
CS5511

Introduction to Deep Learning

Overview of Linear Algebra

Arijit Mondal
Dept. of Computer Science & Engineering

Indian Institute of Technology Patna

arijit@iitp.ac.in

CS
55
1

2

Scalars
• A scalar is a single number
• It can be real, integer, etc.
• Typically it will be denoted using lowercase italics: a, x, n
• Example:
• Let s ∈ R be the slope of the line
• Let n ∈ N be the number of units

CS
55
1

3

Vectors
• It is an array of numbers (eg. scalars) and arranged in order

• Typically it will be denoted using lowercase bold font: x =

 x1
x2
. . .
xn

• Need to specify what kind of numbers are stored
• If each element is inR then the vector lies inRn (Cartesian product n times)
• Identify points in space, each element giving the coordinate along different axis
• A set of elements, x1, x3, x5 can be specified as xS where S = 1, 3, 5
• x−2 is a vector containing all elements except x2

CS
55
1

4

Matrices

• A matrix is a 2D array of numbers X = [xi,j] =

 x1,1 x1,2 . . . x1,n
...

...
...

...
xm,1 xm,2 . . . xm,n

• Example notation for type and shape X ∈ Rm×n

• The jth column will be denoted as xj or X:,j — X =

[| | . . . |
x1 x2 . . . xn
| | . . . |

]

• n-dimensional vector can be represented as n rows and 1 column x =

 x1
...

xn

CS
55
1

5

Tensors
• A tensor is an array of numbers that may have
• Zero dimensions, and be a scalar
• One dimension, and be a vector
• Two dimensions, and be a matrix
• Or, more dimensions.

CS
55
1

6

Matrix transpose
• Rows and columns are interchanged that is XT = [xi,j]

T = [xj,i]

• For example, X =

[
x1,1 x1,2 x1,3
x2,1 x2,2 x2,3

]
XT =

[x1,1 x2,1
x1,2 x2,2
x1,3 x2,3

]
• Mirror image of matrix across the main diagonal
• For scalars,

a = aT

• (AB)T = BT × AT

CS
55
1

6

Matrix transpose
• Rows and columns are interchanged that is XT = [xi,j]

T = [xj,i]

• For example, X =

[
x1,1 x1,2 x1,3
x2,1 x2,2 x2,3

]
XT =

[x1,1 x2,1
x1,2 x2,2
x1,3 x2,3

]
• Mirror image of matrix across the main diagonal
• For scalars, a = aT

• (AB)T = BT × AT

CS
55
1

6

Matrix transpose
• Rows and columns are interchanged that is XT = [xi,j]

T = [xj,i]

• For example, X =

[
x1,1 x1,2 x1,3
x2,1 x2,2 x2,3

]
XT =

[x1,1 x2,1
x1,2 x2,2
x1,3 x2,3

]
• Mirror image of matrix across the main diagonal
• For scalars, a = aT

• (AB)T

= BT × AT

CS
55
1

6

Matrix transpose
• Rows and columns are interchanged that is XT = [xi,j]

T = [xj,i]

• For example, X =

[
x1,1 x1,2 x1,3
x2,1 x2,2 x2,3

]
XT =

[x1,1 x2,1
x1,2 x2,2
x1,3 x2,3

]
• Mirror image of matrix across the main diagonal
• For scalars, a = aT

• (AB)T = BT × AT

image source: Data Science Design Manual

CS
55
1

7

Matrix manipulation
• Matrix addition C = A + B ⇒ Ci,j = Ai,j + Bi,j

• Matrix multiplication C = A × B ⇒ Ci,j =
∑

k
Ai,k × Bk,j

• Multiplication and addition are associative:
(AB)C = A(BC)

(A + B) + C = A + (B + C)
• Multiplication is distributive: A × (B + C) = AB + AC
• Multiplication is not commutative (in general): AB ̸= BA

CS
55
1

8

Matrix Dot Product
• Let us assume Z = X × Y, where X ∈ Rm×n and Y ∈ Rn×p

• Number of columns in X should be equal to number of rows in Y

• zij =
n∑

k=1

xik × ykj

CS
55
1

9

Identity matrix
• All elements are 0 except for diagonal elements which are 1

• Example, I3 =
[

1 0 0
0 1 0
0 0 1

]
• ∀x ∈ Rn, Inx = x

CS
55
1

10

Covariance matrix
• Multiplication by transpose matrix is common ie. A · AT

• Both A · AT and AT · A are compatible for multiplications
• LetAn×d be a featurematrix, each row represents an item and each column denotes a feature

• C = AAT is a n × nmatrix dot product
• Cij is a measure how similar item i is to item j (in syncness)

• D = ATA is a d × d dot products in syncness among the features
• Dij represents the similarity between feature i and feature j

CS
55
1

10

Covariance matrix
• Multiplication by transpose matrix is common ie. A · AT

• Both A · AT and AT · A are compatible for multiplications
• LetAn×d be a featurematrix, each row represents an item and each column denotes a feature
• C = AAT is a n × nmatrix dot product

• Cij is a measure how similar item i is to item j (in syncness)
• D = ATA is a d × d dot products in syncness among the features
• Dij represents the similarity between feature i and feature j

CS
55
1

10

Covariance matrix
• Multiplication by transpose matrix is common ie. A · AT

• Both A · AT and AT · A are compatible for multiplications
• LetAn×d be a featurematrix, each row represents an item and each column denotes a feature
• C = AAT is a n × nmatrix dot product
• Cij is a measure how similar item i is to item j (in syncness)

• D = ATA is a d × d dot products in syncness among the features
• Dij represents the similarity between feature i and feature j

CS
55
1

10

Covariance matrix
• Multiplication by transpose matrix is common ie. A · AT

• Both A · AT and AT · A are compatible for multiplications
• LetAn×d be a featurematrix, each row represents an item and each column denotes a feature
• C = AAT is a n × nmatrix dot product
• Cij is a measure how similar item i is to item j (in syncness)

• D = ATA is a d × d dot products in syncness among the features

• Dij represents the similarity between feature i and feature j

CS
55
1

10

Covariance matrix
• Multiplication by transpose matrix is common ie. A · AT

• Both A · AT and AT · A are compatible for multiplications
• LetAn×d be a featurematrix, each row represents an item and each column denotes a feature
• C = AAT is a n × nmatrix dot product
• Cij is a measure how similar item i is to item j (in syncness)

• D = ATA is a d × d dot products in syncness among the features
• Dij represents the similarity between feature i and feature j

image source: Data Science Design Manual

CS
55
1

11

Covariance matrix (contd)
• A, A · AT, AT · A

CS
55
1

12

Systems of equations
• Consider following equations: 4x1 − 5x2 = −13

−2x1 + 3x2 = 9

• This can be expressed in the form Ax = b where

A =

[
4 −5
−2 3

]
b =

[
−13
9

]
• A1,:x = b1,A2,:x = b2, . . .

• A linear system of equations can have:
• No solution
• Many solutions
• Exactly one solution: this means multiplication by the matrix is an invertible function

x1

x2

A =

[
1 3

2 1

]
x =

[
2

1

]

Ax =

[
1

2

]
× 2 +

[
3

1

]
× 1 =

[
5

5

]

CS
55
1

13

Linear transformation

x1

x2

A =

[
1 3

2 1

]
x =

[
2

1

]

Ax =

[
1

2

]
× 2 +

[
3

1

]
× 1 =

[
5

5

]

CS
55
1

13

Linear transformation

x1

x2

A =

[
1 3

2 1

]
x =

[
2

1

]

Ax =

[
1

2

]
× 2 +

[
3

1

]
× 1 =

[
5

5

]

CS
55
1

13

Linear transformation

x1

x2

A =

[
1 3

2 1

]
x =

[
2

1

]

Ax =

[
1

2

]
× 2 +

[
3

1

]
× 1 =

[
5

5

]

CS
55
1

13

Linear transformation

x1

x2

A =

[
1 3

2 1

]
x =

[
2

1

]

Ax =

[
1

2

]
× 2 +

[
3

1

]
× 1 =

[
5

5

]

CS
55
1

13

Linear transformation

x1

x2

A =

[
1 3

2 1

]
x =

[
2

1

]

Ax =

[
1

2

]
× 2 +

[
3

1

]
× 1 =

[
5

5

]

CS
55
1

13

Linear transformation

x1

x2

A =

[
1 3

2 1

]
x =

[
2

1

]

Ax =

[
1

2

]
× 2 +

[
3

1

]
× 1 =

[
5

5

]

CS
55
1

13

Linear transformation

CS
55
1

14

Matrix inversion
• A−1 × A = In
• Solving a system of equations using inverse

Ax = b
A−1Ax = A−1b

Inx = A−1b
x = A−1b

• Numerically unstable, but useful for abstract analysis
• Matrix cannot be inverted if
• More rows than columns
• More columns than rows
• Redundant rows/columns (“linearly dependent”,“low rank”)

image source: Data Science Design Manual

CS
55
1

15

Inversion Example
• Inverse of Lincoln image andM · M−1

CS
55
1

16

Linear Independence
• Column can be thought of as specifying direction from origin
• Each element of x specify how farwe shouldmove in each of these direction ie,Ax =

