Introduction to Keras

February 06 , 2023

Outline

□ Introduction

□ Architecture of Keras

Building a Simple Deep Learning Network using Keras

Complete Neural Network Pipeline include :

- Problem (Application)
- Dataset
- Preprocessing
- Training and Testing Dataset
- Type of Model
- No of layers
- No of Nodes
- Activation Function
- Batch size
- Epoch
- Optimization Function
- Initialization of Weights and Bias
- Evaluation Metrics

Implementing complete pipeline and Experimenting with it is a complex task

K Keras

- High-level deep learning API
- Written in python
- Use TensorFlow or Theano for its backend
- Support almost all deep learning models
- Runs smoothly on CPU and GPU

Why Keras

- Easy to use and enable fast experimentation
- Support distributed training
- Modular in nature
- Models are described in Python, which make it easy to debug and explore.

Installation

Important libraries :

- Python
- Numpy
- Scipy
- h5py
- Matplotlib
- TensorFlow

Tools:

- Google Colab
- Anaconda
- Visit the Keras page to install and explore the API : <u>https://keras.io</u>

Architecture of Keras

Models

- Sequential API
- Functional API

Layers

- Core Layers
 - \circ Dense
 - o Flatten
 - \circ Reshape
 - \circ many more..
- Convolution Layers
- Pooling Layers
- Recurrent Layers
- many more....

Other Modules

- Data Loading
- Datasets
- Applications
- Utilities
- Keras Tuner

Models

Keras Provides

Optimizer

- Algorithm used to update weights while we train our model
- such as sgd (Stochastic gradient descent optimizer)

Objective Function

- Used by the optimizer to navigate the space of weights
- such as mse (mean squared error)

Metrics

Used to judge the performance of your model such as accuracy

Steps

- Import libraries and modules
- Load data
- Pre-process data
- Define model architecture
- Compile model
- Fit and evaluate

Problem :

Digit recognition from image data

Dataset :

Keras provides in-build many datasets such as MNIST , CIFAR10 and many more.

MNIST

- Dataset contains grayscale images of handwritten single digits between 0 and 9
- 28×28 pixels
- Training set of 60,000 examples, and a test set of 10,000 examples
- $\circ~$ Keras provides method to load MNIST data set

Data Preprocessing :

- Reshaping
- Convert data type
- Change the labels from integer to categorical data

Model Architecture :

- Use sequential model
- A sequential model is defined as model = Sequential()
- Add layers
 - First layer in a Sequential model needs to receive information about its input shape
 - Dense(32, input dim=784) specifies that
 - Input dimension is 784
 - \circ It is first hidden layer
 - \circ output dimension is 32
 - If no activation function specified, no activation is applied (i.e. "linear" activation: a(x) = x).

Model Architecture :

- There are many other initializations available in Keras
- Rectifier (ReLU) activation function is used for the neurons in the hidden layer
- Softmax activation function is used on the output layer

Compile Model :

- Before training, use compile() method to build network. It uses three arguments:
 - Optimizer : Adam
 - $\circ~$ Loss function : Logarithmic loss
 - \circ list of metrics : Accuracy

Train Model :

Use fit() function

Evaluate Model on test data:

Use evaluate () function

Options to explore:

- Different learning rate for optimizer
- Number of neurons in hidden layer
- Batch size
- Additional hidden layers
- With dropout
- Different optimizers
- Increases number of epochs

Introduction to Google Colab

Free Google service
Free GPU
Pre-installed libraries
Built on top of Jupyter Notebook

<>

≕

>_

Classification using feed forward network

A simple feed forward network for MNIST image classification

- 1 # Import the required packages
 - 2 from keras.models import Sequential
 - 3 **from** keras.layers **import** Dense
 - 4 from keras.datasets import mnist
 - 5 from keras.utils.np_utils import to_categorical
 - 6 import numpy as np
 - 7 import pandas as pd
 - 8 from matplotlib import pyplot as plt

Get the training data

```
1 # Get the training data
2 (train_images, train_labels), (test_images, test_labels) = mnist.load_data()
3 print('Training data shape : ', train_images.shape, train_labels.shape)
4 
5 print('Testing data shape : ', test_images.shape, test_labels.shape)
```

Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz 11493376/11490434 [===========]] - 2s 0us/step 11501568/11490434 [============]] - 2s 0us/step Training data shape : (60000, 28, 28) (60000,) Testing data shape : (10000, 28, 28) (10000,)

```
1 # Find the unique numbers from the train labels
2 classes = np.unique(train_labels)
3 classes_num = len(classes)
4 print('Unique output classes : ', classes)
5 print('Total number of outputs : ', classes_num)
```

```
Unique output classes : [0 1 2 3 4 5 6 7 8 9]
Total number of outputs : 10
```


1 # Change the image format from 2D array of size 28x28 to 1D arrya of size 784
2 print(train_images.shape)

(60000, 28, 28)

```
1 # Get the size of required 1D array
2
3 dim_data = np.prod(train_images.shape[1:])
4 print(dim_data)
```

