Introduction to Deep Learning

Arijit Mondal

Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

Feature Engineering

Machine Learning

- A form of applied statistics with
 - Increased emphasis on the use of computers to statistically estimate complicated function
 - Decreased emphasis on proving confidence intervals around these functions
- Two primary approaches
 - Frequentist estimators
 - Bayesian inference

Types of Machine Learning Problems

- Supervised
- Unsupervised
- Other variants
 - Reinforcement learning
 - Semi-supervised

Learning algorithm

- A ML algorithm is an algorithm that is able to learn from data
- Mitchelle (1997)
 - A computer program is said to learn from experience E with respect to some class of task T and performance measure P, if its performance at task in T as measured by P, improves with experience E.

Task

- A ML tasks are usually described in terms of how ML system should process an example
 - Example is a collection of features that have been quantitatively measured from some objects or events that we want the learning system process
 - Represented as $\mathbf{x} \in \mathbb{R}^n$ where x_i is a feature
 - Feature of an image pixel values

Common ML Task

- Classification
 - Need to predict which of the k categories some input belong to
 - Need to have a function $f: \mathbb{R}^n \to \{1, 2, \dots, k\}$
 - y = f(x) input x is assigned category identified by y
 - Examples
 - Object identification
 - Face recognition
- Regression
 - Need to predict numeric value for some given input
 - Need to have a function $f : \mathbb{R}^n \to \mathbb{R}$
 - Examples
 - Energy consumption
 - Amount of insurance claim

- Classification with missing inputs
 - Need to have a set of functions
 - Each function corresponds to classifying x with different subset of inputs missing
 - Examples
 - Medical diagnosis (expensive or invasive)

- Classification with missing inputs
 - Need to have a set of functions
 - Each function corresponds to classifying x with different subset of inputs missing
 - Examples
 - Medical diagnosis (expensive or invasive)
- Transcription
 - Need to convert relatively unstructured data into discrete, textual form
 - Optical character recognition
 - Speech recognition

- Classification with missing inputs
 - Need to have a set of functions
 - Each function corresponds to classifying x with different subset of inputs missing
 - Examples
 - Medical diagnosis (expensive or invasive)
- Transcription
 - Need to convert relatively unstructured data into discrete, textual form
 - Optical character recognition
 - Speech recognition
- Machine translation
 - Conversion of sequence of symbols in one language to some other language
 - Natural language processing (English to Spanish conversion)

- Structured output
 - Output is a vector with important relationship between the different elements
 - Mapping natural language sentence into a tree that describes grammatical structure
 - Pixel based image segmentation (eg. identify roads)

- Structured output
 - Output is a vector with important relationship between the different elements
 - Mapping natural language sentence into a tree that describes grammatical structure
 - Pixel based image segmentation (eg. identify roads)
- Anamoly detection
 - Observes a set of events or objects and flags if some of them are unusual
 - Fraud detection in credit card

- Structured output
 - Output is a vector with important relationship between the different elements
 - Mapping natural language sentence into a tree that describes grammatical structure
 - Pixel based image segmentation (eg. identify roads)
- Anamoly detection
 - Observes a set of events or objects and flags if some of them are unusual
 - Fraud detection in credit card
- Synthesis and sampling
 - Generate new example similar to past examples
 - Useful for media application
 - Text to speech

Performance measure

- Accuracy is one of the key measures
 - The proportion of examples for which the model produces correct outputs
 - Similar to error rate
 - Error rate often referred as expected 0-1 loss
- Mostly interested how ML algorithm performs on unseen data
- Choice of performance measure may not be straight forward
 - Transcription
 - Accuracy of the system at transcribing entire sequence
 - Any partial credit for some elements of the sequence are correct

Experience

- Kind of experience allowed during learning process
 - Supervised
 - Unsupervised

Supervised learning

- Allowed to use labeled dataset
- Example Iris
 - Collection of measurements of different parts of Iris plant
 - Each plant means each example
 - Features
 - Sepal length/width, petal length/width
 - Also record which species the plant belong to

Supervised learning (contd.)

