to learn from data
- Mitchelle (1997)
- A computer program is said to learn from experience E with respect to some class of task T and performance measure P, if its performance at task in T as measured by P, improves with experience E .

Task

- A ML tasks are usually described in terms of how ML system should process an example
- Example is a collection of features that have been quantitatively measured from some objects or events that we want the learning system process
- Represented as $\boldsymbol{x} \in \mathbb{R}^{n}$ where x_{i} is a feature
- Feature of an image - pixel values

Common ML Task

- Classification
- Need to predict which of the k categories some input belong to
- Need to have a function $f: \mathbb{R}^{n} \rightarrow\{1,2, \ldots, k\}$
- $y=f(\boldsymbol{x})$ input \boldsymbol{x} is assigned category identified by y
- Examples
- Object identification
- Face recognition
- Regression
- Need to predict numeric value for some given input
- Need to have a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
- Examples
- Energy consumption
- Amount of insurance claim

Common ML Task (contd.)

- Classification with missing inputs
- Need to have a set of functions
- Each function corresponds to classifying \boldsymbol{x} with different subset of inputs missing
- Examples
- Medical diagnosis (expensive or invasive)

Common ML Task (contd.)

- Classification with missing inputs
- Need to have a set of functions
- Each function corresponds to classifying \boldsymbol{x} with different subset of inputs missing
- Examples
- Medical diagnosis (expensive or invasive)
- Transcription
- Need to convert relatively unstructured data into discrete, textual form
- Optical character recognition
- Speech recognition

Common ML Task (contd.)

- Classification with missing inputs
- Need to have a set of functions
- Each function corresponds to classifying \boldsymbol{x} with different subset of inputs missing
- Examples
- Medical diagnosis (expensive or invasive)
- Transcription
- Need to convert relatively unstructured data into discrete, textual form
- Optical character recognition
- Speech recognition
- Machine translation
- Conversion of sequence of symbols in one language to some other language
- Natural language processing (English to Spanish conversion)

Common ML Task (contd.)

- Structured output
- Output is a vector with important relationship between the different elements
- Mapping natural language sentence into a tree that describes grammatical structure
- Pixel based image segmentation (eg. identify roads)

Common ML Task (contd.)

- Structured output
- Output is a vector with important relationship between the different elements
- Mapping natural language sentence into a tree that describes grammatical structure - Pixel based image segmentation (eg. identify roads)
- Anamoly detection
- Observes a set of events or objects and flags if some of them are unusual
- Fraud detection in credit card

Common ML Task (contd.)

- Structured output
- Output is a vector with important relationship between the different elements
- Mapping natural language sentence into a tree that describes grammatical structure
- Pixel based image segmentation (eg. identify roads)
- Anamoly detection
- Observes a set of events or objects and flags if some of them are unusual
- Fraud detection in credit card
- Synthesis and sampling
- Generate new example similar to past examples
- Useful for media application
- Text to speech

Performance measure

- Accuracy is one of the key measures
- The proportion of examples for which the model produces correct outputs
- Similar to error rate
- Error rate often referred as expected 0-1 loss
- Mostly interested how ML algorithm performs on unseen data
- Choice of performance measure may not be straight forward
- Transcription
- Accuracy of the system at transcribing entire sequence
- Any partial credit for some elements of the sequence are correct

Experience

- Kind of experience allowed during learning process
- Supervised
- Unsupervised

Supervised learning

- Allowed to use labeled dataset
- Example - Iris
- Collection of measurements of different parts of Iris plant
- Each plant means each example
- Features
- Sepal length/width, petal length/width
- Also record which species the plant belong to

Supervised learning (contd.)

- A set of labeled examples $\left\langle x_{1}, x_{2}, \ldots, x_{n}, y\right\rangle$
- x_{i} are input variables
- y output variable
- Need to find a function $f: X_{1} \times X_{2} \times \ldots X_{n} \rightarrow Y$
- Goal is to minimize error/loss function
- Like to minimize over all dataset
- We have limited dataset

Unsupervised learning

- Learns useful properties of the structure of data set
- Unlabeled data
- Tries to learn entire probability distribution that generated the dataset
- Examples
- Clustering, dimensionality reduction

Supervised vs Unsupervised learning

- Unsupervised attempts to learn implicitly or explicitly probability distribution of $p(x)$
- Supervised tries to predict y from x ie. $p(y \mid x)$