∑
xiA:,i

• Formally, this is a linear combination of the set of vectors
• Span of set of vectors is the set of all points obtainable by linear combination of the original
vectors

• Solution of Ax = b ⇒ Testing whether b is in span of column of A
• Span is known as column space or range of A

CS
55
1

17

Linear Independence (contd.)
• Ax = b to have solution for all b ∈ Rm, column space of Amust beRm

• Amust have at leastm column ie. n ≥ m
• Consider A has size 3× 2 and b is 3D point

• x will be 2D point
• It traces out 2D plane withinR3

• Equation will have solution if b lies in that plane
• n ≥ m is a necessary condition
• Consider a 2× 2matrix where both columns are the same
• Column space is just a line inR2

CS
55
1

18

Linear Independence (contd.)
• A set of vectors is linearly independent if no vectors in the set is a linear combination of
other vectors
• No new points will be added if linear combination of vectors are added in the set

• Suppose column space isRm

• Need to have exactlym linearly independent column
• No set of m dimensional vectors can have more than m mutually linearly independent
column

• A square matrix with linearly dependent columns is known as singular
• A matrix to have inverse, Ax = b has at most one solution for each value of b
• A is not square but singular, it is still possible to solve Ax = b. However, matrix inversion
method cannot be used

CS
55
1

19

Norms
• Measure the size of vector. It is defined as

Lp = ∥x∥p =

(∑
i
|xi|P

)1/p

p ∈ R, p ≥ 1

• Intuitive meaning: distance of x from the origin
• Norm is any function f that satisfies
• f(x) = 0

⇒ x = 0
• f(x + y) ≤ f(x) + f(y) (triangle inequality)
• ∀α ∈ R, f(αx) = αf(x)

CS
55
1

19

Norms
• Measure the size of vector. It is defined as

Lp = ∥x∥p =

(∑
i
|xi|P

)1/p

p ∈ R, p ≥ 1

• Intuitive meaning: distance of x from the origin
• Norm is any function f that satisfies
• f(x) = 0⇒ x = 0

• f(x + y) ≤ f(x) + f(y) (triangle inequality)
• ∀α ∈ R, f(αx) = αf(x)

CS
55
1

19

Norms
• Measure the size of vector. It is defined as

Lp = ∥x∥p =

(∑
i
|xi|P

)1/p

p ∈ R, p ≥ 1

• Intuitive meaning: distance of x from the origin
• Norm is any function f that satisfies
• f(x) = 0⇒ x = 0
• f(x + y) ≤ f(x) + f(y) (triangle inequality)

• ∀α ∈ R, f(αx) = αf(x)

CS
55
1

19

Norms
• Measure the size of vector. It is defined as

Lp = ∥x∥p =

(∑
i
|xi|P

)1/p

p ∈ R, p ≥ 1

• Intuitive meaning: distance of x from the origin
• Norm is any function f that satisfies
• f(x) = 0⇒ x = 0
• f(x + y) ≤ f(x) + f(y) (triangle inequality)
• ∀α ∈ R, f(αx)

= αf(x)

CS
55
1

19

Norms
• Measure the size of vector. It is defined as

Lp = ∥x∥p =

(∑
i
|xi|P

)1/p

p ∈ R, p ≥ 1

• Intuitive meaning: distance of x from the origin
• Norm is any function f that satisfies
• f(x) = 0⇒ x = 0
• f(x + y) ≤ f(x) + f(y) (triangle inequality)
• ∀α ∈ R, f(αx) = αf(x)

CS
55
1

20

Norms (contd)
• L2 norm is known as Euclidean norm
• It is often denoted as ∥x∥ instead of ∥x∥2
• Squared L2 norm can be determined by xTx. This is very often used

• Derivative of the squared L2 norm depend only on the corresponding element
∂(xTx)
∂xi

=
∂(x21 + . . .+ x2m)

∂xi
• Derivative of L2 depend on entire vector

∂
√

(xTx)
∂xi

=
∂
√

(x21 + . . .+ x2m)
∂xi

• Squared L2 norm is undesirable as it increases very slowly at the origin

CS
55
1

21

Norms (contd)
• Need to identify elements that are zero and elements that are non-zero but small
• Need a function that grows at the same rate in all locations L1 = ∥x∥ =

∑
i
|xi|

• L1 can be used to differentiate zero and non-zero elements
• L∞ (max norm) - Absolute value of the elements with the largest magnitude in the vector
∥x∥∞ = maxi |xi|

• Frobenius norm

∥A∥F =

√∑
i,j

A2
i,j

• This is analogous to L2 norm of vector

CS
55
1

22

Special matrices
• Diagonal matrices — Non-zero diagonal elements and rests are zero. FormallyDi,j = 0, i ̸= j
• Identity matrix
• diag(v) — vectors using diagonal elements
• diag(v)x— xi is scaled by vi
• Inversion is easy diag(v)−1=diag([1/v1, 1/v2, . . . , 1/vn]

T)
• Not all diagonal matrix be square
• Rectangular diagonal matrix is possible
• Dx— Scaling each element of x

• Concatenate some zero ifD is taller
• Discard some last elements ifD is wider

• Symmetric matrix — Arises when the entries are generated by a function of two arguments
that does not depend on order
• Distance matrix Ai,j = Aj,i

CS
55
1

23

Special vectors & matrices
• Unit vector — A vector with unit norm ∥x∥2 = 1

• For vectors x and y, if xTy = 0

• Norm of x or y is zero
• x and y are at 900

• In Rn, at most n vectors may be mutually orthogonal with non-zero norm
• Vectors orthogonal and have unit norm is known as orthonormal
• Orthogonalmatrix— Squarematrix, rows aremutually orthonormal, columns aremutually
orthonormal
• ATA = AAT = I ⇒ AT = A−1

• Orthonormal matrices are of interest as inverse computation is easy

CS
55
1

23

Special vectors & matrices
• Unit vector — A vector with unit norm ∥x∥2 = 1

• For vectors x and y, if xTy = 0

• Norm of x or y is zero
• x and y are at 900

• In Rn, at most n vectors may be mutually orthogonal with non-zero norm
• Vectors orthogonal and have unit norm is known as orthonormal
• Orthogonalmatrix— Squarematrix, rows aremutually orthonormal, columns aremutually
orthonormal
• ATA = AAT = I ⇒ AT = A−1

• Orthonormal matrices are of interest as inverse computation is easy

CS
55
1

23

Special vectors & matrices
• Unit vector — A vector with unit norm ∥x∥2 = 1

• For vectors x and y, if xTy = 0

• Norm of x or y is zero
• x and y are at 900

• In Rn, at most n vectors may be mutually orthogonal with non-zero norm
• Vectors orthogonal and have unit norm is known as orthonormal
• Orthogonalmatrix— Squarematrix, rows aremutually orthonormal, columns aremutually
orthonormal
• ATA =

AAT = I ⇒ AT = A−1

• Orthonormal matrices are of interest as inverse computation is easy

CS
55
1

23

Special vectors & matrices
• Unit vector — A vector with unit norm ∥x∥2 = 1

• For vectors x and y, if xTy = 0

• Norm of x or y is zero
• x and y are at 900

• In Rn, at most n vectors may be mutually orthogonal with non-zero norm
• Vectors orthogonal and have unit norm is known as orthonormal
• Orthogonalmatrix— Squarematrix, rows aremutually orthonormal, columns aremutually
orthonormal
• ATA = AAT = I

⇒ AT = A−1

• Orthonormal matrices are of interest as inverse computation is easy

CS
55
1

23

Special vectors & matrices
• Unit vector — A vector with unit norm ∥x∥2 = 1

• For vectors x and y, if xTy = 0

• Norm of x or y is zero
• x and y are at 900

• In Rn, at most n vectors may be mutually orthogonal with non-zero norm
• Vectors orthogonal and have unit norm is known as orthonormal
• Orthogonalmatrix— Squarematrix, rows aremutually orthonormal, columns aremutually
orthonormal
• ATA = AAT = I ⇒ AT = A−1

• Orthonormal matrices are of interest as inverse computation is easy

image source: Data Science Design Manual

CS
55
1

24

Factoring matrices
• Factoring matrix A into matrices in B and C represents particular aspect of division
• Non-singular matrix has an inverse I = M · M−1

• Matrix factorization is an important abstraction in data science, leading to feature represen-
tation in a compact way

• Suppose matrix A can be factored as A ≈ BC where the size of A is n × m, B— n × k, C—
k × m where k < min(n,m)

CS
55
1

25

Eigen decomposition
• Similar to prime factorization of integer
• 12 = 2× 2× 3
• 12 is not divisible by 5

• Eigen vector of square matrix A is a non-zero vector such that Av = λv
• λ is a scalar and known as eigen value
• Mostly right eigen vector is considered
• If v is eigen vector, then so is sv