- A set of labeled examples $\langle x_1, x_2, \ldots, x_n, y \rangle$
 - x_i are input variables
 - y output variable
- Need to find a function $f: X_1 \times X_2 \times \ldots X_n \to Y$
- Goal is to minimize error/loss function
 - Like to minimize over all dataset
 - We have limited dataset

Unsupervised learning

- Learns useful properties of the structure of data set
- Unlabeled data
 - Tries to learn entire probability distribution that generated the dataset
 - Examples
 - Clustering, dimensionality reduction

Supervised vs Unsupervised learning

- Unsupervised attempts to learn implicitly or explicitly probability distribution of p(x)
- Supervised tries to predict y from x ie. p(y|x)

Supervised vs Unsupervised learning

- Unsupervised attempts to learn implicitly or explicitly probability distribution of p(x)
- Supervised tries to predict y from x ie. p(y|x)
- Unsupervised learning can be decomposed as supervised learning

$$p(\mathbf{x}) = \prod_{i=1}^{n} p(x_i | x_1, x_2, \dots, x_{i-1})$$

Supervised vs Unsupervised learning

- Unsupervised attempts to learn implicitly or explicitly probability distribution of p(x)
- Supervised tries to predict y from x ie. p(y|x)
- Unsupervised learning can be decomposed as supervised learning

$$p(\mathbf{x}) = \prod_{i=1}^{n} p(x_i | x_1, x_2, \dots, x_{i-1})$$

Solving supervised learning using traditional unsupervised learning

$$p(y|x) = \frac{p(x,y)}{\sum_{y'} p(x,y')}$$

Linear regression

- Prediction of the value of a continuous variable
 - Example price of a house, solar power generation in photo-voltaic cell, etc.

Linear regression

- Prediction of the value of a continuous variable
 - Example price of a house, solar power generation in photo-voltaic cell, etc.
- Takes a vector $x \in \mathbb{R}^n$ and predict scalar $y \in \mathbb{R}$
 - Predicted value will be represented as $\hat{y} = w^T x$ where w is a vector of parameters
 - x_i receives positive weight Increasing the value of the feature will increase the value of y
 - x_i receives negative weight Increasing the value of the feature will decrease the value of y
 - Weight value is very high/large Large effect on prediction

Performance

- Assume, we have *m* examples not used for training
 - This is known as test set

Performance

- Assume, we have *m* examples not used for training
 - This is known as test set
- Design matrix of inputs is $X^{(\text{test})}$ and target output is a vector $y^{(\text{test})}$
 - Performance is measured by Mean Square Error (MSE)

$$\mathsf{MSE}_{(\mathsf{test})} = \frac{1}{m} \sum_{i} \left(\hat{\boldsymbol{y}}^{(\mathsf{test})} - \boldsymbol{y}^{(\mathsf{test})} \right)_{i}^{2} = \frac{1}{m} \| \hat{\boldsymbol{y}}^{(\mathsf{test})} - \boldsymbol{y}^{(\mathsf{test})} \|_{2}^{2}$$

• Error increases when the Euclidean distance between target and prediction increases

Performance

- Assume, we have *m* examples not used for training
 - This is known as test set
- Design matrix of inputs is $X^{(\text{test})}$ and target output is a vector $y^{(\text{test})}$
 - Performance is measured by Mean Square Error (MSE)

$$\mathsf{MSE}_{(\mathsf{test})} = \frac{1}{m} \sum_{i} \left(\hat{\boldsymbol{y}}^{(\mathsf{test})} - \boldsymbol{y}^{(\mathsf{test})} \right)_{i}^{2} = \frac{1}{m} \| \hat{\boldsymbol{y}}^{(\mathsf{test})} - \boldsymbol{y}^{(\mathsf{test})} \|_{2}^{2}$$