Supervised vs Unsupervised learning

- Unsupervised attempts to learn implicitly or explicitly probability distribution of $p(x)$
- Supervised tries to predict y from x ie. $p(y \mid x)$
- Unsupervised learning can be decomposed as supervised learning

$$
p(x)=\prod_{i=1}^{n} p\left(x_{i} \mid x_{1}, x_{2}, \ldots, x_{i-1}\right)
$$

Supervised vs Unsupervised learning

- Unsupervised attempts to learn implicitly or explicitly probability distribution of $p(x)$
- Supervised tries to predict y from x ie. $p(y \mid x)$
- Unsupervised learning can be decomposed as supervised learning

$$
p(x)=\prod_{i=1}^{n} p\left(x_{i} \mid x_{1}, x_{2}, \ldots, x_{i-1}\right)
$$

- Solving supervised learning using traditional unsupervised learning

$$
p(y \mid x)=\frac{p(x, y)}{\sum_{y^{\prime}} p\left(x, y^{\prime}\right)}
$$

Linear regression

- Prediction of the value of a continuous variable
- Example - price of a house, solar power generation in photo-voltaic cell, etc.

Linear regression

- Prediction of the value of a continuous variable
- Example - price of a house, solar power generation in photo-voltaic cell, etc.
- Takes a vector $x \in \mathbb{R}^{n}$ and predict scalar $y \in \mathbb{R}$
- Predicted value will be represented as $\hat{y}=\boldsymbol{w}^{\top} \boldsymbol{x}$ where \boldsymbol{w} is a vector of parameters
- x_{i} receives positive weight - Increasing the value of the feature will increase the value of y
- x_{i} receives negative weight - Increasing the value of the feature will decrease the value of y
- Weight value is very high/large - Large effect on prediction

Performance

- Assume, we have m examples not used for training
- This is known as test set

Performance

- Assume, we have m examples not used for training
- This is known as test set
- Design matrix of inputs is $\boldsymbol{X}^{\text {(test) }}$ and target output is a vector $\boldsymbol{y}^{(\text {test })}$
- Performance is measured by Mean Square Error (MSE)

$$
\mathrm{MSE}_{(\text {test })}=\frac{1}{m} \sum_{i}\left(\hat{\boldsymbol{y}}^{(\text {test })}-\boldsymbol{y}^{(\text {test })}\right)_{i}^{2}=\frac{1}{m}\left\|\hat{\boldsymbol{y}}^{(\text {test })}-\boldsymbol{y}^{(\text {test })}\right\|_{2}^{2}
$$

- Error increases when the Euclidean distance between target and prediction increases

Performance

- Assume, we have m examples not used for training
- This is known as test set
- Design matrix of inputs is $\boldsymbol{X}^{\text {(test) }}$ and target output is a vector $\boldsymbol{y}^{(\text {test })}$
- Performance is measured by Mean Square Error (MSE)

$$
\mathrm{MSE}_{(\text {test })}=\frac{1}{m} \sum_{i}\left(\hat{\boldsymbol{y}}^{(\text {test })}-\boldsymbol{y}^{(\text {test })}\right)_{i}^{2}=\frac{1}{m}\left\|\hat{\boldsymbol{y}}^{(\text {test })}-\boldsymbol{y}^{(\text {test })}\right\|_{2}^{2}
$$

- Error increases when the Euclidean distance between target and prediction increases
- The learning algorithm is allowed to gain experience from training set $\left(\boldsymbol{X}^{(\text {train })}, \boldsymbol{y}^{(\text {train })}\right)$
- One of the common ideas is to minimize $\mathrm{MSE}_{(\text {train })}$ for training set

Minimization of MSE

- We have the following now

$$
\nabla_{w} \mathrm{MSE}_{(\text {train })}=0
$$

Minimization of MSE

- We have the following now

$$
\begin{aligned}
& \nabla_{w} \mathrm{MSE}_{(\text {train }}=0 \\
\Rightarrow & \nabla_{w} \frac{1}{m}\left\|\hat{\boldsymbol{y}}^{\text {(train) }}-\boldsymbol{y}^{(\text {train })}\right\|_{2}^{2}=0
\end{aligned}
$$

Minimization of MSE

- We have the following now

$$
\begin{aligned}
& \nabla_{w} \mathrm{MSE}_{(\text {train })}=0 \\
\Rightarrow & \nabla_{w} \frac{1}{m}\left\|\hat{\boldsymbol{y}}^{(\text {train })}-\boldsymbol{y}^{(\text {train })}\right\|_{2}^{2}=0 \\
\Rightarrow & \frac{1}{m} \nabla_{w}\left\|\boldsymbol{X}^{(\text {train })} \boldsymbol{w}-\boldsymbol{y}^{(\text {train })}\right\|_{2}^{2}=0
\end{aligned}
$$

