Introduction to Deep Learning

Neural Networks

Arijit Mondal

Dept. of Computer Science & Engineering

Indian Institute of Technology Patna

arijit@iitp.ac.in

Human brain vs von Neumann computer

- Massive parallelism
- Distributed representation and computation
- Learning ability
- Generalization ability
- Adaptability
- Inherent contextual information processing
- Fault tolerance
- Low energy consumption

CS551

Computer vs Brain

	von Neumann	Neural system
Processor	Complex, high speed, one or a few	Simple, low speed, a large number
Memory	Separate from processor, Local- ized, Noncontent addressable	Integrated into processor, Dis- tributed, Content addressable
Computing	Centralized, sequential, stored program	Distributed, parallel, self-learning
Reliability	Very vulnerable	Robust
Expertise	Numeric and symbolic manipula- tions	Perceptual problems
Operating envi- ronment	Well defined, well constrained	Poorly defined, unconstrained

• Pattern classification

• Clustering/categorization

• Prediction

• Retrieval

• Optimization

Artificial Neuron

• Control

History

- Started in 1940s by McCulloch and Pitt
- Rosenblatt perceptron convergence theorem (1960)
- In 1980s ANN started gaining popularity
- Again became popular after 2006

Biological Neuron

Cerebral cortex

- It is a flat sheet of neurons about 2-3 millimeter thick with surface area is 2200 ${
 m cm}^2$
 - Twice the area of computer keyboard
- It contains around 10¹¹ neurons
 - Number of stars in the Milky-way
- Each neuron is connected to 10^3 - 10^4 other neurons
- Total connections is around 10^{14} - 10^{15}
- Connectionist model

Human brain

Neuron

• One of the primitive models

Artificial Neuron

• Neuron pre-activation function

•
$$a(\mathbf{x}) = \sum_{i} w_i x_i + b = b + \mathbf{w}^T \mathbf{x}$$

• Neuron output activation function

•
$$h(\mathbf{x}) = g(\mathbf{a}(\mathbf{x})) = g\left(\sum_{i} w_i x_i + b\right)$$

- CS551
- Notations
 - w Weight vector
 - **b** Neuron bias
 - g(.) Activation function

Physical interpretation

Classification using single neuron

- Single neuron can do binary classification
 - Also known as logistic regression classifier

Artificial neuron

• Can solve linearly separable problems

Artificial neuron: XOR problem

• There are issues for linear separation

- Linear activation function
 - Not very interesting
 - No change in values
 - Huge range

- Sigmoid function
 - Values lie between 0 and 1
 - Strictly increasing function
 - Bounded

$$g(x) = \operatorname{sigm}(x) = \frac{1}{1 + \exp(-x)}$$

- Hyperbolic Tangent (Tanh) function
 - Can be positive or negative
 - Values lie between -1 and 1
 - Strictly increasing function

Bounded

- Rectified linear activation function
 - Bounded below by 0
 - Strictly increasing function
 - Not upper bounded

Single hidden layer neural network

• Hidden layer pre-activation

 $\mathsf{a}(\mathsf{x}) = \mathsf{b}^1 + \mathsf{w}^1 \mathsf{x}$

Hidden layer activation

 $h(\mathsf{x}) = g(a(\mathsf{x}))$

• Output layer activation

 $f(x) = o(b^{(2)} + w^{(2)T}h^{1}(x))$

Multi layer neural network

• Pre-activation in layer

 $k > 0 (h^{(0)}(x) = x)$ $a^{(k)}(x) = b^{(k)} + W^{(k)}h^{(k-1)}x$

• Hidden layer activation

 $\mathsf{h}^{(k)}(\mathsf{x}) = \mathsf{g}(\mathsf{a}^{(k)}(\mathsf{x}))$

Output layer activation

 $h^{(L+1)}(x) = o(a^{(L+1)}(x)) = f(x)$

Multiclass classification

- Need multiple outputs that is one neuron for each class
- Need to determine probability of p(y = c | x)
- Softmax activation function is used at the output

$$\mathsf{o}(\mathsf{a}) = \mathsf{softmax}(a) = \begin{bmatrix} \exp(a_1) & \exp(a_2) \\ \frac{1}{\sum_c \exp(a_c)} & \frac{\exp(a_c)}{\sum_c \exp(a_c)} & \dots & \frac{\exp(a_c)}{\sum_c \exp(a_c)} \end{bmatrix}^T$$