• Usually we look for unit eigen vector

• SupposeA has n linearly independent eigen vector {v1, v2 . . . , vn}with corresponding eigen
value {λ1, λ2, . . . , λn}
• Concatenate all eigen vector, one per column V = [v1, v2 . . . , vn], similarly for λ =
[λ1, λ2, . . . , λn]

• Eigen decomposition AV = Vλ

⇒ A = Vdiag(λ)V−1

CS
55
1

25

Eigen decomposition
• Similar to prime factorization of integer
• 12 = 2× 2× 3
• 12 is not divisible by 5

• Eigen vector of square matrix A is a non-zero vector such that Av = λv
• λ is a scalar and known as eigen value
• Mostly right eigen vector is considered
• If v is eigen vector, then so is sv

• Usually we look for unit eigen vector

• SupposeA has n linearly independent eigen vector {v1, v2 . . . , vn}with corresponding eigen
value {λ1, λ2, . . . , λn}
• Concatenate all eigen vector, one per column V = [v1, v2 . . . , vn], similarly for λ =
[λ1, λ2, . . . , λn]

• Eigen decomposition AV = Vλ ⇒ A = Vdiag(λ)V−1

x

y
A =

[
1.25 0.75

0.75 1.25

]

v1 =
[

0.707

0.707

]
, λ1 = 2.0

v2 =
[

−0.707

0.707

]
, λ2 = 0.5

Av1 =
[

1.414

1.414

]
Av2 =

[
−0.354

0.354

]
Given ∥x∥ = 1, find Ax

CS
55
1

26

Example

x

y
A =

[
1.25 0.75

0.75 1.25

]

v1 =
[

0.707

0.707

]
, λ1 = 2.0

v2 =
[

−0.707

0.707

]
, λ2 = 0.5

Av1 =
[

1.414

1.414

]
Av2 =

[
−0.354

0.354

]
Given ∥x∥ = 1, find Ax

CS
55
1

26

Example

x

y
A =

[
1.25 0.75

0.75 1.25

]

v1 =
[

0.707

0.707

]
, λ1 = 2.0

v2 =
[

−0.707

0.707

]
, λ2 = 0.5

Av1 =
[

1.414

1.414

]
Av2 =

[
−0.354

0.354

]
Given ∥x∥ = 1, find Ax

CS
55
1

26

Example

x

y
A =

[
1.25 0.75

0.75 1.25

]

v1 =
[

0.707

0.707

]
, λ1 = 2.0

v2 =
[

−0.707

0.707

]
, λ2 = 0.5

Av1 =
[

1.414

1.414

]
Av2 =

[
−0.354

0.354

]
Given ∥x∥ = 1, find Ax

CS
55
1

26

Example

x

y
A =

[
1.25 0.75

0.75 1.25

]

v1 =
[

0.707

0.707

]
, λ1 = 2.0

v2 =
[

−0.707

0.707

]
, λ2 = 0.5

Av1 =
[

1.414

1.414

]

Av2 =
[

−0.354

0.354

]
Given ∥x∥ = 1, find Ax

CS
55
1

26

Example

x

y
A =

[
1.25 0.75

0.75 1.25

]

v1 =
[

0.707

0.707

]
, λ1 = 2.0

v2 =
[

−0.707

0.707

]
, λ2 = 0.5

Av1 =
[

1.414

1.414

]

Av2 =
[

−0.354

0.354

]
Given ∥x∥ = 1, find Ax

CS
55
1

26

Example

x

y
A =

[
1.25 0.75

0.75 1.25

]

v1 =
[

0.707

0.707

]
, λ1 = 2.0

v2 =
[

−0.707

0.707

]
, λ2 = 0.5

Av1 =
[

1.414

1.414

]

Av2 =
[

−0.354

0.354

]
Given ∥x∥ = 1, find Ax

CS
55
1

26

Example

x

y
A =

[
1.25 0.75

0.75 1.25

]

v1 =
[

0.707

0.707

]
, λ1 = 2.0

v2 =
[

−0.707

0.707

]
, λ2 = 0.5

Av1 =
[

1.414

1.414

]

Av2 =
[

−0.354

0.354

]
Given ∥x∥ = 1, find Ax

CS
55
1

26

Example

x

y
A =

[
1.25 0.75

0.75 1.25

]

v1 =
[

0.707

0.707

]
, λ1 = 2.0

v2 =
[

−0.707

0.707

]
, λ2 = 0.5

Av1 =
[

1.414

1.414

]
Av2 =

[
−0.354

0.354

]

Given ∥x∥ = 1, find Ax

CS
55
1

26

Example

x

y
A =

[
1.25 0.75

0.75 1.25

]

v1 =
[

0.707

0.707

]
, λ1 = 2.0

v2 =
[

−0.707

0.707

]
, λ2 = 0.5

Av1 =
[

1.414

1.414

]
Av2 =

[
−0.354

0.354

]

Given ∥x∥ = 1, find Ax

CS
55
1

26

Example

x

y
A =

[
1.25 0.75

0.75 1.25

]

v1 =
[

0.707

0.707

]
, λ1 = 2.0

v2 =
[

−0.707

0.707

]
, λ2 = 0.5

Av1 =
[

1.414

1.414

]
Av2 =

[
−0.354

0.354

]
Given ∥x∥ = 1, find Ax

CS
55
1

26

Example

x

y
A =

[
1.25 0.75

0.75 1.25

]

v1 =
[

0.707

0.707

]
, λ1 = 2.0

v2 =
[

−0.707

0.707

]
, λ2 = 0.5

Av1 =
[

1.414

1.414

]
Av2 =

[
−0.354

0.354

]
Given ∥x∥ = 1, find Ax

CS
55
1

26

Example

x

y
A =

[
1.25 0.75

0.75 1.25

]

v1 =
[

0.707

0.707

]
, λ1 = 2.0

v2 =
[

−0.707

0.707

]
, λ2 = 0.5

Av1 =
[

1.414

1.414

]
Av2 =

[
−0.354

0.354

]
Given ∥x∥ = 1, find Ax

CS
55
1

26

Example

x

y
A =

[
1.25 0.75

0.75 1.25

]

v1 =
[

0.707

0.707

]
, λ1 = 2.0

v2 =
[

−0.707

0.707

]
, λ2 = 0.5

Av1 =
[

1.414

1.414

]
Av2 =

[
−0.354

0.354

]
Given ∥x∥ = 1, find Ax

CS
55
1

26

Example

x

y
A =

[
1.25 0.75

0.75 1.25

]

v1 =
[

0.707

0.707

]
, λ1 = 2.0

v2 =
[

−0.707

0.707

]
, λ2 = 0.5

Av1 =
[

1.414

1.414

]
Av2 =

[
−0.354

0.354

]
Given ∥x∥ = 1, find Ax

CS
55
1

26

Example

x

y
A =

[
1.25 0.75

0.75 1.25

]

v1 =
[

0.707

0.707

]
, λ1 = 2.0

v2 =
[

−0.707

0.707

]
, λ2 = 0.5

Av1 =
[

1.414

1.414

]
Av2 =

[
−0.354

0.354

]
Given ∥x∥ = 1, find Ax

CS
55
1

26

Example

x

y
A =

[
1.25 0.75

0.75 1.25

]

v1 =
[

0.707

0.707

]
, λ1 = 2.0

v2 =
[

−0.707

0.707

]
, λ2 = 0.5

Av1 =
[

1.414

1.414

]
Av2 =

[
−0.354

0.354

]
Given ∥x∥ = 1, find Ax

CS
55
1

26

Example

x

y
A =

[
1.25 0.75

0.75 1.25

]

v1 =
[

0.707

0.707

]
, λ1 = 2.0

v2 =
[

−0.707

0.707

]
, λ2 = 0.5

Av1 =
[

1.414

1.414

]
Av2 =

[
−0.354

0.354

]
Given ∥x∥ = 1, find Ax

CS
55
1

26

Example

x

y
A =

[
1.25 0.75

0.75 1.25

]

v1 =
[

0.707

0.707

]
, λ1 = 2.0

v2 =
[

−0.707

0.707

]
, λ2 = 0.5

Av1 =
[

1.414

1.414

]
Av2 =

[
−0.354

0.354

]
Given ∥x∥ = 1, find Ax

CS
55
1

26

Example

x

y
A =

[
1.25 0.75

0.75 1.25

]

v1 =
[

0.707

0.707

]
, λ1 = 2.0

v2 =
[

−0.707

0.707

]
, λ2 = 0.5

Av1 =
[

1.414

1.414

]
Av2 =

[
−0.354

0.354

]
Given ∥x∥ = 1, find Ax

CS
55
1

26

Example

x

y
A =

[
1.25 0.75

0.75 1.25

]

v1 =
[

0.707

0.707

]
, λ1 = 2.0

v2 =
[

−0.707

0.707

]
, λ2 = 0.5

Av1 =
[

1.414

1.414

]
Av2 =

[
−0.354

0.354

]
Given ∥x∥ = 1, find Ax

CS
55
1

26

Example

x

y
A =

[
1.25 0.75

0.75 1.25

]

v1 =
[

0.707

0.707

]
, λ1 = 2.0

v2 =
[

−0.707

0.707

]
, λ2 = 0.5

Av1 =
[

1.414

1.414

]
Av2 =

[
−0.354

0.354

]
Given ∥x∥ = 1, find Ax

CS
55
1

26

Example

x

y
A =

[
1.25 0.75

0.75 1.25

]

v1 =
[

0.707

0.707

]
, λ1 = 2.0

v2 =
[

−0.707

0.707

]
, λ2 = 0.5

Av1 =
[

1.414

1.414

]
Av2 =

[
−0.354

0.354

]
Given ∥x∥ = 1, find Ax

CS
55
1

26

Example

CS
55
1

27

Eigen decomposition (contd)
• Every real symmetric matrix can be decomposed into an expression using only real valued
eigen value and eigen vector