Minimization of MSE

- We have the following now

$$
\begin{aligned}
& \nabla_{w} \mathrm{MSE}_{(\text {train }}=0 \\
\Rightarrow & \nabla_{w} \frac{1}{m}\left\|\hat{\boldsymbol{y}}^{(\text {train })}-\boldsymbol{y}^{(\text {train })}\right\|_{2}^{2}=0 \\
\Rightarrow & \frac{1}{m} \nabla_{w}\left\|\boldsymbol{X}^{(\text {train })} \boldsymbol{w}-\boldsymbol{y}^{(\text {train })}\right\|_{2}^{2}=0 \\
\Rightarrow & \nabla_{w}\left(\boldsymbol{X}^{(\text {train })} \boldsymbol{w}-\boldsymbol{y}^{(\text {train })}\right)^{T}\left(\boldsymbol{X}^{(\text {train })} \boldsymbol{w}-\boldsymbol{y}^{(\text {train })}\right)=0
\end{aligned}
$$

Minimization of MSE

- We have the following now

$$
\begin{aligned}
& \nabla_{w} \mathrm{MSE}_{(\text {train }}=0 \\
\Rightarrow & \nabla_{w} \frac{1}{m}\left\|\hat{\boldsymbol{y}}^{(\text {train })}-\boldsymbol{y}^{(\text {train })}\right\|_{2}^{2}=0 \\
\Rightarrow & \frac{1}{m} \nabla_{w}\left\|\boldsymbol{X}^{(\text {train })} w-\boldsymbol{y}^{(\text {train })}\right\|_{2}^{2}=0 \\
\Rightarrow & \nabla_{w}\left(\boldsymbol{X}^{(\text {train })} w-\boldsymbol{y}^{(\text {train })}\right)^{T}\left(\boldsymbol{X}^{(\text {train })} \boldsymbol{w}-\boldsymbol{y}^{(\text {train })}\right)=0 \\
\Rightarrow & \nabla_{w}\left(\boldsymbol{w}^{T} \boldsymbol{X}^{(\text {train }) T} \boldsymbol{X}^{(\text {train })} \boldsymbol{w}-2 \boldsymbol{w}^{T} \boldsymbol{X}^{(\text {train }) T} \boldsymbol{y}^{(\text {train })}-\boldsymbol{y}^{(\text {train }) T} \boldsymbol{y}^{(\text {train })}\right)=0
\end{aligned}
$$

Minimization of MSE

- We have the following now

$$
\begin{aligned}
& \nabla_{w} \mathrm{MSE}_{(\text {train })}=0 \\
\Rightarrow & \nabla_{w} \frac{1}{m}\left\|\hat{\boldsymbol{y}}^{(\text {train })}-\boldsymbol{y}^{(\text {train })}\right\|_{2}^{2}=0 \\
\Rightarrow & \frac{1}{m} \nabla_{w}\left\|\boldsymbol{X}^{(\text {train })} \boldsymbol{w}-\boldsymbol{y}^{(\text {train })}\right\|_{2}^{2}=0 \\
\Rightarrow & \nabla_{w}\left(\boldsymbol{X}^{\text {(train) }} \boldsymbol{w}-\boldsymbol{y}^{(\text {train })}\right)^{T}\left(\boldsymbol{X}^{(\text {train })} \boldsymbol{w}-\boldsymbol{y}^{(\text {train })}\right)=0 \\
\Rightarrow & \nabla_{w}\left(\boldsymbol{w}^{T} \boldsymbol{X}^{(\text {train }) T} \boldsymbol{X}^{(\text {train })} \boldsymbol{w}-2 \boldsymbol{w}^{T} \boldsymbol{X}^{(\text {train }) T} \boldsymbol{y}^{(\text {train })}-\boldsymbol{y}^{(\text {train }) T} \boldsymbol{y}^{(\text {train })}\right)=0 \\
\Rightarrow & 2 \boldsymbol{X}^{(\text {train }) T} \boldsymbol{X}^{(\text {train })} \boldsymbol{w}-2 \boldsymbol{X}^{(\text {train }) T} \boldsymbol{y}^{\text {(train })}=0
\end{aligned}
$$