- Error increases when the Euclidean distance between target and prediction increases
- The learning algorithm is allowed to gain experience from training set $(X^{(train)}, y^{(train)})$
- One of the common ideas is to minimize MSE_(train) for training set

• We have the following now

 $\nabla_w\mathsf{MSE}_{(\mathsf{train})}=0$

• We have the following now

 $\begin{aligned} \nabla_{w}\mathsf{MSE}_{(\mathsf{train})} &= 0 \\ \Rightarrow \quad \nabla_{w} \frac{1}{m} \| \hat{\boldsymbol{y}}^{(\mathsf{train})} - \boldsymbol{y}^{(\mathsf{train})} \|_{2}^{2} &= 0 \end{aligned}$

$$\nabla_{w} \mathsf{MSE}_{(\mathsf{train})} = 0$$

$$\Rightarrow \quad \nabla_{w} \frac{1}{m} \| \hat{y}^{(\mathsf{train})} - y^{(\mathsf{train})} \|_{2}^{2} = 0$$

$$\Rightarrow \quad \frac{1}{m} \nabla_{w} \| \boldsymbol{X}^{(\mathsf{train})} \boldsymbol{w} - y^{(\mathsf{train})} \|_{2}^{2} = 0$$

$$\nabla_{w} \mathsf{MSE}_{(\mathsf{train})} = 0$$

$$\Rightarrow \quad \nabla_{w} \frac{1}{m} \| \hat{y}^{(\mathsf{train})} - y^{(\mathsf{train})} \|_{2}^{2} = 0$$

$$\Rightarrow \quad \frac{1}{m} \nabla_{w} \| \mathbf{X}^{(\mathsf{train})} \mathbf{w} - y^{(\mathsf{train})} \|_{2}^{2} = 0$$

$$\Rightarrow \quad \nabla_{w} (\mathbf{X}^{(\mathsf{train})} \mathbf{w} - y^{(\mathsf{train})})^{T} (\mathbf{X}^{(\mathsf{train})} \mathbf{w} - y^{(\mathsf{train})}) = 0$$

$$\nabla_{w} \mathsf{MSE}_{(\mathsf{train})} = 0$$

$$\Rightarrow \quad \nabla_{w} \frac{1}{m} \| \hat{y}^{(\mathsf{train})} - y^{(\mathsf{train})} \|_{2}^{2} = 0$$

$$\Rightarrow \quad \frac{1}{m} \nabla_{w} \| \boldsymbol{X}^{(\mathsf{train})} \boldsymbol{w} - y^{(\mathsf{train})} \|_{2}^{2} = 0$$

$$\Rightarrow \quad \nabla_{w} (\boldsymbol{X}^{(\mathsf{train})} \boldsymbol{w} - y^{(\mathsf{train})})^{T} (\boldsymbol{X}^{(\mathsf{train})} \boldsymbol{w} - y^{(\mathsf{train})}) = 0$$

$$\Rightarrow \quad \nabla_{w} (\boldsymbol{w}^{T} \boldsymbol{X}^{(\mathsf{train})T} \boldsymbol{X}^{(\mathsf{train})} \boldsymbol{w} - 2 \boldsymbol{w}^{T} \boldsymbol{X}^{(\mathsf{train})T} y^{(\mathsf{train})T} y^{(\mathsf{train})T}) = 0$$

$$\nabla_{w} \mathsf{MSE}_{(\mathrm{train})} = 0$$

$$\Rightarrow \quad \nabla_{w} \frac{1}{m} \| \hat{y}^{(\mathrm{train})} - y^{(\mathrm{train})} \|_{2}^{2} = 0$$

$$\Rightarrow \quad \frac{1}{m} \nabla_{w} \| \mathbf{X}^{(\mathrm{train})} \mathbf{w} - y^{(\mathrm{train})} \|_{2}^{2} = 0$$