A = QΛQT

• Q is orthogonal matrix correspond of eigen vector of A
• Λ - Diagonal matrix

• Λi,i is associated with eigen vector in column i ofQ ie. Q:i

• AsQ is orthogonal, A is scaling space by λi in vi

• Real symmetric matrix is guaranteed to have eigen decomposition but not unique
• Two or more eigen vector can have same eigen value
• Sort the entries ofΛ in descending order

CS
55
1

28

Eigen decomposition (contd)
• Matrix is said to be singular if any one of the eigen value is 0
• Eigen decomposition can be used for optimization for the expression f(x) = xTAx subject
to ∥x∥2 = 1

• Whenever x is equal to an eigen vector of A, f takes on the value of corresponding eigen
value

• Matrices with
• All positive eigen value — Positive definite (xTAx > 0)
• All positive or 0 eigen value — Positive semidefinite (xTAx ≥ 0)
• All negative eigen value — Negative definite (xTAx < 0)

CS
55
1

28

Eigen decomposition (contd)
• Matrix is said to be singular if any one of the eigen value is 0
• Eigen decomposition can be used for optimization for the expression f(x) = xTAx subject
to ∥x∥2 = 1

• Whenever x is equal to an eigen vector of A, f takes on the value of corresponding eigen
value

• Matrices with
• All positive eigen value — Positive definite (xTAx > 0)
• All positive or 0 eigen value — Positive semidefinite (xTAx ≥ 0)
• All negative eigen value — Negative definite (xTAx < 0)

CS
55
1

28

Eigen decomposition (contd)
• Matrix is said to be singular if any one of the eigen value is 0
• Eigen decomposition can be used for optimization for the expression f(x) = xTAx subject
to ∥x∥2 = 1

• Whenever x is equal to an eigen vector of A, f takes on the value of corresponding eigen
value

• Matrices with
• All positive eigen value — Positive definite (xTAx > 0)
• All positive or 0 eigen value — Positive semidefinite (xTAx ≥ 0)
• All negative eigen value — Negative definite (xTAx < 0)

CS
55
1

29

Eigenvalue decomposition
• Any n×n symmetric matrixM can be decomposed into the sum of its n eigenvector products
• Let (λi,Ui) be the eigen pairs i = 1, . . . , n and assume λi ≥ λi+1

• Each eigenvector Ui is an n × 1matrix, multiplying it by its transpose yields an n × nmatrix,
product UiUT

i same dimension asM
• Linear combination of thesematrices weighted by its corresponding eigenvalue gives the orig-

inal matrixM =
n∑

i=1

λiUiUT
i

• It holds for symmetric matrices
• Can be applied on covariance matrix

• Using only the vector associated with the largest eigenvalues, a good approximation of the
matrix can be made

image source: Data Science Design Manual

CS
55
1

30

Example
• Covariance of Lincoln &M − U1UT

1

image source: Data Science Design Manual

CS
55
1

31

Error plot
• Reconstructing the Lincoln memorial from the one, five, fifty eigenvectors

CS
55
1

32

Singular Value Decomposition
• Every realmatrix has a singular value decomposition but the same is not true for eigen value
decomposition

• EVD — A = Vdiag(λ)V−1

• SVD — A = UDVT

• A = m × n, U = m × m,D = m × n, V = n × n
• U,V are orthogonal
• D - diagonal matrix not necessary square

• Diagonal elements ofD are known as singular value of A
• U is left singular vector
• V is right singular vector

CS
55
1

33

Trace operator & Determinant
• Trace operator

• Tr(A) =
∑

i Ai,i

• ∥A∥F =
√

Tr(AAT)
• Tr(A) = Tr(AT)
• Tr(a) = a

• Tr(ABC) = Tr(CAB) = Tr(BCA)

• Tr(
n∏

i=1

Fi) = Tr(Fn
n−1∏
i=1

Fi)

• Tr(AB) = Tr(BA) where A = m × n and B = n × m

• Determinant of A is denoted as det(A)
• Defined only for square matrix
• Product of all eigen value of the matrix

CS
55
1

33

Trace operator & Determinant
• Trace operator

• Tr(A) =
∑

i Ai,i
• ∥A∥F =

√
Tr(AAT)

• Tr(A) = Tr(AT)
• Tr(a) = a

• Tr(ABC) = Tr(CAB) = Tr(BCA)

• Tr(
n∏

i=1

Fi) = Tr(Fn
n−1∏
i=1

Fi)

• Tr(AB) = Tr(BA) where A = m × n and B = n × m

• Determinant of A is denoted as det(A)
• Defined only for square matrix
• Product of all eigen value of the matrix

CS
55
1

33

Trace operator & Determinant
• Trace operator

• Tr(A) =
∑

i Ai,i
• ∥A∥F =

√
Tr(AAT)

• Tr(A) = Tr(AT)
• Tr(a) = a

• Tr(ABC) = Tr(CAB) = Tr(BCA)

• Tr(
n∏

i=1

Fi) = Tr(Fn
n−1∏
i=1

Fi)

• Tr(AB) = Tr(BA) where A = m × n and B = n × m

• Determinant of A is denoted as det(A)
• Defined only for square matrix
• Product of all eigen value of the matrix

CS
55
1

33

Trace operator & Determinant
• Trace operator

• Tr(A) =
∑

i Ai,i
• ∥A∥F =

√
Tr(AAT)

• Tr(A) = Tr(AT)

• Tr(a) = a

• Tr(ABC) = Tr(CAB) = Tr(BCA)

• Tr(
n∏

i=1

Fi) = Tr(Fn
n−1∏
i=1

Fi)

• Tr(AB) = Tr(BA) where A = m × n and B = n × m

• Determinant of A is denoted as det(A)
• Defined only for square matrix
• Product of all eigen value of the matrix

CS
55
1

33

Trace operator & Determinant
• Trace operator

• Tr(A) =
∑

i Ai,i
• ∥A∥F =

√
Tr(AAT)

• Tr(A) = Tr(AT)
• Tr(a) = a

• Tr(ABC) = Tr(CAB) = Tr(BCA)

• Tr(
n∏

i=1

Fi) = Tr(Fn
n−1∏
i=1

Fi)

• Tr(AB) = Tr(BA) where A = m × n and B = n × m

• Determinant of A is denoted as det(A)
• Defined only for square matrix
• Product of all eigen value of the matrix

CS
55
1

33

Trace operator & Determinant
• Trace operator

• Tr(A) =
∑

i Ai,i
• ∥A∥F =

√
Tr(AAT)

• Tr(A) = Tr(AT)
• Tr(a) = a

• Tr(ABC) = Tr(CAB) = Tr(BCA)

• Tr(
n∏

i=1

Fi) = Tr(Fn
n−1∏
i=1

Fi)

• Tr(AB) = Tr(BA) where A = m × n and B = n × m

• Determinant of A is denoted as det(A)
• Defined only for square matrix
• Product of all eigen value of the matrix

CS
55
1

33

Trace operator & Determinant
• Trace operator

• Tr(A) =
∑

i Ai,i
• ∥A∥F =

√
Tr(AAT)

• Tr(A) = Tr(AT)
• Tr(a) = a

• Tr(ABC) = Tr(CAB) = Tr(BCA)

• Tr(
n∏

i=1

Fi) = Tr(Fn
n−1∏
i=1

Fi)

• Tr(AB) = Tr(BA) where A = m × n and B = n × m

• Determinant of A is denoted as det(A)
• Defined only for square matrix
• Product of all eigen value of the matrix

CS
55
1

33

Trace operator & Determinant
• Trace operator

• Tr(A) =
∑

i Ai,i
• ∥A∥F =

√
Tr(AAT)

• Tr(A) = Tr(AT)
• Tr(a) = a

• Tr(ABC) = Tr(CAB) = Tr(BCA)

• Tr(
n∏

i=1

Fi) = Tr(Fn
n−1∏
i=1

Fi)

• Tr(AB) = Tr(BA) where A = m × n and B = n × m

• Determinant of A is denoted as det(A)
• Defined only for square matrix
• Product of all eigen value of the matrix

CS
55
1

33

Trace operator & Determinant
• Trace operator

• Tr(A) =
∑

i Ai,i
• ∥A∥F =

√
Tr(AAT)

