Introduction to Deep Learning

Neural Networks

Arijit Mondal
Dept. of Computer Science \& Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

Human brain vs von Neumann computer

- Massive parallelism
- Distributed representation and computation
- Learning ability
- Generalization ability
- Adaptability
- Inherent contextual information processing
- Fault tolerance
- Low energy consumption

Computer vs Brain

	von Neumann	Neural system
Processor	Complex, high speed, one or a few	Simple, low speed, a large number
Memory	Separate from processor, Local- ized, Noncontent addressable	Integrated into processor, Dis- tributed, Content addressable
Computing	Centralized, sequential, stored program	Distributed, parallel, self-learning
Reliability	Very vulnerable	Robust
Expertise	Numeric and symbolic manipula- tions	Perceptual problems
Operating envi- ronment	Well defined, well constrained	Poorly defined, unconstrained

Artificial Neuron: Applications

- Pattern classification

Artificial Neuron: Applications

- Clustering/categorization

Artificial Neuron: Applications

- Prediction

Artificial Neuron: Applications

- Retrieval

Artificial Neuron: Applications

- Optimization

Artificial Neuron

- Control

History

- Started in 1940 s by McCulloch and Pitt
- Rosenblatt perceptron convergence theorem (1960)
- In 1980s ANN started gaining popularity
- Again became popular after 2006

Biological Neuron

Cerebral cortex

- It is a flat sheet of neurons about 2-3 millimeter thick with surface area is $2200 \mathbf{~ c m}^{2}$
- Twice the area of computer keyboard
- It contains around 10^{11} neurons
- Number of stars in the Milky-way
- Each neuron is connected to $10^{3}-10^{4}$ other neurons
- Total connections is around $10^{14}-10^{15}$
- Connectionist model

Human brain

Neuron

Artificial Neuron

- Neuron pre-activation function
- $a(\mathrm{x})=\sum_{i} w_{i} x_{i}+b=b+w^{T} \mathrm{x}$
- Neuron output activation function
- $h(\mathrm{x})=g(a(\mathrm{x}))=g\left(\sum_{i} w_{i} x_{i}+b\right)$

窓 - Notations

- w - Weight vector
- b - Neuron bias
- $g($.$) - Activation function$

Physical interpretation

Classification using single neuron

- Single neuron can do binary classification
- Also known as logistic regression classifier

Artificial neuron

- Can solve linearly separable problems

Artificial neuron: XOR problem

- There are issues for linear separation

Activation function

Activation function

$$
g(x)=\operatorname{sigm}(x)=\frac{1}{1+\exp (-x)}
$$

Activation function

- Hyperbolic Tangent (Tanh) function
- Can be positive or negative
- Values lie between -1 and 1
- Strictly increasing function
- Bounded

Activation function

- Rectified linear activation function
- Bounded below by 0
- Strictly increasing function
- Not upper bounded

Single hidden layer neural network

- Hidden layer pre-activation

$$
a(x)=b^{1}+w^{1} x
$$

- Hidden layer activation

$$
h(\mathrm{x})=g(a(\mathrm{x}))
$$

- Output layer activation

$$
f(x)=o\left(b^{(2)}+w^{(2) T} h^{1}(x)\right)
$$

Multi layer neural network

- Pre-activation in layer

$$
\begin{aligned}
& k>0\left(\mathrm{~h}^{(0)}(\mathrm{x})=\mathrm{x}\right) \\
& \quad \mathrm{a}^{(k)}(\mathrm{x})=\mathrm{b}^{(k)}+\mathrm{W}^{(k)} \mathrm{h}^{(k-1)} \mathrm{x}
\end{aligned}
$$

- Hidden layer activation

$$
h^{(k)}(x)=g\left(a^{(k)}(x)\right)
$$

- Output layer activation

$$
\mathrm{h}^{(L+1)}(\mathrm{x})=o\left(\mathrm{a}^{(L+1)}(\mathrm{x})\right)=\mathrm{f}(\mathrm{x})
$$

