Introduction to Deep Learning

Feature Engineering

Arijit Mondal

Dept. of Computer Science & Engineering

Indian Institute of Technology Patna

arijit@iitp.ac.in

Machine Learning

- A form of applied statistics with
 - Increased emphasis on the use of computers to statistically estimate complicated function
 - Decreased emphasis on proving confidence intervals around these functions
- Two primary approaches
 - Frequentist estimators
 - Bayesian inference

Types of Machine Learning Problems

- Supervised
- Unsupervised
- Other variants
 - Reinforcement learning
 - Semi-supervised

Learning algorithm

- A ML algorithm is an algorithm that is able to learn from data
- Mitchelle (1997)
 - A computer program is said to learn from experience E with respect to some class of task T and performance measure P, if its performance at task in T as measured by P, improves with experience E.

Task

- A ML task is usually described in terms of how ML system should process an example
 - Example is a collection of features that have been quantitatively measured from some objects or events that we want the learning system process
 - Represented as $x \in \mathbb{R}^n$ where x_i is a feature
 - Feature of an image pixel values

Common ML Task

- Classification
 - Need to predict which of the k categories some input belongs to
 - Need to have a function $f : \mathbb{R}^n \to \{1, 2, \dots, k\}$
 - y = f(x) input x is assigned a category identified by y
 - Examples
 - Object identification
 - Face recognition
- - Regression
 - Need to predict numeric value for some given input
 - Need to have a function $f: \mathbb{R}^n \to \mathbb{R}$
 - Examples
 - Energy consumption
 - Amount of insurance claim

- Classification with missing inputs
 - Need to have a set of functions
 - Each function corresponds to classifying x with different subset of inputs missing
 - Examples
 - Medical diagnosis (expensive or invasive)

- Classification with missing inputs
 - Need to have a set of functions
 - Each function corresponds to classifying x with different subset of inputs missing
 - Examples
 - Medical diagnosis (expensive or invasive)
 - **Transcription**
 - Need to convert relatively unstructured data into discrete, textual form
 - Optical character recognition
 - Speech recognition

- Classification with missing inputs
 - Need to have a set of functions
 - Each function corresponds to classifying x with different subset of inputs missing
 - Examples
 - Medical diagnosis (expensive or invasive)
 - **Transcription**
 - Need to convert relatively unstructured data into discrete, textual form
 - Optical character recognition
 - Speech recognition
- Machine translation
 - Conversion of sequence of symbols in one language to some other language
 - Natural language processing (English to Spanish conversion)

- Structured output
 - Output is a vector with important relationship between the different elements
 - Mapping natural language sentence into a tree that describes grammatical structure
 - Pixel based image segmentation (eg. identify roads)

- Structured output
 - Output is a vector with important relationship between the different elements
 - Mapping natural language sentence into a tree that describes grammatical structure
 - Pixel based image segmentation (eg. identify roads)
- Anomaly detection
 - Observes a set of events or objects and flags if some of them are unusual
 - Fraud detection in credit card

- Structured output
 - Output is a vector with important relationship between the different elements
 - Mapping natural language sentence into a tree that describes grammatical structure
 - Pixel based image segmentation (eg. identify roads)
- Anomaly detection
 - Observes a set of events or objects and flags if some of them are unusual
 - Fraud detection in credit card
- Synthesis and sampling
 - Generate new example similar to past examples
 - Useful for media application
 - Text to speech

Performance measure

- Accuracy is one of the key measures
 - The proportion of examples for which the model produces correct outputs
 - Similar to error rate
 - Error rate often referred as expected 0-1 loss
 - Mostly interested how ML algorithm performs on unseen data
 - Choice of performance measure may not be straight forward
 - Transcription
 - Accuracy of the system at transcribing entire sequence
 - Any partial credit for some elements of the sequence are correct

Experience

- Kind of experience allowed during learning process
 - Supervised
 - Unsupervised

Supervised learning

- Allowed to use labeled dataset
- Example Iris
 - Collection of measurements of different parts of Iris plant
 - Each plant means each example
 - Features
 - Sepal length/width, petal length/width
 - Also record which species the plant belong to

Supervised learning (contd.)

- A set of labeled examples $\langle x_1, x_2, \dots, x_n, y
 angle$
 - x_i are input variables
 - y output variable
- Need to find a function $f: X_1 \times X_2 \times \ldots X_n \to Y$
- Goal is to minimize error/loss function
 - Like to minimize over all dataset
 - We have limited dataset

Unsupervised learning

- Learns useful properties of the structure of data set
- Unlabeled data
 - Tries to learn entire probability distribution that generated the dataset
 - Examples
 - Clustering, dimensionality reduction

Supervised vs Unsupervised learning

- Unsupervised attempts to learn implicitly or explicitly probability distribution of p(x)
- Supervised tries to predict y from x ie. p(y|x)

Supervised vs Unsupervised learning

- Unsupervised attempts to learn implicitly or explicitly probability distribution of p(x)
- Supervised tries to predict y from x ie. p(y|x)
- Unsupervised learning can be decomposed as supervised learning

$$p(\mathbf{x}) = \prod_{i=1}^{n} p(x_i | x_1, x_2, \dots, x_{i-1})$$

Supervised vs Unsupervised learning

- Unsupervised attempts to learn implicitly or explicitly probability distribution of p(x)
- Supervised tries to predict y from x ie. p(y|x)
- Unsupervised learning can be decomposed as supervised learning

$$p(\mathbf{x}) = \prod_{i=1}^{n} p(x_i | x_1, x_2, \dots, x_{i-1})$$

Solving supervised learning using traditional unsupervised learning $p(y|\mathbf{x}) = \frac{p(\mathbf{x}, y)}{\sum_{\mathbf{x}'} p(\mathbf{x}, y')}$

Linear regression

- Prediction of the value of a continuous variable
 - Example price of a house, solar power generation in photo-voltaic cell, etc.

Linear regression

- Prediction of the value of a continuous variable
 - Example price of a house, solar power generation in photo-voltaic cell, etc.
 - Takes a vector $\mathsf{x} \in \mathbb{R}^n$ and predict scalar $y \in \mathbb{R}$
 - Predicted value will be represented as $\hat{y} = w^T x$ where w is a vector of parameters
 - x_i receives positive weight Increasing the value of the feature will increase the value of y
 - x_i receives negative weight Increasing the value of the feature will decrease the value of y
 - Weight value is very high/large Large effect on prediction

Performance

- Assume, we have *m* examples not used for training
 - This is known as test set

Performance

- Assume, we have *m* examples not used for training
 - This is known as test set
- Design matrix of inputs is X^(test) and target output is a vector y^(test)
 - Performance is measured by Mean Square Error (MSE)

$$\mathsf{MSE}_{(\mathsf{test})} = \frac{1}{m} \sum_{i} \left(\hat{y}^{(\mathsf{test})} - y^{(\mathsf{test})} \right)_{i}^{2} = \frac{1}{m} \| \hat{y}^{(\mathsf{test})} - y^{(\mathsf{test})} \|_{2}^{2}$$

• Error increases when the Euclidean distance between target and prediction increases