- Strictly positive
- Sum to 1
- Class having the highest probability will be the predicted output

Capacity of neural network

Capacity of neural network

- Universal approximation theorem (Hornik, 1991)
 - A single hidden layer neural network with a linear output unit can approximate any continuous function arbitrarily well, given enough hidden units.
 - The result is applicable for other hidden layer activation functions such as sigmoid, tanh, etc.
- This is a promising result, but it does not say that there is a learning algorithm to find the necessary parameter values!

Types of Neural Network

- Feed forward neural network
- Radial basis function network
- Recurrent neural network
- Boltzmann machine
- Long short term memory network
- and many more

Perceptron

• Simplest form of neural network

Feed Forward

• With single hidden layer only

Radial Basis Function

- Typically it will have 3 layers
- Distance from a center vector is computed
- Radial basis function as activation $o = \sum a_i \exp(eta(\mathsf{x}-\mathsf{c})^2)$
- Usage function approximation, time series prediction, classification, system control

Deep Feed Forward

- Can have multiple hidden layers
- More complicated functions can be represented

Recurrent Neural Network

- It has feedback loop
- Used for modelling dependencies such as temporal

Long Short Term Memory

- Feedback loop with memory
- Application NLP, time series modeling

Auto Encoder

- Learning the data in unsupervised mode
- Dimensionality reduction

Markov chain

Boltzmann Machine

- Stochastic network
- Each neuron can have value either 0 or 1
- Some are hidden neurons
- Total energy (computed using states and the edge weights) is minimized

Learning the parameters

- The network must learn the connection weights from available training examples
- Learning can be
 - Supervised
 - Unsupervised
 - Hybrid
 - Four basic types of learning rule
 - Error correction rule
 - Boltzmann learning
 - Hebbian
 - Competitive learning

Error correction rule

- Output is generated based on the weight values but this may vary from desired value
- The error information is used to update the weight value
- Perceptron learning algorithm
 - Initialize the weights and threshold to small random numbers
 - Present a pattern vector and evaluate the output of neuron
 - Update the weight according to $w_j(t+1) = w_j(t) + \eta(d-y)x_j$
- Back propagation algorithm

Boltzmann learning

- Usually symmetric recurrent network consisting of binary units
- A subset of neurons interact with environment
- Generally it has two modes
 - Clamped Visible neurons are clamped to specific states
 - Free-running Visible and hidden unit operate freely
- Stochastic learning rule derived from information theoretic and thermodynamic principles
- Learning rule is given by $\Delta w_{ij} = \eta (ar{
 ho}_{ij}
 ho_{ij})$

CS551

Hebbian rule

- One of the oldest learning rules
- If neuron on both sides of a synapse are activated synchronously and repeatedly, the synapse's strength is selectively increased
- Mathematically, it can be described as $w_{ij}(t+1) = w_{ij}(t) + \eta y_j(t) x_i(t)$

Competitive learning rule

- Output units compete among themselves for activation
- Only one output is active at time
- Also known as winner-take-all
- Mathematically, it can be represented as $w_{i^*} x \ge w_i x$
- Competitive learning rule can be stated as

$$\Delta w_{ij} = \begin{cases} \eta(x_j^u - w_{i^*j}) & i = i^* \\ 0 & i \neq i^* \end{cases}$$

Summary

- Error correction rule Single or multilayer perceptron
 - Pattern classification, function approximation, prediction, control
- Boltzmann Recurrent
 - Pattern classification
- Hebbian Multilayer feed forward
 - Pattern classification, data analysis
- Competitive
 - Within class categorization, data compression