784

```
1 # Now reshape the 2D array to 1D array
2
3 train_data = train_images.reshape(train_images.shape[0], dim_data)
4 test_data = test_images.reshape(test_images.shape[0], dim_data)
```

```
1 # Change to float datatype
2
3 train_data = train_data.astype('float32')
4 test_data = test_data.astype('float32')
```

```
1 # Change the labels from integer to categorical data
2
3 train_labels_one_hot = to_categorical(train_labels)
4 test_labels_one_hot = to_categorical(test_labels)
5
6 # Check how the one hot encoded labels look like
7 print(test_labels_one_hot[0:10])
```

```
# Define the model
   model = Sequential() # type of model
 3
 4
   # Define the model layers
 5
 6
   model.add(Dense(32, activation='relu', input_shape=(dim_data,)))
   model.add(Dense(classes_num, activation='softmax'))
 8
 9
   # Compile the model
10
11
   model.compile(optimizer='adam', loss='categorical crossentropy', metrics=['accuracy'])
12
13
```

```
1 # Let's see how the model looks and check the parameters
2
3 model.summary()
```

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 32)	25120
dense_1 (Dense)	(None, 10)	330

Total params: 25,450 Trainable params: 25,450 Non-trainable params: 0

Train the model

```
1 # Now we can start the training

2 history = model.fit(train_data, train_labels_one_hot, batch_size=256, epochs=2, verbose =1,

validation_data=(test_data, test_labels_one_hot))
Epoch 1/2
235/235 [=========] - 2s 6ms/step - loss: 4.5760 - accuracy: 0.3473 - val_loss: 1.5965 - val_accuracy: 0.4
251
Epoch 2/2
235/235 [========] - 1s 5ms/step - loss: 1.4386 - accuracy: 0.4916 - val_loss: 1.3346 - val_accuracy: 0.5
221
```

Evaluate the model

```
1 # let's run the trained model on test data and see how it performs
2
3 [test_loss, test_acc] = model.evaluate(test_data, test_labels_one_hot)
4 print("Evaluation result on Test Data : Loss = {}, accuracy = {}".format(test_loss, test_acc))
```

```
313/313 [===============================] - 0s 2ms/step - loss: 1.3346 - accuracy: 0.5221
Evaluation result on Test Data : Loss = 1.3345507383346558, accuracy = 0.5220999717712402
```

Run the sample predictions

```
# Predict the most likely class
1
2
   print("Probability of all the classes: {}".format(model.predict(test_data[[1],:])))
3
4
   print("Model prediction: {}".format(np.argmax(model.predict(test_data[[1],:])),axis=1))
5
6
   # Display the predicted image
7
   plt.imshow(test_images[1], cmap='gray')
8
  plt.title("Ground Truth : {}".format(test labels[1]))
9
  plt.show()
10
```

Probability of all the classes: [[1.9178690e-01 3.6784500e-10 7.9985172e-01 8.0762245e-03 1.5730684e-08 3.3894274e-09 1.0777729e-07 1.5123810e-08 2.8397932e-04 1.1393026e-06]] Model prediction: 2


```
# Predict the most likely class
1
2
   print("Probability of all the classes: {}".format(model.predict(test_data[[9009]])))
3
4
   print("Model prediction: {}".format(np.argmax(model.predict(test_data[[9009]])),axis=1))
5
6
   # Display the predicted image
7
   plt.imshow(test_images[9009], cmap='gray')
8
   plt.title("Ground Truth : {}".format(test_labels[9009]))
9
   plt.show()
10
```

Probability of all the classes: [[0.13197137 0.06553078 0.11186828 0.13483736 0.0777123 0.12524498 0.08340577 0.06744915 0.13503858 0.06694139]] Model prediction: 8

1	DIGITS = {
2	0: '0',
3	1: '1',
4	2: '2',
5	3: '3',
6	4: '4',
7	5; '5',
8	6: '6',
9	7: '7',
10	8: '8',
11	9: '9',
12	}

1 def confusion_matrix(Y_true, Y_pred): 2 Y_true = pd.Series([DIGITS[y] for y in np.argmax(Y_true, axis=1)]) 3 Y_pred = pd.Series([DIGITS[y] for y in np.argmax(Y_pred, axis=1)]) 4 5 return pd.crosstab(Y_true, Y_pred, rownames=['True'], colnames=['Pred'])

1 print(confusion_matrix(test_labels_one_hot, model.predict(test_data)))

Pred	0	1	2	3	4	5	6	7	8	9	
rrue											
0	6	0	23	3	2	6	0	5	935	0	
1	1	1071	1	10	0	6	2	0	44	0	
2	16	1	611	7	8	3	4	4	378	0	
3	2	5	15	5	10	2	2	16	948	5	
4	0	2	1	3	816	1	7	3	132	17	
5	1	9	3	2	25	40	5	58	745	4	
6	0	3	2	8	4	4	672	0	265	0	
7	4	14	1	4	29	31	0	792	93	60	
8	1	1	0	1	32	11	2	5	921	0	
9	0	5	0	2	609	2	2	20	82	287	