Performance

- Assume, we have *m* examples not used for training
 - This is known as test set
- Design matrix of inputs is X^(test) and target output is a vector y^(test)
 - Performance is measured by Mean Square Error (MSE)

$$\mathsf{MSE}_{(\mathsf{test})} = \frac{1}{m} \sum_{i} \left(\hat{y}^{(\mathsf{test})} - y^{(\mathsf{test})} \right)_{i}^{2} = \frac{1}{m} \| \hat{y}^{(\mathsf{test})} - y^{(\mathsf{test})} \|_{2}^{2}$$

- Error increases when the Euclidean distance between target and prediction increases
- The learning algorithm is allowed to gain experience from training set $(X^{(train)}, y^{(train)})$
 - One of the common ideas is to minimize MSE_(train) for training set

• We have the following now

 ∇_{w} MSE_(train) = 0

• We have the following now

$$\nabla_{w} \mathsf{MSE}_{(\mathsf{train})} = 0$$

$$\Rightarrow \quad \nabla_{w} \frac{1}{m} \| \hat{\mathsf{y}}^{(\mathsf{train})} - \mathsf{y}^{(\mathsf{train})} \|_{2}^{2} = 0$$

• We have the following now

$$\nabla_{w} \mathsf{MSE}_{(\mathsf{train})} = 0$$

$$\Rightarrow \quad \nabla_{w} \frac{1}{m} \| \hat{\mathbf{y}}^{(\mathsf{train})} - \mathbf{y}^{(\mathsf{train})} \|_{2}^{2} = 0$$

$$\Rightarrow \quad \frac{1}{m} \nabla_{w} \| \mathsf{X}^{(\mathsf{train})} \mathsf{w} - \mathbf{y}^{(\mathsf{train})} \|_{2}^{2} = 0$$

• We have the following now

$$\nabla_{w} \mathsf{MSE}_{(\mathsf{train})} = 0$$

$$\Rightarrow \quad \nabla_{w} \frac{1}{m} \| \hat{\mathsf{y}}^{(\mathsf{train})} - \mathsf{y}^{(\mathsf{train})} \|_{2}^{2} = 0$$

$$\Rightarrow \quad \frac{1}{m} \nabla_{w} \| \mathsf{X}^{(\mathsf{train})} \mathsf{w} - \mathsf{y}^{(\mathsf{train})} \|_{2}^{2} = 0$$

$$\Rightarrow \quad \nabla_{w} (\mathsf{X}^{(\mathsf{train})} \mathsf{w} - \mathsf{y}^{(\mathsf{train})})^{T} (\mathsf{X}^{(\mathsf{train})} \mathsf{w} - \mathsf{y}^{(\mathsf{train})}) = 0$$

• We have the following now

$$\nabla_{w} \mathsf{MSE}_{(\mathsf{train})} = 0$$

$$\Rightarrow \quad \nabla_{w} \frac{1}{m} \| \hat{y}^{(\mathsf{train})} - y^{(\mathsf{train})} \|_{2}^{2} = 0$$

$$\Rightarrow \quad \frac{1}{m} \nabla_{w} \| \mathsf{X}^{(\mathsf{train})} \mathsf{w} - y^{(\mathsf{train})} \|_{2}^{2} = 0$$

$$\Rightarrow \quad \nabla_{w} (\mathsf{X}^{(\mathsf{train})} \mathsf{w} - y^{(\mathsf{train})})^{T} (\mathsf{X}^{(\mathsf{train})} \mathsf{w} - y^{(\mathsf{train})}) = 0$$

$$\Rightarrow \quad \nabla_{w} (\mathsf{w}^{T} \mathsf{X}^{(\mathsf{train})T} \mathsf{X}^{(\mathsf{train})} \mathsf{w} - 2\mathsf{w}^{T} \mathsf{X}^{(\mathsf{train})T} y^{(\mathsf{train})T} y^{(\mathsf{train})T}) = 0$$

• We have the following now

$$\nabla_{w} \mathsf{MSE}_{(\mathsf{train})} = 0$$

$$\Rightarrow \quad \nabla_{w} \frac{1}{m} \| \hat{y}^{(\mathsf{train})} - y^{(\mathsf{train})} \|_{2}^{2} = 0$$

$$\Rightarrow \quad \frac{1}{m} \nabla_{w} \| \mathsf{X}^{(\mathsf{train})} \mathsf{w} - y^{(\mathsf{train})} \|_{2}^{2} = 0$$

$$\Rightarrow \quad \nabla_{w} (\mathsf{X}^{(\mathsf{train})} \mathsf{w} - y^{(\mathsf{train})})^{T} (\mathsf{X}^{(\mathsf{train})} \mathsf{w} - y^{(\mathsf{train})}) = 0$$

$$\Rightarrow \quad \nabla_{w} (\mathsf{w}^{T} \mathsf{X}^{(\mathsf{train})T} \mathsf{X}^{(\mathsf{train})} \mathsf{w} - 2\mathsf{w}^{T} \mathsf{X}^{(\mathsf{train})T} y^{(\mathsf{train})} + y^{(\mathsf{train})T} y^{(\mathsf{train})}) = 0$$

$$\Rightarrow \quad 2\mathsf{X}^{(\mathsf{train})T} \mathsf{X}^{(\mathsf{train})} \mathsf{w} - 2\mathsf{X}^{(\mathsf{train})T} y^{(\mathsf{train})} = 0$$

• We have the following now

$$\nabla_{w} \mathsf{MSE}_{(\mathsf{train})} = 0$$

$$\Rightarrow \quad \nabla_{w} \frac{1}{m} \| \hat{y}^{(\mathsf{train})} - y^{(\mathsf{train})} \|_{2}^{2} = 0$$

$$\Rightarrow \quad \frac{1}{m} \nabla_{w} \| \mathsf{X}^{(\mathsf{train})} \mathsf{w} - y^{(\mathsf{train})} \|_{2}^{2} = 0$$

$$\Rightarrow \quad \nabla_{w} (\mathsf{X}^{(\mathsf{train})} \mathsf{w} - y^{(\mathsf{train})})^{T} (\mathsf{X}^{(\mathsf{train})} \mathsf{w} - y^{(\mathsf{train})}) = 0$$

$$\Rightarrow \quad \nabla_{w} (\mathsf{w}^{T} \mathsf{X}^{(\mathsf{train})T} \mathsf{X}^{(\mathsf{train})} \mathsf{w} - 2\mathsf{w}^{T} \mathsf{X}^{(\mathsf{train})T} \mathsf{y}^{(\mathsf{train})} + \mathsf{y}^{(\mathsf{train})T} \mathsf{y}^{(\mathsf{train})}) = 0$$

$$\Rightarrow \quad 2\mathsf{X}^{(\mathsf{train})T} \mathsf{X}^{(\mathsf{train})} \mathsf{w} - 2\mathsf{X}^{(\mathsf{train})T} \mathsf{y}^{(\mathsf{train})} = 0$$

$$\Rightarrow \quad \mathsf{w} = (\mathsf{X}^{(\mathsf{train})T} \mathsf{X}^{(\mathsf{train})})^{-1} \mathsf{X}^{(\mathsf{train})T} \mathsf{y}^{(\mathsf{train})}$$