$$\Rightarrow \quad \nabla_{w} (\mathbf{X}^{(\mathrm{train})} \mathbf{w} - y^{(\mathrm{train})})^{T} (\mathbf{X}^{(\mathrm{train})} \mathbf{w} - y^{(\mathrm{train})}) = 0$$

$$\Rightarrow \quad \nabla_{w} (\mathbf{w}^{T} \mathbf{X}^{(\mathrm{train})T} \mathbf{X}^{(\mathrm{train})} \mathbf{w} - 2\mathbf{w}^{T} \mathbf{X}^{(\mathrm{train})T} y^{(\mathrm{train})T} y^{(\mathrm{train})T}) = 0$$

$$\Rightarrow \quad 2\mathbf{X}^{(\mathrm{train})T} \mathbf{X}^{(\mathrm{train})} \mathbf{w} - 2\mathbf{X}^{(\mathrm{train})T} y^{(\mathrm{train})} = 0$$

$$\nabla_{w} \mathsf{MSE}_{(train)} = 0$$

$$\Rightarrow \quad \nabla_{w} \frac{1}{m} \| \hat{y}^{(train)} - y^{(train)} \|_{2}^{2} = 0$$

$$\Rightarrow \quad \frac{1}{m} \nabla_{w} \| X^{(train)} w - y^{(train)} \|_{2}^{2} = 0$$

$$\Rightarrow \quad \nabla_{w} (X^{(train)} w - y^{(train)})^{T} (X^{(train)} w - y^{(train)}) = 0$$

$$\Rightarrow \quad \nabla_{w} (w^{T} X^{(train)T} X^{(train)} w - 2w^{T} X^{(train)T} y^{(train)} - y^{(train)T} y^{(train)}) = 0$$

$$\Rightarrow \quad 2X^{(train)T} X^{(train)} w - 2X^{(train)T} y^{(train)} = 0$$

$$\Rightarrow \quad w = (X^{(train)T} X^{(train)})^{-1} X^{(train)} y^{(train)}$$

• We have the following now

$$\nabla_{w} \mathsf{MSE}_{(\mathsf{train})} = 0$$

$$\Rightarrow \quad \nabla_{w} \frac{1}{m} \| \hat{y}^{(\mathsf{train})} - y^{(\mathsf{train})} \|_{2}^{2} = 0$$

$$\Rightarrow \quad \frac{1}{m} \nabla_{w} \| \boldsymbol{X}^{(\mathsf{train})} \boldsymbol{w} - y^{(\mathsf{train})} \|_{2}^{2} = 0$$

$$\Rightarrow \quad \nabla_{w} (\boldsymbol{X}^{(\mathsf{train})} \boldsymbol{w} - y^{(\mathsf{train})})^{T} (\boldsymbol{X}^{(\mathsf{train})} \boldsymbol{w} - y^{(\mathsf{train})}) = 0$$

$$\Rightarrow \quad \nabla_{w} (\boldsymbol{w}^{T} \boldsymbol{X}^{(\mathsf{train})T} \boldsymbol{X}^{(\mathsf{train})} \boldsymbol{w} - 2\boldsymbol{w}^{T} \boldsymbol{X}^{(\mathsf{train})T} y^{(\mathsf{train})} - y^{(\mathsf{train})T} y^{(\mathsf{train})}) = 0$$

$$\Rightarrow \quad 2\boldsymbol{X}^{(\mathsf{train})T} \boldsymbol{X}^{(\mathsf{train})} \boldsymbol{w} - 2\boldsymbol{X}^{(\mathsf{train})T} y^{(\mathsf{train})} = 0$$

$$\Rightarrow \quad \boldsymbol{w} = (\boldsymbol{X}^{(\mathsf{train})T} \boldsymbol{X}^{(\mathsf{train})})^{-1} \boldsymbol{X}^{(\mathsf{train})} y^{(\mathsf{train})}$$