• Tr(A) = Tr(AT)
• Tr(a) = a

• Tr(ABC) = Tr(CAB) = Tr(BCA)

• Tr(
n∏

i=1

Fi) = Tr(Fn
n−1∏
i=1

Fi)

• Tr(AB) = Tr(BA) where A = m × n and B = n × m

• Determinant of A is denoted as det(A)
• Defined only for square matrix
• Product of all eigen value of the matrix

CS
55
1

34

Matrix calculus
• Let y = Ax then

∂y
∂z = A∂x

∂z

• Let α = yTx then
∂α

∂z = xT∂y
∂z + yT∂x

∂z

• Let α = yTAx then
∂α

∂z = xTAT∂y
∂z + yTA∂x

∂z

• Let α = xTAx then
∂α

∂z = xT(AT + A)∂x
∂z

• Let A be symmetric and α = xTAx then
∂α

∂z = 2xTA∂x
∂z

CS
55
1

34

Matrix calculus
• Let y = Ax then

∂y
∂z = A∂x

∂z

• Let α = yTx then
∂α

∂z =

xT∂y
∂z + yT∂x

∂z

• Let α = yTAx then
∂α

∂z = xTAT∂y
∂z + yTA∂x

∂z

• Let α = xTAx then
∂α

∂z = xT(AT + A)∂x
∂z

• Let A be symmetric and α = xTAx then
∂α

∂z = 2xTA∂x
∂z

CS
55
1

34

Matrix calculus
• Let y = Ax then

∂y
∂z = A∂x

∂z

• Let α = yTx then
∂α

∂z = xT∂y
∂z + yT∂x

∂z

• Let α = yTAx then
∂α

∂z = xTAT∂y
∂z + yTA∂x

∂z

• Let α = xTAx then
∂α

∂z = xT(AT + A)∂x
∂z

• Let A be symmetric and α = xTAx then
∂α

∂z = 2xTA∂x
∂z

CS
55
1

34

Matrix calculus
• Let y = Ax then

∂y
∂z = A∂x

∂z

• Let α = yTx then
∂α

∂z = xT∂y
∂z + yT∂x

∂z

• Let α = yTAx then
∂α

∂z =

xTAT∂y
∂z + yTA∂x

∂z

• Let α = xTAx then
∂α

∂z = xT(AT + A)∂x
∂z

• Let A be symmetric and α = xTAx then
∂α

∂z = 2xTA∂x
∂z

CS
55
1

34

Matrix calculus
• Let y = Ax then

∂y
∂z = A∂x

∂z

• Let α = yTx then
∂α

∂z = xT∂y
∂z + yT∂x

∂z

• Let α = yTAx then
∂α

∂z = xTAT∂y
∂z + yTA∂x

∂z

• Let α = xTAx then
∂α

∂z = xT(AT + A)∂x
∂z

• Let A be symmetric and α = xTAx then
∂α

∂z = 2xTA∂x
∂z

CS
55
1

34

Matrix calculus
• Let y = Ax then

∂y
∂z = A∂x

∂z

• Let α = yTx then
∂α

∂z = xT∂y
∂z + yT∂x

∂z

• Let α = yTAx then
∂α

∂z = xTAT∂y
∂z + yTA∂x

∂z

• Let α = xTAx then
∂α

∂z =

xT(AT + A)∂x
∂z

• Let A be symmetric and α = xTAx then
∂α

∂z = 2xTA∂x
∂z

CS
55
1

34

Matrix calculus
• Let y = Ax then

∂y
∂z = A∂x

∂z

• Let α = yTx then
∂α

∂z = xT∂y
∂z + yT∂x

∂z

• Let α = yTAx then
∂α

∂z = xTAT∂y
∂z + yTA∂x

∂z

• Let α = xTAx then
∂α

∂z = xT(AT + A)∂x
∂z

• Let A be symmetric and α = xTAx then
∂α

∂z = 2xTA∂x
∂z

CS
55
1

34

Matrix calculus
• Let y = Ax then

∂y
∂z = A∂x

∂z

• Let α = yTx then
∂α

∂z = xT∂y
∂z + yT∂x

∂z

• Let α = yTAx then
∂α

∂z = xTAT∂y
∂z + yTA∂x

∂z

• Let α = xTAx then
∂α

∂z = xT(AT + A)∂x
∂z

• Let A be symmetric and α = xTAx then
∂α

∂z =

2xTA∂x
∂z

CS
55
1

34

Matrix calculus
• Let y = Ax then

∂y
∂z = A∂x

∂z

• Let α = yTx then
∂α

∂z = xT∂y
∂z + yT∂x

∂z

• Let α = yTAx then
∂α

∂z = xTAT∂y
∂z + yTA∂x

∂z

• Let α = xTAx then
∂α

∂z = xT(AT + A)∂x
∂z

• Let A be symmetric and α = xTAx then
∂α

∂z = 2xTA∂x
∂z

CS
55
1

35

Principal Component Analysis
• We havem points {x1, x2, . . . , xm} inRn

• Representing these points using a lossy compression

• For each point choose a lower dimension ie. xi ∈ Rn → ci ∈ Rl

• Target is to find out f such that f(x) = c and a decode function g such that x ≈ g(f(x))
• Let g(c) = Dc whereD ∈ Rn×l

• PCA constraints the column ofD to be orthogonal
• D is not orthogonal matrix
• For unique solution columns ofD have unit norm

• Generate optimal code point c∗ for each x
• Minimize distance between x and g(c∗)
• We use L2 norm ie. c∗ = argc min ∥x − g(c)∥2
• We can switch to squared L2 norm c∗ = argc min ∥x − g(c)∥22

CS
55
1

35

Principal Component Analysis
• We havem points {x1, x2, . . . , xm} inRn

• Representing these points using a lossy compression
• For each point choose a lower dimension ie. xi ∈ Rn → ci ∈ Rl

• Target is to find out f such that f(x) = c and a decode function g such that x ≈ g(f(x))
• Let g(c) = Dc whereD ∈ Rn×l

• PCA constraints the column ofD to be orthogonal
• D is not orthogonal matrix
• For unique solution columns ofD have unit norm

• Generate optimal code point c∗ for each x
• Minimize distance between x and g(c∗)
• We use L2 norm ie. c∗ = argc min ∥x − g(c)∥2
• We can switch to squared L2 norm c∗ = argc min ∥x − g(c)∥22

CS
55
1

35

Principal Component Analysis
• We havem points {x1, x2, . . . , xm} inRn

• Representing these points using a lossy compression
• For each point choose a lower dimension ie. xi ∈ Rn → ci ∈ Rl

• Target is to find out f such that f(x) = c and a decode function g such that x ≈ g(f(x))

• Let g(c) = Dc whereD ∈ Rn×l

• PCA constraints the column ofD to be orthogonal
• D is not orthogonal matrix
• For unique solution columns ofD have unit norm

• Generate optimal code point c∗ for each x
• Minimize distance between x and g(c∗)
• We use L2 norm ie. c∗ = argc min ∥x − g(c)∥2
• We can switch to squared L2 norm c∗ = argc min ∥x − g(c)∥22

CS
55
1

35

Principal Component Analysis
• We havem points {x1, x2, . . . , xm} inRn

• Representing these points using a lossy compression
• For each point choose a lower dimension ie. xi ∈ Rn → ci ∈ Rl

• Target is to find out f such that f(x) = c and a decode function g such that x ≈ g(f(x))
• Let g(c) = Dc whereD ∈ Rn×l

• PCA constraints the column ofD to be orthogonal

• D is not orthogonal matrix
• For unique solution columns ofD have unit norm

• Generate optimal code point c∗ for each x
• Minimize distance between x and g(c∗)
• We use L2 norm ie. c∗ = argc min ∥x − g(c)∥2
• We can switch to squared L2 norm c∗ = argc min ∥x − g(c)∥22

CS
55
1

35

Principal Component Analysis
• We havem points {x1, x2, . . . , xm} inRn

• Representing these points using a lossy compression
• For each point choose a lower dimension ie. xi ∈ Rn → ci ∈ Rl

• Target is to find out f such that f(x) = c and a decode function g such that x ≈ g(f(x))
• Let g(c) = Dc whereD ∈ Rn×l

• PCA constraints the column ofD to be orthogonal
• D is not orthogonal matrix

• For unique solution columns ofD have unit norm

• Generate optimal code point c∗ for each x
• Minimize distance between x and g(c∗)
• We use L2 norm ie. c∗ = argc min ∥x − g(c)∥2
• We can switch to squared L2 norm c∗ = argc min ∥x − g(c)∥22

CS
55
1

35

Principal Component Analysis
• We havem points {x1, x2, . . . , xm} inRn

• Representing these points using a lossy compression
• For each point choose a lower dimension ie. xi ∈ Rn → ci ∈ Rl

• Target is to find out f such that f(x) = c and a decode function g such that x ≈ g(f(x))
• Let g(c) = Dc whereD ∈ Rn×l

• PCA constraints the column ofD to be orthogonal
• D is not orthogonal matrix
• For unique solution columns ofD have unit norm