• We have the following now

$$\nabla_{w} \mathsf{MSE}_{(\mathsf{train})} = 0$$

$$\Rightarrow \quad \nabla_{w} \frac{1}{m} \| \hat{y}^{(\mathsf{train})} - y^{(\mathsf{train})} \|_{2}^{2} = 0$$

$$\Rightarrow \quad \frac{1}{m} \nabla_{w} \| \mathsf{X}^{(\mathsf{train})} \mathsf{w} - y^{(\mathsf{train})} \|_{2}^{2} = 0$$

$$\Rightarrow \quad \nabla_{w} (\mathsf{X}^{(\mathsf{train})} \mathsf{w} - y^{(\mathsf{train})})^{T} (\mathsf{X}^{(\mathsf{train})} \mathsf{w} - y^{(\mathsf{train})}) = 0$$

$$\Rightarrow \quad \nabla_{w} (\mathsf{w}^{T} \mathsf{X}^{(\mathsf{train})T} \mathsf{X}^{(\mathsf{train})} \mathsf{w} - 2\mathsf{w}^{T} \mathsf{X}^{(\mathsf{train})T} y^{(\mathsf{train})} + y^{(\mathsf{train})T} y^{(\mathsf{train})}) = 0$$

$$\Rightarrow \quad 2\mathsf{X}^{(\mathsf{train})T} \mathsf{X}^{(\mathsf{train})} \mathsf{w} - 2\mathsf{X}^{(\mathsf{train})T} y^{(\mathsf{train})} = 0$$

$$\Rightarrow \quad \mathsf{w} = (\mathsf{X}^{(\mathsf{train})T} \mathsf{X}^{(\mathsf{train})})^{-1} \mathsf{X}^{(\mathsf{train})T} y^{(\mathsf{train})}$$

• Linear regression with bias term $\hat{y} = [w^T \quad w_0] [x \quad 1]^T$

Moore-Penrose Pseudoinverse

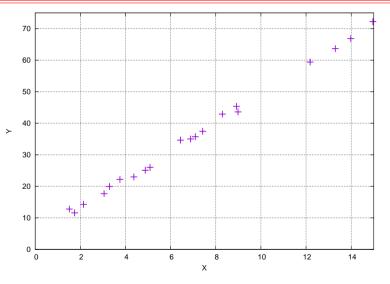
- Let $A \in \mathbb{R}^{n \times m}$
- Every A has pseudoinverse $A^+ \in \mathbb{R}^{m \times n}$ and it is unique
 - $AA^+A = A$
 - $A^+AA^+ = A^+$
- $(AA^+)^T = AA^+$ $(A^+A)^T = A^+A$

$$\mathsf{A}^{+} = \lim_{\alpha \to 0} (\mathsf{A}^{\mathsf{T}} \mathsf{A} + \alpha \mathsf{I})^{-1} \mathsf{A}^{\mathsf{T}}$$

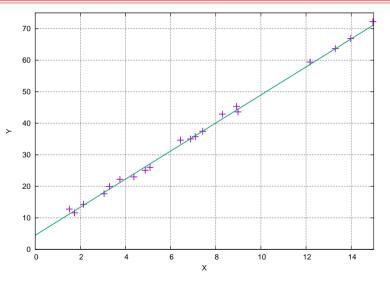
CS551

Example • If $A = \begin{bmatrix} 1 & 2 \end{bmatrix}^T$ then $A^+ = \begin{bmatrix} \frac{1}{5} & \frac{2}{5} \end{bmatrix}$ • If $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 5 \end{bmatrix}$ then $A^+ = \begin{bmatrix} 0.121212 & 0.515152 & -0.151515 \\ 0.030303 & -0.121212 & 0.212121 \end{bmatrix}$