Improve performance of feed forward network for MNIST image classification

```
model = Sequential() # type of model
 3
 4
   # Define the model layers
 5
 6
   model.add(Dense(256, activation='relu', input shape=(dim data,)))
 8 model.add(Dense(128, activation='relu'))
9 model.add(Dense(32, activation='relu'))
   model.add(Dense(classes num, activation='softmax'))
10
11
   # Compile the model
12
13
   model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
14
15
```

1 # Let's see how the model looks and check the parameters
2
3 model.summary()

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 256)	200960
dense_1 (Dense)	(None, 128)	32896
dense_2 (Dense)	(None, 32)	4128
dense_3 (Dense)	(None, 10)	330

Total params: 238,314 Trainable params: 238,314 Non-trainable params: 0

Evaluate the model

- 1 # let's run the trained model on test data and see how it performs
 2
 3 [test_loss, test_acc] = model.evaluate(test_data, test_labels_one_hot)
 4 mint("Evaluateing of the test labels of the test labels_one_hot")
 4 mint("Evaluateing of the test labels of the test labels_one_hot")
 4 mint("Evaluateing of test labels of test labels_one_hot")
 4 mint("Evaluateing of test labels of test labels_one_hot")
 4 mint("Evaluateing o
- 4 print("Evaluation result on Test Data : Loss = {}, accuracy = {}".format(test_loss, test_acc))

313/313 [==================] - 1s 2ms/step - loss: 0.2774 - accuracy: 0.9585 Evaluation result on Test Data : Loss = 0.2773880660533905, accuracy = 0.9585000276565552

1	print((confus	sion_r	natri>	(test	:_labe	els_or	ne_hot	:, moo	del.pr	<pre>edict(test_data)))</pre>
Pred	0	1	2	3	4	5	6	7	8	9	
Irue	070		~	-			_	~	~	0	
0	970	0	0	3	1	1	3	0	2	0	
1	1	1119	3	5	0	1	2	2	2	0	
2	4	5	991	8	1	0	3	5	13	2	
3	1	0	12	971	0	8	0	5	12	1	
4	8	5	5	0	908	1	8	5	3	39	
5	7	0	1	24	1	841	9	1	7	1	
6	11	10	0	1	4	8	921	0	3	0	
7	1	6	20	7	1	1	1	981	2	8	
8	4	0	10	12	3	4	2	3	931	5	
9	4	7	2	11	11	4	0	9	9	952	

1

Implementation of AND gate

```
1 import keras
```

- 2 import numpy as np
- 3 from matplotlib import pyplot as plt
- 4 **from** keras.models **import** Sequential
- 5 **from** keras.layers **import** Dense

```
1 # Training set 1
2 # This will be used to train the network
3
4 # Input to the gate
5
6 x_train = np.array([[0,0],[0,1],[1,0],[1,1]], "uint8")
7
8 # Ouput of the gate, the truth value
9
10 y_train = np.array([[0],[0],[0],[1]], "uint8")
```

```
1 # Training set 2
 2 # Let us use real nos. instead of binary int values
 3
 4 # Input to the gate
 5 x train = np.random.uniform(low = 0, high = 1, size=400)
 6 x_train = np.reshape(x_train, [-1,2])
 7 print(x train.shape)
 8
 9 # Output or truth values for inputs
10 y_train = np.zeros([x_train.shape[0]])
11 print(len(y train))
12 for i in range(x train.shape[0]):
       if x_train[i,0]>=0.5 and x_train[i,1]>=0.5:
13
14
           y train[i]=1
15
16 # let's check the values in training set
17 print(x train[:10])
18 print(y train[:10])
```

```
(200, 2)
200
[[0.43793899 0.46888843]
[0.3708003 0.52206144]
[0.88984203 0.40711617]
[0.11018836 0.47267797]
[0.33346626 0.90531951]
[0.08060852 0.70609599]
[0.38756715 0.36927417]
[0.91520471 0.13676701]
[0.76839496 0.62005915]
[0.64423126 0.02879003]]
[0. 0. 0. 0. 0. 0. 0. 0. 1. 0.]
```

```
1 # Create neural network model
2 # A sequential model is one where layers are stacked one
3 # after another and there is not skipping, feedback and
4 # distributed connection
5
6 model = Sequential()
7
8 # Add a single dense layer to the model
9 model.add(Dense(1, activation='sigmoid', input_dim=2)) # first hidden layer
10 model.summary()
```

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 1)	3
======================================		

```
1 # Let's do some prediction
2
3 test = np.array([[.9,.8]])
4 model.predict(test,batch_size=1)
```

```
array([[0.58591753]], dtype=float32)
```

```
1 test = np.array([[.3,.8]])
2 model.predict(test,batch_size=1)
```

```
array([[0.2722925]], dtype=float32)
```

Questions?