• Generate optimal code point c∗ for each x
• Minimize distance between x and g(c∗)
• We use L2 norm ie. c∗ = argc min ∥x − g(c)∥2
• We can switch to squared L2 norm c∗ = argc min ∥x − g(c)∥22

CS
55
1

35

Principal Component Analysis
• We havem points {x1, x2, . . . , xm} inRn

• Representing these points using a lossy compression
• For each point choose a lower dimension ie. xi ∈ Rn → ci ∈ Rl

• Target is to find out f such that f(x) = c and a decode function g such that x ≈ g(f(x))
• Let g(c) = Dc whereD ∈ Rn×l

• PCA constraints the column ofD to be orthogonal
• D is not orthogonal matrix
• For unique solution columns ofD have unit norm

• Generate optimal code point c∗ for each x

• Minimize distance between x and g(c∗)
• We use L2 norm ie. c∗ = argc min ∥x − g(c)∥2
• We can switch to squared L2 norm c∗ = argc min ∥x − g(c)∥22

CS
55
1

35

Principal Component Analysis
• We havem points {x1, x2, . . . , xm} inRn

• Representing these points using a lossy compression
• For each point choose a lower dimension ie. xi ∈ Rn → ci ∈ Rl

• Target is to find out f such that f(x) = c and a decode function g such that x ≈ g(f(x))
• Let g(c) = Dc whereD ∈ Rn×l

• PCA constraints the column ofD to be orthogonal
• D is not orthogonal matrix
• For unique solution columns ofD have unit norm

• Generate optimal code point c∗ for each x
• Minimize distance between x and g(c∗)
• We use L2 norm ie. c∗ = argc min ∥x − g(c)∥2
• We can switch to squared L2 norm c∗ = argc min ∥x − g(c)∥22

CS
55
1

36

Principal Component Analysis (contd.)
• We need to minimize

(x − g(c))T(x − g(c))

⇒ xTx − xTg(c)− g(c)Tx + g(c)Tg(c)
⇒ xTx − 2xTg(c) + g(c)Tg(c)

• Therefore we have,
c∗ = argc min(xTx − 2xTg(c) + g(c)Tg(c))

⇒ argc min(−2xTDc + cTDTDc)
⇒ argc min(−2xTDc + cTc)

• Optimization problem can be solved by differentiating
∇c(−2xTDc + cTc) = 0

− 2DTx + 2c = 0
c = DTx

CS
55
1

36

Principal Component Analysis (contd.)
• We need to minimize

(x − g(c))T(x − g(c))
⇒ xTx − xTg(c)− g(c)Tx + g(c)Tg(c)

⇒ xTx − 2xTg(c) + g(c)Tg(c)
• Therefore we have,

c∗ = argc min(xTx − 2xTg(c) + g(c)Tg(c))
⇒ argc min(−2xTDc + cTDTDc)
⇒ argc min(−2xTDc + cTc)

• Optimization problem can be solved by differentiating
∇c(−2xTDc + cTc) = 0

− 2DTx + 2c = 0
c = DTx

CS
55
1

36

Principal Component Analysis (contd.)
• We need to minimize

(x − g(c))T(x − g(c))
⇒ xTx − xTg(c)− g(c)Tx + g(c)Tg(c)
⇒ xTx − 2xTg(c) + g(c)Tg(c)

• Therefore we have,
c∗ = argc min(xTx − 2xTg(c) + g(c)Tg(c))

⇒ argc min(−2xTDc + cTDTDc)
⇒ argc min(−2xTDc + cTc)

• Optimization problem can be solved by differentiating
∇c(−2xTDc + cTc) = 0

− 2DTx + 2c = 0
c = DTx

CS
55
1

36

Principal Component Analysis (contd.)
• We need to minimize

(x − g(c))T(x − g(c))
⇒ xTx − xTg(c)− g(c)Tx + g(c)Tg(c)
⇒ xTx − 2xTg(c) + g(c)Tg(c)

• Therefore we have,
c∗ = argc min(xTx − 2xTg(c) + g(c)Tg(c))

⇒ argc min(−2xTDc + cTDTDc)
⇒ argc min(−2xTDc + cTc)

• Optimization problem can be solved by differentiating
∇c(−2xTDc + cTc) = 0

− 2DTx + 2c = 0
c = DTx

CS
55
1

36

Principal Component Analysis (contd.)
• We need to minimize

(x − g(c))T(x − g(c))
⇒ xTx − xTg(c)− g(c)Tx + g(c)Tg(c)
⇒ xTx − 2xTg(c) + g(c)Tg(c)

• Therefore we have,
c∗ = argc min(xTx − 2xTg(c) + g(c)Tg(c))

⇒ argc min(−2xTDc + cTDTDc)

⇒ argc min(−2xTDc + cTc)
• Optimization problem can be solved by differentiating

∇c(−2xTDc + cTc) = 0
− 2DTx + 2c = 0

c = DTx

CS
55
1

36

Principal Component Analysis (contd.)
• We need to minimize

(x − g(c))T(x − g(c))
⇒ xTx − xTg(c)− g(c)Tx + g(c)Tg(c)
⇒ xTx − 2xTg(c) + g(c)Tg(c)

• Therefore we have,
c∗ = argc min(xTx − 2xTg(c) + g(c)Tg(c))

⇒ argc min(−2xTDc + cTDTDc)
⇒ argc min(−2xTDc + cTc)

• Optimization problem can be solved by differentiating
∇c(−2xTDc + cTc) = 0

− 2DTx + 2c = 0
c = DTx

CS
55
1

36

Principal Component Analysis (contd.)
• We need to minimize

(x − g(c))T(x − g(c))
⇒ xTx − xTg(c)− g(c)Tx + g(c)Tg(c)
⇒ xTx − 2xTg(c) + g(c)Tg(c)

• Therefore we have,
c∗ = argc min(xTx − 2xTg(c) + g(c)Tg(c))

⇒ argc min(−2xTDc + cTDTDc)
⇒ argc min(−2xTDc + cTc)

• Optimization problem can be solved by differentiating
∇c(−2xTDc + cTc) = 0

− 2DTx + 2c = 0
c = DTx

CS
55
1

36

Principal Component Analysis (contd.)
• We need to minimize

(x − g(c))T(x − g(c))
⇒ xTx − xTg(c)− g(c)Tx + g(c)Tg(c)
⇒ xTx − 2xTg(c) + g(c)Tg(c)

• Therefore we have,
c∗ = argc min(xTx − 2xTg(c) + g(c)Tg(c))

⇒ argc min(−2xTDc + cTDTDc)
⇒ argc min(−2xTDc + cTc)

• Optimization problem can be solved by differentiating
∇c(−2xTDc + cTc) = 0

− 2DTx + 2c = 0

c = DTx

CS
55
1

36

Principal Component Analysis (contd.)
• We need to minimize

(x − g(c))T(x − g(c))
⇒ xTx − xTg(c)− g(c)Tx + g(c)Tg(c)
⇒ xTx − 2xTg(c) + g(c)Tg(c)

• Therefore we have,
c∗ = argc min(xTx − 2xTg(c) + g(c)Tg(c))

⇒ argc min(−2xTDc + cTDTDc)
⇒ argc min(−2xTDc + cTc)

• Optimization problem can be solved by differentiating
∇c(−2xTDc + cTc) = 0

− 2DTx + 2c = 0
c = DTx

CS
55
1

37

Principal Component Analysis (contd.)
• Optimal encoding can be done using matrix-vector multiplication f(x) = DTx

• PCA reconstruction r(x) = g(f(x)) = DDTx
• D can be determined by minimizing distance between inputs and reconstruction ie.

D∗ = argD min
√∑

i,j

(
x(i)j − r(x(i))j

)2
subject toDTD = Il

• To deriveD∗, we start by considering l = 1

• D becomes d

CS
55
1

37

Principal Component Analysis (contd.)
• Optimal encoding can be done using matrix-vector multiplication f(x) = DTx
• PCA reconstruction r(x) = g(f(x)) = DDTx

• D can be determined by minimizing distance between inputs and reconstruction ie.

D∗ = argD min
√∑

i,j

(
x(i)j − r(x(i))j

)2
subject toDTD = Il

• To deriveD∗, we start by considering l = 1

• D becomes d

CS
55
1

37

Principal Component Analysis (contd.)
• Optimal encoding can be done using matrix-vector multiplication f(x) = DTx
• PCA reconstruction r(x) = g(f(x)) = DDTx
• D can be determined by minimizing distance between inputs and reconstruction ie.

D∗ = argD min
√∑

i,j

(
x(i)j − r(x(i))j

)2
subject toDTD = Il

• To deriveD∗, we start by considering l = 1

• D becomes d

CS
55
1

37

Principal Component Analysis (contd.)
• Optimal encoding can be done using matrix-vector multiplication f(x) = DTx
• PCA reconstruction r(x) = g(f(x)) = DDTx
• D can be determined by minimizing distance between inputs and reconstruction ie.