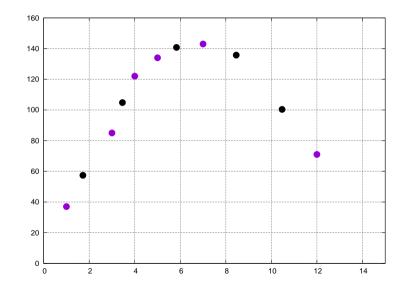
Regression example



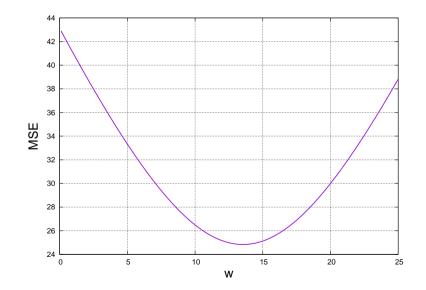
Regression example



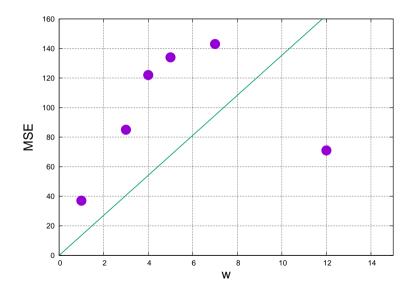
Example

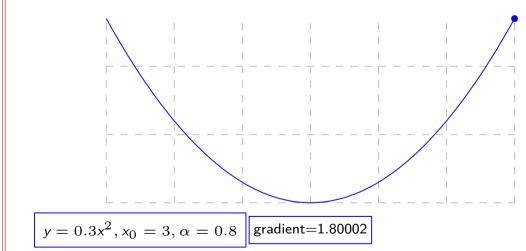


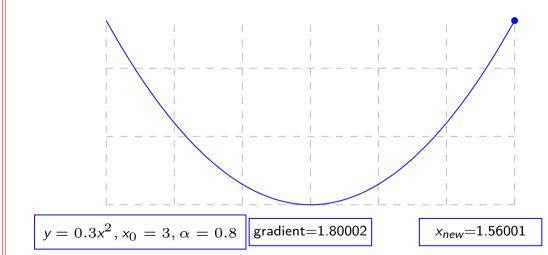
Example: Variation of MSE wrt *w*

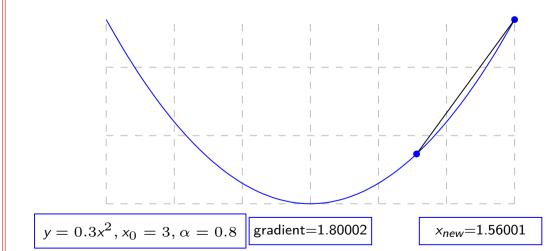


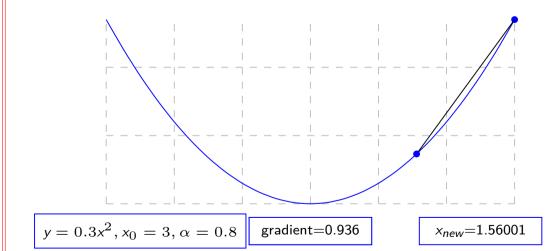
Example: Best fit

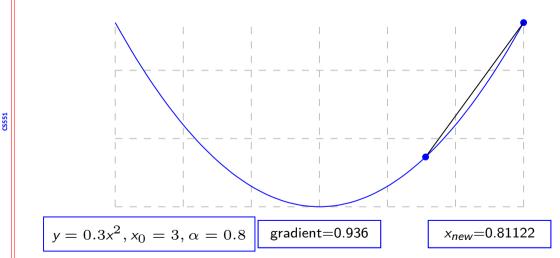


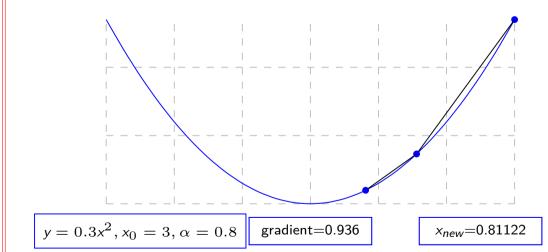


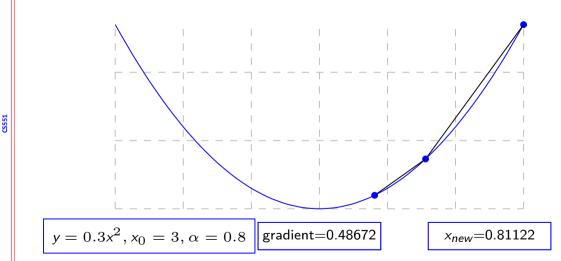


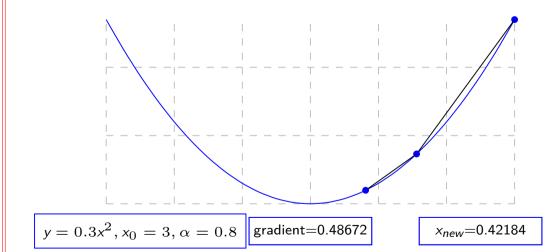


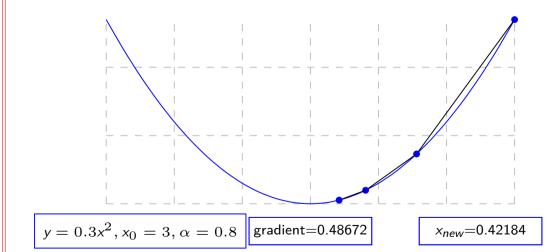


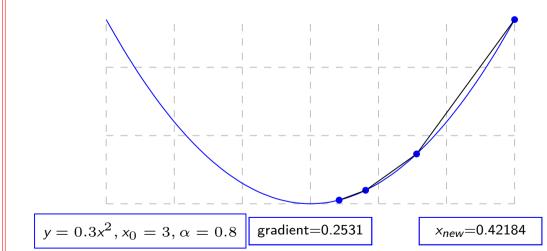


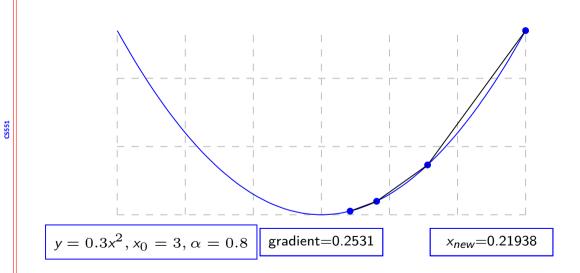


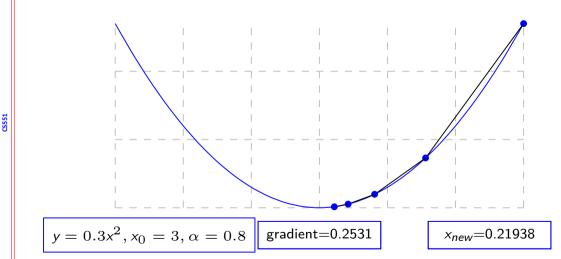


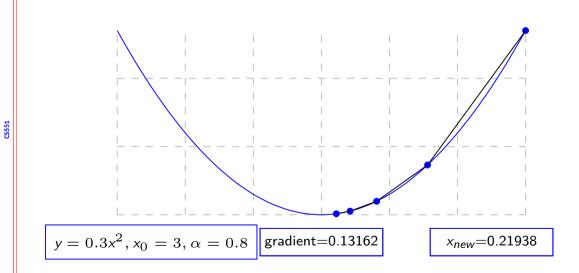


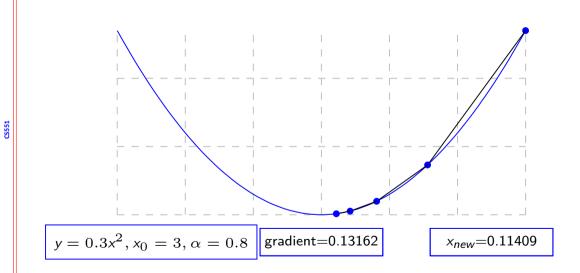


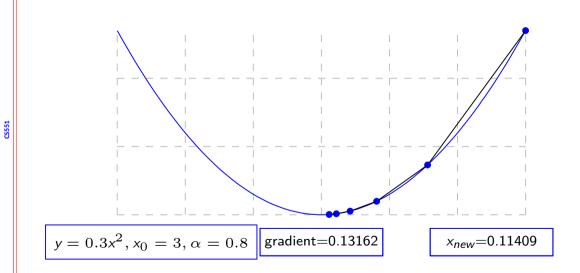


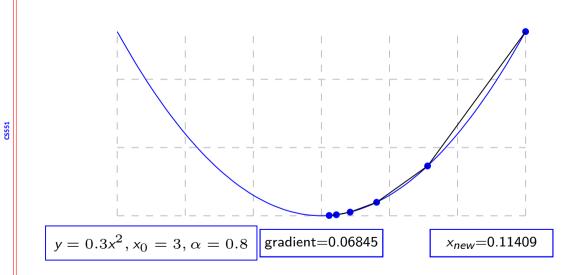


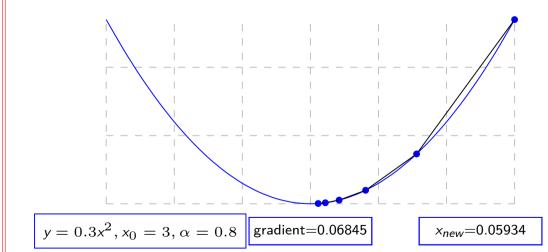


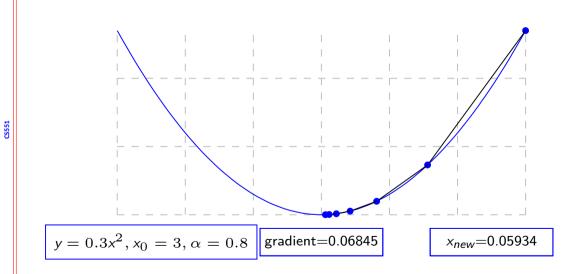


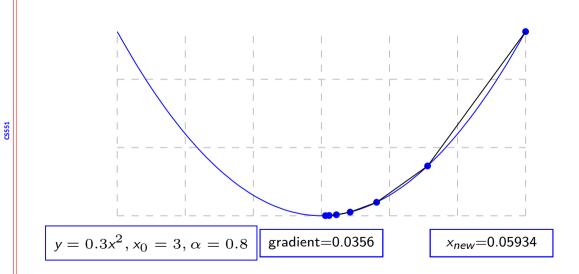


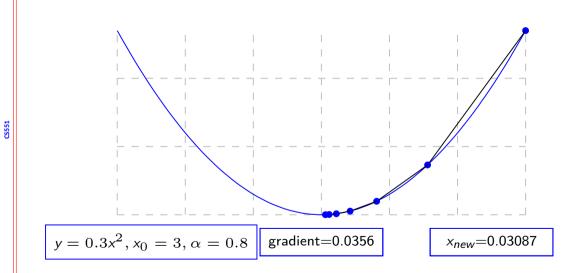












Minimization of MSE: Gradient descent

- Assuming $MSE_{(train)} = J(w_1, w_2)$
- Target is to $\min_{w_1,w_2} J(w_1,w_2)$
- Approach
 - Start with some w_1, w_2
 - Keep modifying w_1, w_2 so that $J(w_1, w_2)$ reduces till the desired accuracy is achieved