Minimization of MSE

- We have the following now

$$
\begin{aligned}
& \nabla_{w} \mathrm{MSE}_{(\text {train })}=0 \\
\Rightarrow & \nabla_{w} \frac{1}{m}\left\|\hat{\boldsymbol{y}}^{(\text {train })}-\boldsymbol{y}^{(\text {train })}\right\|_{2}^{2}=0 \\
\Rightarrow & \frac{1}{m} \nabla_{w}\left\|\boldsymbol{X}^{(\text {train })} \boldsymbol{w}-\boldsymbol{y}^{(\text {train })}\right\|_{2}^{2}=0 \\
\Rightarrow & \nabla_{w}\left(\boldsymbol{X}^{\text {(train) } w} \boldsymbol{w}-\boldsymbol{y}^{(\text {train })}\right)^{T}\left(\boldsymbol{X}^{(\text {train })} \boldsymbol{w}-\boldsymbol{y}^{(\text {train })}\right)=0 \\
\Rightarrow & \nabla_{w}\left(\boldsymbol{w}^{T} \boldsymbol{X}^{(\text {train }) T} \boldsymbol{X}^{(\text {train })} \boldsymbol{w}-2 \boldsymbol{w}^{T} \boldsymbol{X}^{(\text {train }) T} \boldsymbol{y}^{(\text {train })}-\boldsymbol{y}^{(\text {train }) T} \boldsymbol{y}^{(\text {train })}\right)=0 \\
\Rightarrow & 2 \boldsymbol{X}^{(\text {train }) T} \boldsymbol{X}^{(\text {train })} \boldsymbol{w}-2 \boldsymbol{X}^{(\text {train }) T} \boldsymbol{y}^{\text {(train })}=0 \\
\Rightarrow & \boldsymbol{w}=\left(\boldsymbol{X}^{(\text {train }) T} \boldsymbol{X}^{(\text {train })}\right)^{-1} \boldsymbol{X}^{(\text {train })} \boldsymbol{y}^{(\text {train })}
\end{aligned}
$$

Minimization of MSE

- We have the following now

$$
\begin{aligned}
& \nabla_{w} \mathrm{MSE}_{(\text {train })}=0 \\
\Rightarrow & \nabla_{w} \frac{1}{m}\left\|\hat{\boldsymbol{y}}^{(\text {train })}-\boldsymbol{y}^{(\text {train })}\right\|_{2}^{2}=0 \\
\Rightarrow & \frac{1}{m} \nabla_{w}\left\|\boldsymbol{X}^{(\text {train })} w-\boldsymbol{y}^{(\text {train })}\right\|_{2}^{2}=0 \\
\Rightarrow & \nabla_{w}\left(\boldsymbol{X}^{\text {(train) }} \boldsymbol{w}-\boldsymbol{y}^{(\text {train })}\right)^{T}\left(\boldsymbol{X}^{(\text {train })} \boldsymbol{w}-\boldsymbol{y}^{(\text {train })}\right)=0 \\
\Rightarrow & \nabla_{w}\left(\boldsymbol{w}^{T} \boldsymbol{X}^{(\text {train }) T} \boldsymbol{X}^{(\text {train })} \boldsymbol{w}-2 \boldsymbol{w}^{T} \boldsymbol{X}^{(\text {train }) T} \boldsymbol{y}^{(\text {train })}-\boldsymbol{y}^{(\text {train }) T} \boldsymbol{y}^{(\text {train })}\right)=0 \\
\Rightarrow & 2 \boldsymbol{X}^{(\text {train }) T} \boldsymbol{X}^{(\text {train })} \boldsymbol{w}-2 \boldsymbol{X}^{(\text {train }) T} \boldsymbol{y}^{(\text {train })}=0 \\
\Rightarrow & w=\left(\boldsymbol{X}^{(\text {train }) T} \boldsymbol{X}^{(\text {train })}\right)^{-1} \boldsymbol{X}^{(\text {train })} \boldsymbol{y}^{(\text {train })}
\end{aligned}
$$

- Linear regression with bias term

$$
\hat{y}=\left[\begin{array}{ll}
w^{T} & w_{0}
\end{array}\right]\left[\begin{array}{ll}
x & 1
\end{array}\right]^{T}
$$