D∗ = argD min
√∑

i,j

(
x(i)j − r(x(i))j

)2
subject toDTD = Il

• To deriveD∗, we start by considering l = 1

• D becomes d

CS
55
1

38

Principal Component Analysis (contd.)
• Simplifying based on the assumptions

d∗ = argd min
∑

i
∥x(i) − ddTx(i)∥22 subject to ∥d∥2 = 1

• dTx(i) is scalar, hence ddTx(i) = dTx(i)d = x(i)Tdd
• We get, d∗ = argd min

∑
i
∥x(i) − x(i)Tdd∥22 subject to ∥d∥2 = 1

• Rewriting in terms of single design matrix

d∗ = argd min ∥X − XddT∥22 subject to ∥d∥2 = 1

• Now we have, argd min ∥X − XddT∥2F subject to ∥dTd∥ = 1

CS
55
1

38

Principal Component Analysis (contd.)
• Simplifying based on the assumptions

d∗ = argd min
∑

i
∥x(i) − ddTx(i)∥22 subject to ∥d∥2 = 1

• dTx(i) is scalar, hence ddTx(i) = dTx(i)d = x(i)Tdd
• We get, d∗ = argd min

∑
i
∥x(i) − x(i)Tdd∥22 subject to ∥d∥2 = 1

• Rewriting in terms of single design matrix

d∗ = argd min ∥X − XddT∥22 subject to ∥d∥2 = 1

• Now we have, argd min ∥X − XddT∥2F subject to ∥dTd∥ = 1

CS
55
1

38

Principal Component Analysis (contd.)
• Simplifying based on the assumptions

d∗ = argd min
∑

i
∥x(i) − ddTx(i)∥22 subject to ∥d∥2 = 1

• dTx(i) is scalar, hence ddTx(i) = dTx(i)d = x(i)Tdd
• We get, d∗ = argd min

∑
i
∥x(i) − x(i)Tdd∥22 subject to ∥d∥2 = 1

• Rewriting in terms of single design matrix

d∗ = argd min ∥X − XddT∥22 subject to ∥d∥2 = 1

• Now we have, argd min ∥X − XddT∥2F subject to ∥dTd∥ = 1

CS
55
1

38

Principal Component Analysis (contd.)
• Simplifying based on the assumptions

d∗ = argd min
∑

i
∥x(i) − ddTx(i)∥22 subject to ∥d∥2 = 1

• dTx(i) is scalar, hence ddTx(i) = dTx(i)d = x(i)Tdd
• We get, d∗ = argd min

∑
i
∥x(i) − x(i)Tdd∥22 subject to ∥d∥2 = 1

• Rewriting in terms of single design matrix

d∗ = argd min ∥X − XddT∥22 subject to ∥d∥2 = 1

• Now we have, argd min ∥X − XddT∥2F subject to ∥dTd∥ = 1

CS
55
1

39

Principal Component Analysis (contd.)
• Simplifying,

argd min ∥X − XddT∥2F

= argd min Tr
(
(X − XddT)T(X − XddT)

)
= argd min Tr(XTX − XTXddT − ddTXTX + ddTXTXddT)
= argd min−2Tr(XTXddT) + Tr(XTXddTddT)
= argd min−Tr(XTXddT)
= argd min−Tr(dTXTXd)

• Optimization problem can be solved by eigen decomposition

CS
55
1

39

Principal Component Analysis (contd.)
• Simplifying,

argd min ∥X − XddT∥2F
= argd min Tr

(
(X − XddT)T(X − XddT)

)

= argd min Tr(XTX − XTXddT − ddTXTX + ddTXTXddT)
= argd min−2Tr(XTXddT) + Tr(XTXddTddT)
= argd min−Tr(XTXddT)
= argd min−Tr(dTXTXd)

• Optimization problem can be solved by eigen decomposition

CS
55
1

39

Principal Component Analysis (contd.)
• Simplifying,

argd min ∥X − XddT∥2F
= argd min Tr

(
(X − XddT)T(X − XddT)

)
= argd min Tr(XTX − XTXddT − ddTXTX + ddTXTXddT)

= argd min−2Tr(XTXddT) + Tr(XTXddTddT)
= argd min−Tr(XTXddT)
= argd min−Tr(dTXTXd)

• Optimization problem can be solved by eigen decomposition

CS
55
1

39

Principal Component Analysis (contd.)
• Simplifying,

argd min ∥X − XddT∥2F
= argd min Tr

(
(X − XddT)T(X − XddT)

)
= argd min Tr(XTX − XTXddT − ddTXTX + ddTXTXddT)
= argd min−2Tr(XTXddT) + Tr(XTXddTddT)

= argd min−Tr(XTXddT)
= argd min−Tr(dTXTXd)

• Optimization problem can be solved by eigen decomposition

CS
55
1

39

Principal Component Analysis (contd.)
• Simplifying,

argd min ∥X − XddT∥2F
= argd min Tr

(
(X − XddT)T(X − XddT)

)
= argd min Tr(XTX − XTXddT − ddTXTX + ddTXTXddT)
= argd min−2Tr(XTXddT) + Tr(XTXddTddT)
= argd min−Tr(XTXddT)

= argd min−Tr(dTXTXd)

• Optimization problem can be solved by eigen decomposition

CS
55
1

39

Principal Component Analysis (contd.)
• Simplifying,

argd min ∥X − XddT∥2F
= argd min Tr

(
(X − XddT)T(X − XddT)

)
= argd min Tr(XTX − XTXddT − ddTXTX + ddTXTXddT)
= argd min−2Tr(XTXddT) + Tr(XTXddTddT)
= argd min−Tr(XTXddT)
= argd min−Tr(dTXTXd)

• Optimization problem can be solved by eigen decomposition

CS
55
1

39

Principal Component Analysis (contd.)
• Simplifying,

argd min ∥X − XddT∥2F
= argd min Tr

(
(X − XddT)T(X − XddT)

)
= argd min Tr(XTX − XTXddT − ddTXTX + ddTXTXddT)
= argd min−2Tr(XTXddT) + Tr(XTXddTddT)
= argd min−Tr(XTXddT)
= argd min−Tr(dTXTXd)

• Optimization problem can be solved by eigen decomposition

CS
55
1

40

Principal Component Analysis (contd.)

Image source:learnopencv.com

CS
55
1

41

Principal Component Analysis (contd.)

Image source:learnopencv.com

Image source:learnopencv.com

CS
55
1

42

Principal Component Analysis (contd.)

Image source:learnopencv.com

CS
55
1

43

Principal Component Analysis (contd.)

CS
55
1

44

Principal Component Analysis (contd.)
• Assemble data matrix A =

[x1 x2 . . . xn
y1 y2 . . . yn
z1 z2 . . . zn

]

• Calculate mean µx =
1

n
∑

i
xi, µy =

1

n
∑

i
yi, µz =

1

n
∑

i
zi

• Subtract mean from data matrix

M =

[x1 − µx x2 − µx . . . xn − µx
y1 − µy y2 − µy . . . yn − µy
z1 − µz z2 − µz . . . zn − µz

]
• Calculate covariance matrix C = MMT

• Find eigen vector and value of C

CS
55
1

45

Overview of Probability

CS
55
1

46

Probability
• Mathematical framework for representing uncertain statements
• Possible source of uncertainty
• Inherent stochasticity
• Incomplete observability
• Incomplete model

• Two broad categories
• Frequentist

• Getting a card

• Bayesian
• Chance of having flu

CS
55
1

47

Random Variable
• Variable that can take different values randomly
• Example
• X is random variable that can take value x1 or x2

CS
55
1

48

Probability Distribution
• How likely a random variable is to take on each of its possible states

• Probability Mass Function
• Discrete
• Maps state to probability of taking that state

• Joint probability distribution
• P(X = x,Y = y)— probability of X taking value x and Y taking value y

• Probability function P on X
• The domain of P is set of all possible state of X
• ∀x ∈ X 0 ≤ P(x) ≤ 1

•
∑
x∈X

P(x) = 1

• Example
• Uniform distribution with k different states 1/k

CS
55
1

48

Probability Distribution
• How likely a random variable is to take on each of its possible states
• Probability Mass Function
• Discrete
• Maps state to probability of taking that state

• Joint probability distribution
• P(X = x,Y = y)— probability of X taking value x and Y taking value y

• Probability function P on X
• The domain of P is set of all possible state of X
• ∀x ∈ X 0 ≤ P(x) ≤ 1

•
∑
x∈X

P(x) = 1

• Example
• Uniform distribution with k different states 1/k

CS
55
1

48

Probability Distribution
• How likely a random variable is to take on each of its possible states
• Probability Mass Function
• Discrete
• Maps state to probability of taking that state

• Joint probability distribution
• P(X = x,Y = y)— probability of X taking value x and Y taking value y

• Probability function P on X
• The domain of P is set of all possible state of X
• ∀x ∈ X 0 ≤ P(x) ≤ 1

•
∑
x∈X

P(x) = 1

• Example
• Uniform distribution with k different states 1/k

CS
55
1

48

Probability Distribution
• How likely a random variable is to take on each of its possible states
• Probability Mass Function
• Discrete
• Maps state to probability of taking that state