Minimization of MSE: Gradient descent

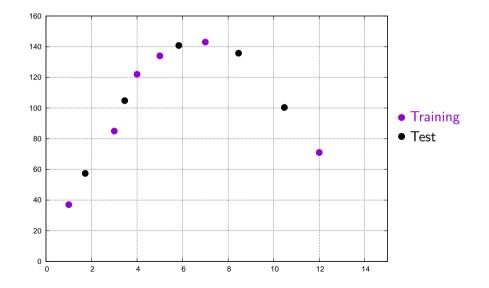
- Assuming $MSE_{(train)} = J(w_1, w_2)$
- Target is to $\min_{w_1,w_2} J(w_1,w_2)$
- Approach
 - Start with some w_1, w_2
 - Keep modifying w_1, w_2 so that $J(w_1, w_2)$ reduces till the desired accuracy is achieved
 - Algorithm
 - Repeat the following until convergence $w_j = w_j \frac{\partial}{\partial w_i} J(w_1, w_2)$
- Gradient descent proposes a new point as $w' = w \epsilon \nabla_w f(w)$ where ϵ is the learning rate

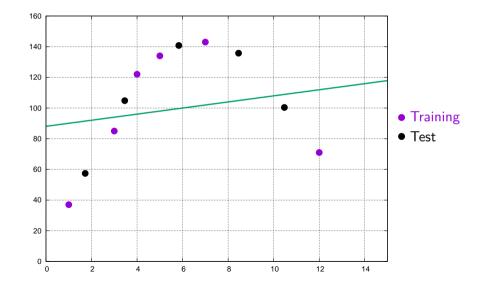
Error

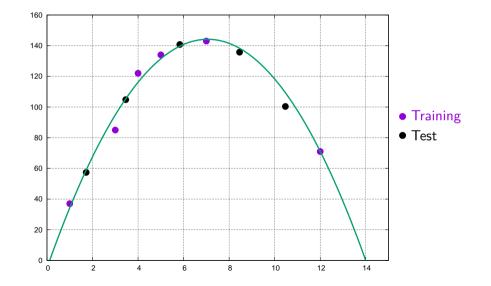
- Training error Error obtained on a training set
- Generalization error Error on unseen data
- Data assumed to be independent and identically distributed (iid)
 - Each data set are independent of each other
 - Train and test data are identically distributed
- Expected training and test error will be the same
- It is more likely that the test error is greater than or equal to the expected value of training error
- Target is to make the training error is small. Also, to make the gap between training and test error smaller

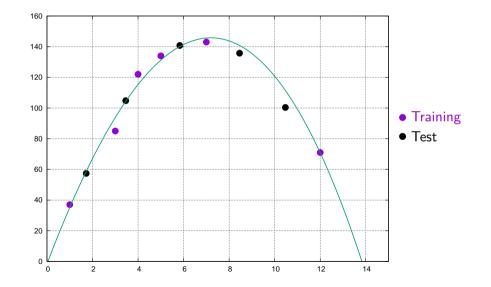
S551

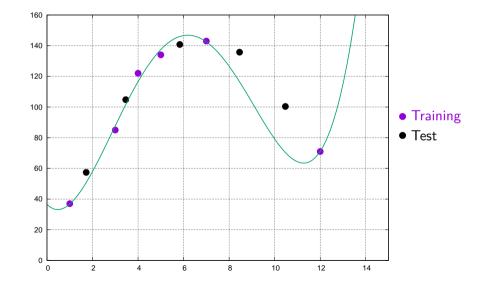
Regression example

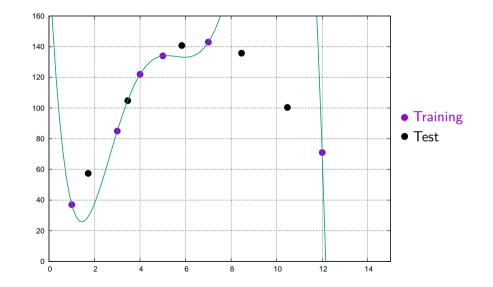


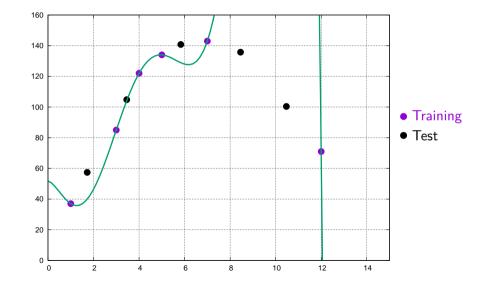








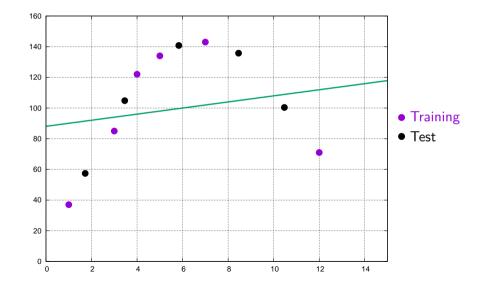




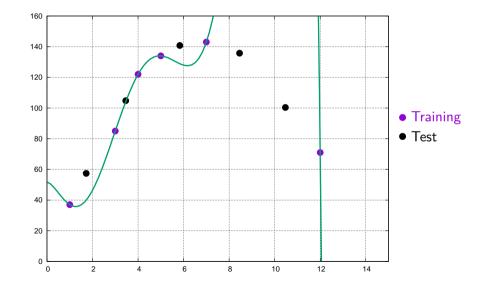
Underfitting & Overfitting

- Underfitting
 - When the model is not able to obtain sufficiently low error value on the training set
- Overfitting
 - When the gap between training set and test set error is too large

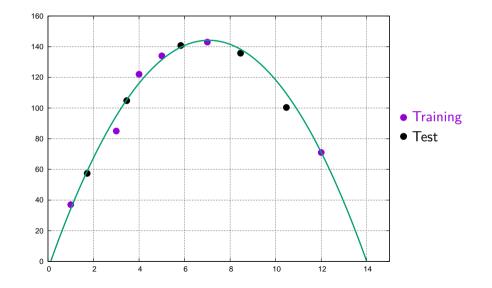
Underfitting example



Overfitting example



Better fit



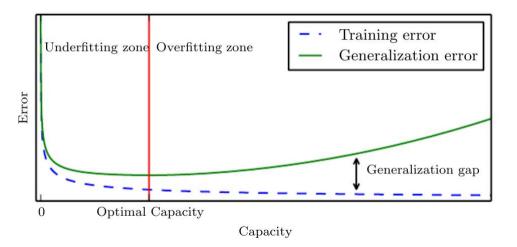
Capacity

- Ability to fit wide variety of functions
 - Low capacity will struggle to fit the training set
 - High capacity will can overfit by memorizing the training set
- Capacity can be controlled by choosing hypothesis space
 - A polynomial of degree 1 gives linear regression $\hat{y} = b + wx$
 - By adding x^2 term, it can learn quadratic curve $\hat{y} = b + w_1 x + w_2 x^2$
 - Output is still a linear function of parameters
- Capacity is determined by the choice of model (Representational capacity)
- Finding best function is very difficult optimization problem
 - Learning algorithm does not find the best function but reduces the training error
 - Imperfection in optimization algorithm can further reduce the capacity of model (effective capacity)

Capacity (contd.)