Multiclass classification

- Need multiple outputs that is one neuron for each class
- Need to determine probability of $p(y=c \mid x)$
- Softmax activation function is used at the output

$$
\mathrm{o}(\mathrm{a})=\operatorname{softmax}(a)=\left[\begin{array}{llll}
\frac{\exp \left(a_{1}\right)}{\sum_{c} \exp \left(a_{c}\right)} & \frac{\exp \left(a_{2}\right)}{\sum_{c} \exp \left(a_{c}\right)} & \cdots & \frac{\exp \left(a_{c}\right)}{\sum_{c} \exp \left(a_{c}\right)}
\end{array}\right]^{T}
$$

- Strictly positive
- Sum to 1
- Class having the highest probability will be the predicted output

Capacity of neural network

Capacity of neural network

- Universal approximation theorem (Hornik,1991)
- A single hidden layer neural network with a linear output unit can approximate any continuous function arbitrarily well, given enough hidden units.
- The result is applicable for other hidden layer activation functions such as sigmoid, tanh, etc.
- This is a promising result, but it does not say that there is a learning algorithm to find the necessary parameter values!

Types of Neural Network

- Feed forward neural network
- Radial basis function network
- Recurrent neural network
- Boltzmann machine
- Long short term memory network
- and many more

Perceptron

- - Input
- Output

Feed Forward

- - Input
- Output
- - Hidden

Radial Basis Function

- Typically it will have 3 layers
- Distance from a center vector is computed
- Radial basis function as activation $o=\sum_{i} a_{i} \exp \left(\beta(\mathrm{x}-\mathrm{c})^{2}\right)$
- Usage - function approximation, time series prediction, classification, system control

- - Input
- Output
- — Hidden

Deep Feed Forward

- Can have multiple hidden layers
- More complicated functions can be represented

Recurrent Neural Network

- It has feedback loop
- Used for modelling dependencies such as temporal

Long Short Term Memory

- Feedback loop with memory
- Application - NLP, time series modeling

Auto Encoder

Markov chain

Boltzmann Machine

- Stochastic network
- Each neuron can have value either 0 or 1
- Some are hidden neurons
- Total energy (computed using states and the edge weights) is minimized

Learning the parameters

- The network must learn the connection weights from available training examples
- Learning can be
- Supervised
- Unsupervised
- Hybrid
- Four basic types of learning rule
- Error correction rule
- Boltzmann learning
- Hebbian
- Competitive learning

Error correction rule

- Output is generated based on the weight values but this may vary from desired value
- The error information is used to update the weight value
- Perceptron learning algorithm
- Initialize the weights and threshold to small random numbers
- Present a pattern vector and evaluate the output of neuron
- Update the weight according to $w_{j}(t+1)=w_{j}(t)+\eta(d-y) x_{j}$
- Back propagation algorithm

Boltzmann learning

- Usually symmetric recurrent network consisting of binary units
- A subset of neurons interact with environment
- Generally it has two modes
- Clamped - Visible neurons are clamped to specific states
- Free-running - Visible and hidden unit operate freely
- Stochastic learning rule derived from information theoretic and thermodynamic principles
- Learning rule is given by $\Delta w_{i j}=\eta\left(\bar{\rho}_{i j}-\rho_{i j}\right)$

Hebbian rule

- One of the oldest learning rules
- If neuron on both sides of a synapse are activated synchronously and repeatedly, the synapse's strength is selectively increased
- Mathematically, it can be described as $w_{i j}(t+1)=w_{i j}(t)+\eta y_{j}(t) x_{i}(t)$

Competitive learning rule

- Output units compete among themselves for activation
- Only one output is active at time
- Also known as winner-take-all
- Mathematically, it can be represented as $w_{i^{*}} x \geq w_{i} x$
- Competitive learning rule can be stated as

$$
\Delta w_{i j}= \begin{cases}\eta\left(x_{j}^{\mu}-w_{i^{*} j}\right) & i=i^{*} \\ 0 & i \neq i^{*}\end{cases}
$$

Summary

- Error correction rule - Single or multilayer perceptron
- Pattern classification, function approximation, prediction, control
- Boltzmann - Recurrent
- Pattern classification
- Hebbian - Multilayer feed forward
- Pattern classification, data analysis
- Competitive
- Within class categorization, data compression