• Linear regression with bias term

$$\hat{y} = [\mathbf{w}^{T} \quad w_0][\mathbf{x} \quad 1]^{T}$$

Moore-Penrose Pseudoinverse

- Let $\boldsymbol{A} \in \mathbb{R}^{n \times m}$
- Every **A** has pseudoinverse $\mathbf{A}^+ \in \mathbb{R}^{m \times n}$ and it is unique
 - $AA^+A = A$
 - $A^+AA^+ = A^+$
 - $(\mathbf{A}\mathbf{A}^+)^T = \mathbf{A}\mathbf{A}^+$
 - $(\mathbf{A}^+\mathbf{A})^T = \mathbf{A}^+\mathbf{A}$
- $A^+ = (A^T A)^{-1} A^T$
- Example

• If
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \end{bmatrix}^{T}$$
 then $\mathbf{A}^{+} = \begin{bmatrix} \frac{1}{5} & \frac{2}{5} \end{bmatrix}$
• If $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 5 \end{bmatrix}$ then $\mathbf{A}^{+} = \begin{bmatrix} 0.121212 & 0.515152 & -0.151515 \\ 0.030303 & -0.121212 & 0.212121 \end{bmatrix}$

Regression example

Regression example

Minimization of MSE: Gradient descent

- Assuming $MSE_{(train)} = J(w_1, w_2)$
- Target is to $\min_{w_1,w_2} J(w_1,w_2)$
- Approach
 - Start with some w₁, w₂
 - Keep modifying w_1, w_2 so that $J(w_1, w_2)$ reduces till the desired accuracy is achieved

Minimization of MSE: Gradient descent

- Assuming $MSE_{(train)} = J(w_1, w_2)$
- Target is to $\min_{w_1,w_2} J(w_1,w_2)$
- Approach
 - Start with some w_1, w_2
 - Keep modifying w_1, w_2 so that $J(w_1, w_2)$ reduces till the desired accuracy is achieved
- Algorithm
 - Repeat the following until convergence

$$w_j = w_j - \frac{\partial}{\partial w_j} J(w_1, w_2)$$

Error

- Training error Error obtained on a training set
- Generalization error Error on unseen data
- Data assumed to be independent and identically distributed (iid)
 - Each data set are independent of each other
 - Train and test data are identically distributed
- Expected training and test error will be the same
- It is more likely that the test error is greater than or equal to the expected value of training error
- Target is to make the training error is small. Also, to make the gap between training and test error smaller

Regression example

Underfitting & Overfitting

- Underfitting
 - When the model is not able to obtain sufficiently low error value on the training set
- Overfitting
 - When the gap between training set and test set error is too large

Underfitting example

Overfitting example

Better fit

Capacity

- Ability to fit wide variety of functions
 - Low capacity will struggle to fit the training set
 - High capacity will can overfit by memorizing the training set
- Capacity can be controlled by choosing hypothesis space
 - A polynomial of degree 1 gives linear regression $\hat{y} = b + wx$
 - By adding x^2 term, it can learn quadratic curve $\hat{y} = b + w_1 x + w_2 x^2$
 - Output is still a linear function of parameters
- Capacity of is determined by the choice of model (Representational capacity)
- Finding best function is very difficult optimization problem
 - Learning algorithm does not find the best function but reduces the training error
 - Imperfection in optimization algorithm can further reduce the capacity of model (effective capacity)

Capacity (contd.)

- Occam's razor
 - Among equally well hypotheses, choose the simplest one
- Vapnik-Chervonenski dimension Capacity for binary classifier
 - Largest possible value of m for which a training set of m different **x** point that the classifier can label arbitrarily
- Training and test error is bounded from above by a quantity that grows as model capacity grows but shrinks as the number of training example increases
 - Bounds are usually provided for ML algorithm and rarely provided for DL
 - Capacity of deep learning model is difficult as the effective capacity is limited by optimization algorithm
 - Little knowledge on non-convex optimization