- Occam's razor
 - Among equally well hypotheses, choose the simplest one
- Vapnik-Chervonenski dimension Capacity for binary classifier
 - Largest possible value of *m* for which a training set of *m* different x points that the classifier can label arbitrarily
 - Training and test error is bounded from above by a quantity that grows as model capacity grows but shrinks as the number of training example increases
 - Bounds are usually provided for ML algorithm and rarely provided for DL
 - Capacity of deep learning model is difficult as the effective capacity is limited by optimization algorithm
 - Little knowledge on non-convex optimization

Error vs Capacity



Non-parametric model

- Parametric model learns a function described by a parameter vector
 - Size of vector is finite and fixed
- Nearest neighbor regression
 - Finds out the nearest entry in training set and returns the associated value as the predicted one
 - Mathematically, for a given point x, $\hat{y} = y_i$ where $i = \arg \min ||X_{i,:} x||_2^2$
- Wrapping parametric algorithm inside another algorithm

Bayes error

- Ideal model is an oracle that knows the true probability distribution for data generation
- Such model can make error because of noise
 - Supervised learning
 - Mapping of x to y may be stochastic
 - y may be deterministic but x does not have all variables
- Error by an oracle in predicting from the true distribution is known as Bayes error

Note

- Training and generalization error varies as the size of training set varies
- Expected generalization error can never increase as the number of training example increases
- Any fixed parametric model with less than the optimal capacity will asymptote to an error value that exceeds the Bayes error
- It is possible to have optimal capacity but have large gap between training and generalization error
 - Need more training examples

No free lunch

- Averaged over all possible data generating distribution, every classification algorithm has same error rate when classifying unseen points
- No machine learning algorithm is universally any better than any other

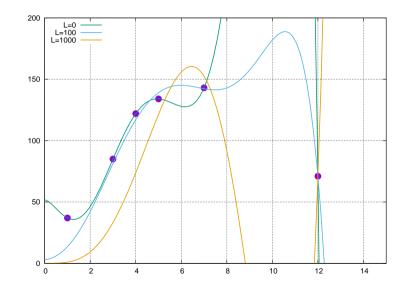
Regularization

- A set of preferences is applied to learning algorithm so that it performs well on a specific task
- Weight decay In linear regression, preference on the weights is introduced
 - Sum of MSE and squared L^2 norms of the weight is minimized ie.

$$J(\mathbf{w}) = \mathbf{MSE}_{train} + \lambda \mathbf{w}^{T} \mathbf{w}$$

- $\lambda = 0$ No preference
- λ becomes large weight becomes smaller
- Regularization is intended to reduce test error not training error

Example: Weight decay



Hyperparameters

- Settings that are used to control the behavior of learning algorithm
 - Degree of polynomial
 - λ for decay weight
- Hyperparameters are usually not adapted or learned on the training set

Validation set

- Test data should not be used to choose the model as well as hyperparameters
- Validation set is constructed from training set
 - Typically 80% will be used for training and rest for validation
- Validation set may be used to train hyperparameters

Cross validation

- Dividing data set into training and fixed test may result into small test set
 - For large data this is not an issue
 - For small data set use k-fold cross validation
 - Partition the data in k disjoint subsets
 - On i-th trial, i-th set used as the test set and rest are treated as training set
 - Test error can be determined by averaging the test error across the k trials

Point estimation

- To provide single best prediction of some quantity of interest
- Estimation of the relationship between input and output variables
- It can be single parameter or a vector of parameters
 - Weights in linear regression
- Notation: true parameter - heta and estimate $-\hat{ heta}$
- Let $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ be set of *m* independent and identically distributed point.
 - A point estimator is a function $\hat{m{ heta}}_m = m{g}(\mathsf{x}^{(1)},\mathsf{x}^{(2)},\ldots,\mathsf{x}^{(m)})$
 - Good estimator is a function whose output is close to $oldsymbol{ heta}$
 - θ is unknown but fixed
 - $\hat{\theta}$ depends on data

CS551

Bias

- Difference between this estimator's expected value and the true value of the parameter being estimated
 - $\mathsf{bias}(\hat{oldsymbol{ heta}}_m) = \mathbb{E}(\hat{oldsymbol{ heta}}_m) oldsymbol{ heta}$
- An estimator will be said unbiased if $\hat{\boldsymbol{\theta}}_{m}) = 0$
 - $\mathbb{E}(\hat{\theta}_m) = \theta$
- An estimator will be asymptotically unbiased if $\lim_{m \to \infty} \mathbf{bias}(\hat{\boldsymbol{ heta}}_m) = 0$

Let us consider a set of samples {x⁽¹⁾, x⁽²⁾, ..., x^(m)} that are independently and identically distributed according to

 $p(\mathbf{x}^{(i)}) = \mathcal{N}(\mathbf{x}^{(i)}; \mu, \sigma^2) \quad \forall i = 1, 2, \dots, m$

- Let us consider a set of samples {x⁽¹⁾, x⁽²⁾, ..., x^(m)} that are independently and identically distributed according to
 p(x⁽ⁱ⁾) = N(x⁽ⁱ⁾; μ, σ²) ∀i = 1, 2, ..., m
- $p(x^{(i)}) = \mathcal{N}(x^{(i)}; \mu, \sigma^2) \quad \forall i = 1, 2, \dots, m$ • Gaussian mean estimator (aka sample mean) - $\hat{\mu}_m = \frac{1}{m} \sum_{i=1}^m x^{(i)}$

- Let us consider a set of samples {x⁽¹⁾, x⁽²⁾, ..., x^(m)} that are independently and identically distributed according to
 p(x⁽ⁱ⁾) = N(x⁽ⁱ⁾; μ, σ²) ∀i = 1, 2, ..., m
- $p(x^{(i)}) = \mathcal{N}(x^{(i)}; \mu, \sigma^2) \quad \forall i = 1, 2, \dots, m$ • Gaussian mean estimator (aka sample mean) - $\hat{\mu}_m = \frac{1}{m} \sum_{i=1}^m x^{(i)}$
 - Bias of sample mean

bias
$$(\hat{\mu}_m) = \mathbb{E}(\hat{\mu}_m) - \mu$$

CS551

- Let us consider a set of samples {x⁽¹⁾, x⁽²⁾, ..., x^(m)} that are independently and identically distributed according to
 p(x⁽ⁱ⁾) = N(x⁽ⁱ⁾; μ, σ²) ∀i = 1, 2, ..., m
- Gaussian mean estimator (aka sample mean) $\hat{\mu}_{m} = rac{1}{m} \sum_{i=1}^{m} x^{(i)}$
 - Bias of sample mean bias $(\hat{\mu}_m) = \mathbb{E}(\hat{\mu}_m) - \mu = \mathbb{E}\left(\frac{1}{m}\sum_{i=1}^m x^{(i)}\right) - \mu$