Moore-Penrose Pseudoinverse

- Let $A \in \mathbb{R}^{n \times m}$
- Every \boldsymbol{A} has pseudoinverse $\boldsymbol{A}^{+} \in \mathbb{R}^{m \times n}$ and it is unique
- $A A^{+} A=A$
- $\boldsymbol{A}^{+} \boldsymbol{A} \boldsymbol{A}^{+}=\boldsymbol{A}^{+}$
- $\left(\boldsymbol{A} \boldsymbol{A}^{+}\right)^{T}=\boldsymbol{A} \boldsymbol{A}^{+}$
- $\left(\boldsymbol{A}^{+} \boldsymbol{A}\right)^{T}=\boldsymbol{A}^{+} \boldsymbol{A}$
- $A^{+}=\left(A^{T} A\right)^{-1} A^{T}$
- Example
- If $\boldsymbol{A}=\left[\begin{array}{ll}1 & 2\end{array}\right]^{T}$ then $\boldsymbol{A}^{+}=\left[\begin{array}{ll}\frac{1}{5} & \frac{2}{5}\end{array}\right]$
- If $\boldsymbol{A}=\left[\begin{array}{ll}1 & 2 \\ 2 & 1 \\ 1 & 5\end{array}\right]$ then $\boldsymbol{A}^{+}=\left[\begin{array}{ccc}0.121212 & 0.515152 & -0.151515 \\ 0.030303 & -0.121212 & 0.212121\end{array}\right]$

Regression example

Regression example

Minimization of MSE: Gradient descent

- Assuming $\mathrm{MSE}_{(\text {train })}=J\left(w_{1}, w_{2}\right)$
- Target is to $\min _{w_{1}, w_{2}} J\left(w_{1}, w_{2}\right)$
- Approach
- Start with some w_{1}, w_{2}
- Keep modifying w_{1}, w_{2} so that $J\left(w_{1}, w_{2}\right)$ reduces till the desired accuracy is achieved

Minimization of MSE: Gradient descent

- Assuming $\mathrm{MSE}_{(\text {train })}=J\left(w_{1}, w_{2}\right)$
- Target is to $\min _{w_{1}, w_{2}} J\left(w_{1}, w_{2}\right)$
- Approach
- Start with some w_{1}, w_{2}
- Keep modifying w_{1}, w_{2} so that $J\left(w_{1}, w_{2}\right)$ reduces till the desired accuracy is achieved
- Algorithm
- Repeat the following until convergence

$$
w_{j}=w_{j}-\frac{\partial}{\partial w_{j}} J\left(w_{1}, w_{2}\right)
$$

Example

Example

Example

Error

- Training error - Error obtained on a training set
- Generalization error - Error on unseen data
- Data assumed to be independent and identically distributed (iid)
- Each data set are independent of each other
- Train and test data are identically distributed
- Expected training and test error will be the same
- It is more likely that the test error is greater than or equal to the expected value of training error
- Target is to make the training error is small. Also, to make the gap between training and test error smaller

Regression example

Regression example: degree 1

Regression example: degree 2

Regression example: degree 3

Regression example: degree 4

Regression example: degree 5

Regression example: degree 6

Underfitting \& Overfitting

- Underfitting
- When the model is not able to obtain sufficiently low error value on the training set
- Overfitting
- When the gap between training set and test set error is too large

Example

Underfitting example

Overfitting example

Better fit

Capacity

- Ability to fit wide variety of functions
- Low capacity will struggle to fit the training set
- High capacity will can overfit by memorizing the training set
- Capacity can be controlled by choosing hypothesis space
- A polynomial of degree 1 gives linear regression $\hat{y}=b+w x$
- By adding x^{2} term, it can learn quadratic curve $\hat{y}=b+w_{1} x+w_{2} x^{2}$
- Output is still a linear function of parameters
- Capacity of is determined by the choice of model (Representational capacity)
- Finding best function is very difficult optimization problem
- Learning algorithm does not find the best function but reduces the training error
- Imperfection in optimization algorithm can further reduce the capacity of model (effective capacity)

Capacity (contd.)

- Occam's razor
- Among equally well hypotheses, choose the simplest one
- Vapnik-Chervonenski dimension - Capacity for binary classifier
- Largest possible value of m for which a training set of m different x point that the classifier can label arbitrarily
- Training and test error is bounded from above by a quantity that grows as model capacity grows but shrinks as the number of training example increases
- Bounds are usually provided for ML algorithm and rarely provided for DL
- Capacity of deep learning model is difficult as the effective capacity is limited by optimization algorithm
- Little knowledge on non-convex optimization