• Joint probability distribution
• P(X = x,Y = y)— probability of X taking value x and Y taking value y

• Probability function P on X
• The domain of P is set of all possible state of X
• ∀x ∈ X 0 ≤ P(x) ≤ 1

•
∑
x∈X

P(x) = 1

• Example
• Uniform distribution with k different states 1/k

CS
55
1

49

Probability Density Function
• Continuous variable (p)

• The domain of p is set of all possible state of X
• ∀x ∈ X p(x) ≥ 0

•
∫

x∈X
p(x)dx = 1

• Example
• Uniform distribution in [a, b] is represented as X ∼ U(a, b)

CS
55
1

49

Probability Density Function
• Continuous variable (p)
• The domain of p is set of all possible state of X
• ∀x ∈ X p(x) ≥ 0

•
∫

x∈X
p(x)dx = 1

• Example
• Uniform distribution in [a, b] is represented as X ∼ U(a, b)

CS
55
1

49

Probability Density Function
• Continuous variable (p)
• The domain of p is set of all possible state of X
• ∀x ∈ X p(x) ≥ 0

•
∫

x∈X
p(x)dx = 1

• Example
• Uniform distribution in [a, b] is represented as X ∼ U(a, b)

CS
55
1

50

Marginal Probability
• Probability distribution over the subset
• Let X,Y be random variables and P(x, y) is known
• P(x) =

∑
y∈Y

P(x, y)

• p(x) =
∫

y∈Y
p(x, y)dy

CS
55
1

51

Conditional Probability
• Probability of some event given that some other event has happened

P(Y = y|X = x) = P(Y = y,X = x)
P(X = x)

• Chain rule: P(x1x2 . . . xn) = P(x1)
n∏

i=2

P(xi|x1 . . . xi−1)

• P(a, b, c) = P(a|b, c)P(b|c)P(c)
• Independence of random variable
• ∀x ∈ X, y ∈ Y p(X = x,Y = y) = p(X = x)p(Y = y)
• Conditional independence

• p(x, y|z) = p(x|z)p(y|z)

CS
55
1

51

Conditional Probability
• Probability of some event given that some other event has happened

P(Y = y|X = x) = P(Y = y,X = x)
P(X = x)

• Chain rule: P(x1x2 . . . xn) = P(x1)
n∏

i=2

P(xi|x1 . . . xi−1)

• P(a, b, c) = P(a|b, c)P(b|c)P(c)

• Independence of random variable
• ∀x ∈ X, y ∈ Y p(X = x,Y = y) = p(X = x)p(Y = y)
• Conditional independence

• p(x, y|z) = p(x|z)p(y|z)

CS
55
1

51

Conditional Probability
• Probability of some event given that some other event has happened

P(Y = y|X = x) = P(Y = y,X = x)
P(X = x)

• Chain rule: P(x1x2 . . . xn) = P(x1)
n∏

i=2

P(xi|x1 . . . xi−1)

• P(a, b, c) = P(a|b, c)P(b|c)P(c)
• Independence of random variable

• ∀x ∈ X, y ∈ Y p(X = x,Y = y) = p(X = x)p(Y = y)
• Conditional independence

• p(x, y|z) = p(x|z)p(y|z)

CS
55
1

51

Conditional Probability
• Probability of some event given that some other event has happened

P(Y = y|X = x) = P(Y = y,X = x)
P(X = x)

• Chain rule: P(x1x2 . . . xn) = P(x1)
n∏

i=2

P(xi|x1 . . . xi−1)

• P(a, b, c) = P(a|b, c)P(b|c)P(c)
• Independence of random variable
• ∀x ∈ X, y ∈ Y p(X = x,Y = y) = p(X = x)p(Y = y)
• Conditional independence

• p(x, y|z) = p(x|z)p(y|z)

CS
55
1

52

Expectation
• Expected value of some function with respect to probability distribution P(x)

• EX∼P[f(x)] =
∑

x
P(x)f(x)

• EX∼p[f(x)] =
∫

x
P(x)f(x)dx

• EX[αf(x) + βg(x)] = αEX[f(x)] + βEX[g(x)]

CS
55
1

52

Expectation
• Expected value of some function with respect to probability distribution P(x)
• EX∼P[f(x)] =

∑
x

P(x)f(x)

• EX∼p[f(x)] =
∫

x
P(x)f(x)dx

• EX[αf(x) + βg(x)] = αEX[f(x)] + βEX[g(x)]

CS
55
1

52

Expectation
• Expected value of some function with respect to probability distribution P(x)
• EX∼P[f(x)] =

∑
x

P(x)f(x)

• EX∼p[f(x)] =
∫

x
P(x)f(x)dx

• EX[αf(x) + βg(x)] = αEX[f(x)] + βEX[g(x)]

CS
55
1

52

Expectation
• Expected value of some function with respect to probability distribution P(x)
• EX∼P[f(x)] =

∑
x

P(x)f(x)

• EX∼p[f(x)] =
∫

x
P(x)f(x)dx

• EX[αf(x) + βg(x)] = αEX[f(x)] + βEX[g(x)]

CS
55
1

53

Variance & Covariance
• How much the values of a given function vary as we sample different values of x from its
probability distribution

• Var(f(x)) = E[(f(x)− E[f(x)])2]
• How much two values are linearly related
• Cov(f(x), g(y)) = E [(f(x)− E[f(x)])(g(y)− E[g(y)])]

• It can be positive or negative

CS
55
1

53

Variance & Covariance
• How much the values of a given function vary as we sample different values of x from its
probability distribution
• Var(f(x)) = E[(f(x)− E[f(x)])2]

• How much two values are linearly related
• Cov(f(x), g(y)) = E [(f(x)− E[f(x)])(g(y)− E[g(y)])]

• It can be positive or negative

CS
55
1

53

Variance & Covariance
• How much the values of a given function vary as we sample different values of x from its
probability distribution
• Var(f(x)) = E[(f(x)− E[f(x)])2]

• How much two values are linearly related

• Cov(f(x), g(y)) = E [(f(x)− E[f(x)])(g(y)− E[g(y)])]
• It can be positive or negative

CS
55
1

53

Variance & Covariance
• How much the values of a given function vary as we sample different values of x from its
probability distribution
• Var(f(x)) = E[(f(x)− E[f(x)])2]

• How much two values are linearly related
• Cov(f(x), g(y)) = E [(f(x)− E[f(x)])(g(y)− E[g(y)])]

• It can be positive or negative

CS
55
1

53

Variance & Covariance
• How much the values of a given function vary as we sample different values of x from its
probability distribution
• Var(f(x)) = E[(f(x)− E[f(x)])2]

• How much two values are linearly related
• Cov(f(x), g(y)) = E [(f(x)− E[f(x)])(g(y)− E[g(y)])]

• It can be positive or negative

CS
55
1

54

Bayes’ rule
• Suppose P(y|x) and P(x) known and need to find out P(x|y)

P(x|y) = P(x)P(y|x)
P(y)

• Now P(y) can be found out from

P(y) =
∑

x
P(y|x)P(x)

CS
55
1

54

Bayes’ rule
• Suppose P(y|x) and P(x) known and need to find out P(x|y)

P(x|y) = P(x)P(y|x)
P(y)

• Now P(y) can be found out from

P(y) =
∑

x
P(y|x)P(x)

CS
55
1

55

Problems
• Suppose that we have two bags each containing black and white balls. One bag contains
three times as many white balls as blacks. The other bag contains three times as many black
balls as white. Suppose we choose one of these bags at random. For this bag we select five
balls at random, replacing each ball after it has been selected. The result is that we find 4
white balls and one black. What is the probability that we were using the bag with mainly
white balls?

• Given the following statistics, what is the probability that a person has cancer if he has a
positive pathological result?
• One percent of people over 50 have this cancer.
• Ninety percent of people who have this cancer test positive on pathological report.
• Eight percent of people will have false positives.

CS
55
1

56

Information theory
• Quantifying how much information is present in a signal
• The sun rises in the east. — uninformative
• There was a solar eclipse this morning. — informative

• Therefore, we would like to quantify
• Likely event should have low information content

• Events guaranteed to happen should have no information

• Less likely event should have higher information content
• Independent event should have additive information

• Information of an event X = x be I(x) = − log P(x)
• Natural logarithm, with base e
• Unit of I(x) is nat

−4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

CS
55
1

57

Gaussian distribution
• Also, known as Normal Distribution

N (x;µ, σ2) =

√
1

2πσ2
exp

(
− 1

2σ2
(x − µ)2

)

CS
55
1

58

Multivariate normal distribution
• Defined as

N (x;µ,Σ) =

√
1

(2π)ndet(Σ)
exp

(
−1

2
(x − µ)TΣ−1(x − µ)

)

• µ—mean of the distribution
• Σ— Covariance matrix of the distribution

CS
55
1

59

References
• “Introduction to Linear Algebra” by Gilbert Strang
• “Probability Theory: The Logic of Science” by Jaynes, E. T. (2003). Cambridge University
Press.