- Let us consider a set of samples $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ that are independently and identically distributed according to $p(x^{(i)}) = \mathcal{N}(x^{(i)}; \mu, \sigma^2) \quad \forall i = 1, 2, \dots, m$
- Gaussian mean estimator (aka sample mean) $\hat{\mu}_{m} = rac{1}{m}\sum_{i=1}^{m} x^{(i)}$
- Bias of sample mean bias $(\hat{\mu}_m) = \mathbb{E}(\hat{\mu}_m) - \mu = \mathbb{E}\left(\frac{1}{m}\sum_{i=1}^m x^{(i)}\right) - \mu$ $= \left(\frac{1}{m}\sum_{i=1}^m \mathbb{E}\left(x^{(i)}\right)\right) - \mu$

- Let us consider a set of samples $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ that are independently and identically distributed according to $p(x^{(i)}) = \mathcal{N}(x^{(i)}; \mu, \sigma^2) \quad \forall i = 1, 2, \dots, m$
- Gaussian mean estimator (aka sample mean) $\hat{\mu}_m = rac{1}{m}\sum_{i=1}^{'''} x^{(i)}$
- **b** Bias of sample mean bias $(\hat{\mu}_m) = \mathbb{E}(\hat{\mu}_m) - \mu = \mathbb{E}\left(\frac{1}{m}\sum_{i=1}^m x^{(i)}\right) - \mu$ $= \left(\frac{1}{m}\sum_{i=1}^m \mathbb{E}\left(x^{(i)}\right)\right) - \mu = \left(\frac{1}{m}\sum_{i=1}^m \mu\right) - \mu$

- Let us consider a set of samples $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ that are independently and identically distributed according to $p(x^{(i)}) = \mathcal{N}(x^{(i)}; \mu, \sigma^2) \quad \forall i = 1, 2, \dots, m$
- Gaussian mean estimator (aka sample mean) $\hat{\mu}_m = rac{1}{m}\sum_{i=1}^{m} x^{(i)}$
- **Bias of sample mean** $\begin{aligned}
 \mathbf{bias}(\hat{\mu}_m) &= \mathbb{E}(\hat{\mu}_m) - \mu = \mathbb{E}\left(\frac{1}{m}\sum_{i=1}^m x^{(i)}\right) - \mu \\
 &= \left(\frac{1}{m}\sum_{i=1}^m \mathbb{E}\left(x^{(i)}\right)\right) - \mu = \left(\frac{1}{m}\sum_{i=1}^m \mu\right) - \mu = \mu - \mu = 0\end{aligned}$

• Sample variance

•
$$\hat{\sigma}_m^2 = \frac{1}{m} \sum_{i=1}^m (x^{(i)} - \hat{\mu}_m)^2$$

• Sample variance

•
$$\hat{\sigma}_m^2 = \frac{1}{m} \sum_{i=1}^m (\mathbf{x}^{(i)} - \hat{\mu}_m)^2$$

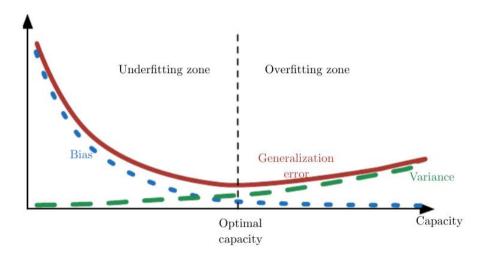
- Bias of sample variance ${\rm bias}(\hat{\sigma}_{\it m}^2)=\mathbb{E}(\hat{\sigma}_{\it m}^2)-\sigma^2$
- It can be shown that, $\mathbb{E}(\hat{\sigma}_{m}^{2}) = rac{m-1}{m}\sigma^{2}$

Trade off Bias and Variance

- Bias Expected deviation from the true value of the function parameter
- Variance Measure of deviation from the expected estimator value
- Choice of estimator large bias or large variance?
 - Use cross-validation
 - Compare Mean Square Error

MSE
$$= \mathbb{E}(\hat{ heta}_{m} - heta)^2 = \mathsf{bias}(\hat{ heta}_{m})^2 + \mathsf{Var}(\hat{ heta}_{m})$$

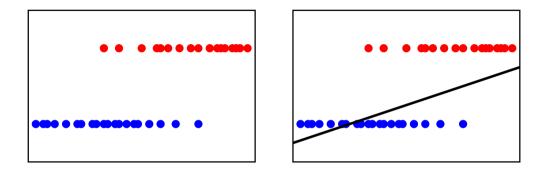
Trade off Bias and Variance (cont)



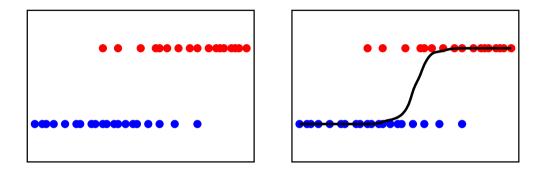
Logistic regression

- Responses may be qualitative (categorical)
 - Example: (Hours of study, pass/fail), (MRI scan, benign/malignant)
 - Output should be 0 or 1
- Predicting qualitative response is known as classification
- Linear regression does not help

Issues with linear regression



Logistic regression



Logistic model

- Linear regression model to represent probability $p(x) = w_0 + w_1 x$
- To avoid problem, we use function $p(x) = \frac{e^{w_0+w_1x}}{1+e^{w_0+w_1x}}$
- Quantity $\frac{p(x)}{1-p(x)} = e^{w_0+w_1x}$ is known as odds
- Taking \log on both the sides, we get \log

$$\left(\frac{p(x)}{1-p(x)}\right) = w_0 + w_1 x$$

- Coefficient can be determined using maximum likelihood
- $I(w_0, w_1) = \prod_{i: y_i=1} p(x_i) \prod_{j: y_j=0} p(x_j)$

Logistic model (contd.)

• Similar to linear regression except the output is mapped between 0 and 1 ie.

 $p(y|\mathbf{x}, \boldsymbol{\theta}) = \sigma(\boldsymbol{\theta}^T \mathbf{x})$

where $\sigma(x) = rac{1}{1 + \exp(-x)}$ (Sigmoid function)

Support Vector Machine

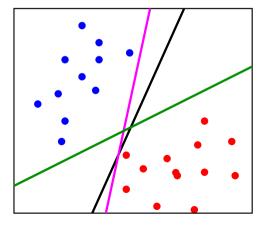
- An approach for classification
- Developed in 1990s
- Generalization of maximum margin classifier
 - Mostly limited to linear boundary
- Support vector classifier broad range of classes
- SVM Non-linear class boundary

Hyperplane

- In *n* dimensional space a hyperplane is a flat affine subspace of dimension n-1
- Mathematically it is defined as
 - For 2 dimensions $w_0 + w_1 x_1 + w_2 x_2 = 0$
 - For *n* dimensions $w_0 + w_1 x_1 + ... + w_n x_n = 0$

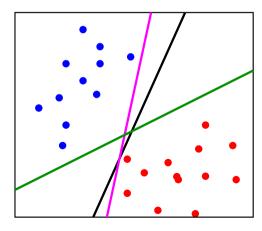
Classification using Hyperplane

• Assume, *m* training observation in *n* dimensional space



Classification using Hyperplane

- Assume, *m* training observation in *n* dimensional space
- Separating hyperplane has the property
 - $w_0 + w_1 x_1 + \ldots + w_n x_n > 0$ if $y_i = 1$
 - $w_0 + w_1 x_1 + \ldots + w_n x_n < 0$ if $y_i = -1$

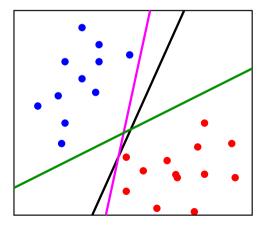


Classification using Hyperplane

- Assume, *m* training observation in *n* dimensional space
- Separating hyperplane has the property
 - $w_0 + w_1 x_1 + \ldots + w_n x_n > 0$ if $y_i = 1$
 - $w_0 + w_1 x_1 + \ldots + w_n x_n < 0$ if $y_i = -1$
- Hence, $y_i(w_0 + w_1x_1 + \ldots + w_nx_n) > 0$
- Classification of test observation *x** is done based on the sign of

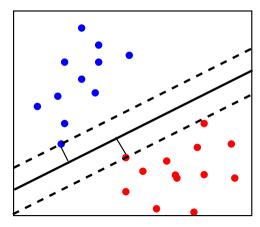
$$f(\mathbf{x}^*) = \mathbf{w}_0 + \mathbf{w}_1 \mathbf{x}_1^* + \ldots + \mathbf{w}_n \mathbf{x}_n^*$$

- Magnitude of $f(x^*)$
 - Far from 0 Confident about prediction
 - Close to 0 Less certain



Maximal margin classifier

- Also known as optimal separating hyperplane
- Separating hyperplane farthest from training observation
 - Compute perpendicular distance from training point to the hyperplane
 - Smallest of these distances represents the margin
- Target is to find the hyperplane for which the margin is the largest



CS551

Construction of maximal margin classifier

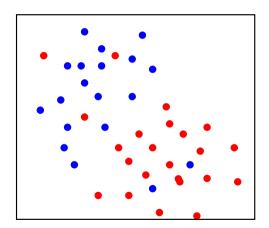
- Input *m* points in *n* dimension space ie. x₁, x₂, ..., x_m
- Input labels y_1, y_2, \ldots, y_m for each point x_i where $y_i \in \{-1, 1\}$
- Need to solve the following optimization problem

 $\max_{w_0,w_1,\ldots,w_n,M} M$ subject to

 $y_i(w_0 + w_1 x_{i1} + w_{i2} + \ldots + w_{in} x_{in}) \ge M \quad \forall i = 1, \ldots, m$ $\sum_{i=1}^n w_i^2 = 1$

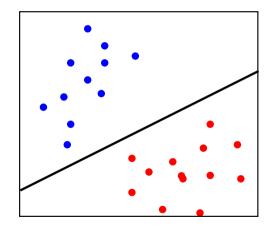
Issues

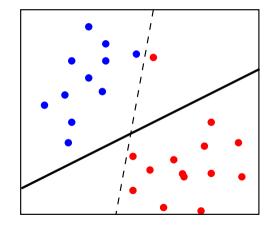
• Maximal margin classifier fails to provide classification in case of overlap



Issues

• Single observation point can change the hyperplane drastically



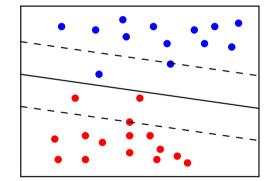


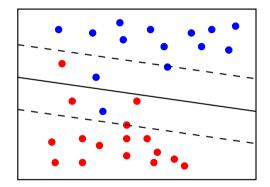
Support Vector Classifier

- Provides greater robustness to individual observations
- Better classification of most of the training observations
- Worthwhile to misclassify a few training observations
- Also known as soft margin classifier

Support Vector Classifier

• Points can lie within the margin or wrong side of hyperplane





Optimization with misclassification

- Input $x_1, x_2, ..., x_m$ and $y_1, y_2, ..., y_m$
- Need to solve the following optimization problem

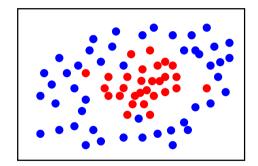
 $\max_{\substack{w_0, w_1, \dots, w_n, M \\ \text{subject to}}} M$ $\sum_{i=1}^{n} w_i^2 = 1, \quad \sum_{i=1}^{m} \epsilon_i = C$

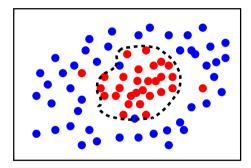
- *C* is non-negative tuning parameter, ϵ_i slack variable
- Classification of test observation remains the same

Observations

- $\epsilon_i = 0 i$ th observation is on the correct side of margin
- $\epsilon_i > 0 i$ th observation is on the wrong side of margin
- $\epsilon_i > 1 i$ th observation is on the wrong side of hyperplane
- C budget for the amount that the margin can be violated by m observations
 - C = 0 No violation, ie. maximal margin classifier
 - C > 0 No more than C observation can be on the wrong side of hyperplane
 - C is small Narrow margin, highly fit to data, low bias and high variance
 - C is large Fitting data is less hard, more bias and may have less variance

Classification with non-linear boundaries





Classification with non-linear boundaries

- Performance of linear regression can suffer for non-linear data
- Feature space can be enlarged using function of predictors
 - For example, instead of fitting with x_1, x_2, \ldots, x_n features we could use $x_1, x_1^2, x_2, x_2^2, \ldots, x_n, x_n^2$ as features
- Optimization problem becomes

 $\max_{\substack{w_0,w_{11},w_{12},\ldots,w_{n1},w_{n2},\epsilon_i,M}} M$ subject to

$$y_{i}\left(w_{0} + \sum_{j=1}^{n} w_{j1}x_{ij} + \sum_{j=1}^{n} w_{j2}x_{ij}^{2}\right) \ge M(1 - \epsilon_{i}) \quad \forall i = 1, \dots, m$$
$$\sum_{i=1}^{n} \sum_{j=1}^{2} w_{ij}^{2} = 1, \quad \sum_{i=1}^{m} \epsilon_{i} \le C, \quad \epsilon_{i} \ge 0$$

Support Vector Machine

- Extension of support vector classifier that results from enlarging feature space
- It involves inner product of the observations $f(x) = w_0 + \sum_{i=1}^{\infty} \alpha_i \langle x, x_i \rangle$ where α_i one per training example
 - To estimate α_i and w_0 , we need m(m-1)/2 inner products, $\langle x_i, x_{i'} \rangle$
 -) It turns out that $lpha_i
 eq 0$ for support vectors

$$f(\mathbf{x}) = \mathbf{w}_0 + \sum_{i \in S} lpha_i \langle \mathsf{x}, \mathsf{x}_i
angle$$
 where S - set of support vectors

Support Vector Machine

- Inner product is replaced with kernel, K or $K(x_i, x_{i'})$
- Kernel quantifies similarity between observations $K(x_i, x_{i'}) = \sum_{j=1}^n x_{ij} x_{i'j}$
 - Above one is Linear kernel ie. Pearson correlation
- Polynomial kernel $K(x_i, x_{i'}) = \left(1 + \sum_{j=1}^n x_{ij} x_{i'j}\right)^d$ where d is positive integer > 1
 - Support vector classifier with non-linear kernel is known as support vector machine and the function will look

$$f(\mathbf{x}) = \mathbf{w}_0 + \sum_{i \in S} \alpha_i \mathbf{K}(\mathbf{x}, \mathbf{x}_i)$$

• Radial kernel: $K(x_i, x_{i'}) = \exp\left(-\gamma \sum_{i=1}^n (x_{ij} - x_{i'j})^2\right)$ where $\gamma > 0$

Challenges for Deep Learning

- Curse of dimensionality
- Local constancy and smoothness regularization
- Manifold learning