CS514: Design and Analysis of Algorithms

Arijit Mondal
Dept of CSE
arijit@iitp.ac.in
https://www.iitp.ac.in/~arijit/

Matching

- Given an undirected graph $G=(V, E)$, a subset of edges $M \subseteq E$ is a matching if each node of the graph appears at most one edge of M.

Matching

- Given an undirected graph $G=(V, E)$, a subset of edges $M \subseteq E$ is a matching if each node of the graph appears at most one edge of M.

Bipartite matching

- A graph is bipartite if the nodes can be partitioned into two subsets X and Y such that every edge connects a node in X to a node in Y
- Given a bipartite graph $G=(X \cup Y, E)$, find a matching (M) that has the maximum cardinality ie., $|M|$ is maximum.

Bipartite matching

- A graph is bipartite if the nodes can be partitioned into two subsets X and Y such that every edge connects a node in X to a node in Y
- Given a bipartite graph $G=(X \cup Y, E)$, find a matching (M) that has the maximum cardinality ie., $|M|$ is maximum.

Edge-disjoint paths

- Two paths are edge-disjoint if they have no common edge. Given a directed graph $G=(V, E)$ and two nodes s and t, find the maximum number of edge-disjoint $s \rightsquigarrow t$ paths.

Edge-disjoint paths

- Two paths are edge-disjoint if they have no common edge. Given a directed graph $G=(V, E)$ and two nodes s and t, find the maximum number of edge-disjoint $s \rightsquigarrow t$ paths.

Circulation with demands

- Given a directed graph $V=(G, E)$ with non-negative edge capacities $c(e)$ and node supply and demands $d(v)$, a circulation is a function that satisfies
- For each $e \in E: 0 \leq f(e) \leq c(e)(f($.$) - flow along edge e)$
- For each $v \in V: \sum_{e \text { in to } v} f(e)-\sum_{e \text { out of } v} f(e)=d(v)$

Does a circulation exist?

- $d(v)>0$ - demand, $d(v)<0$ - supply, $d(v)=0$ - transshipment node

Circulation with lower bounds

- The problem is the same as previous one except that each edge has some lower bound on the flow. Hence, capacity along an edge will be specified as $\left[c_{l b}(u, v), c_{u b}(u, v)\right]$. What modifications are to be made in the graph to apply previous strategy?

Survey design

- Design a survey asking n_{1} consumers about n_{2} products that meets the following requirements, if possible.
- Consumer i can survey about product j if they own it
- Consumer i can be asked between c_{i} and c_{i}^{\prime} questions
- Ask between p_{j} and p_{j}^{\prime} consumers about product j

Airline scheduling

- A set of lucrative flight segments (m say) are provided. A flight segment is specified by (a) origin airport, (b) destination airport, (c) departure time, (d) arrival time.
- It is possible to use a single plane for a flight segment i, and then later for a flight segment j, provided that
- the destination of i is the same as the origin of j, and there's enough time to perform maintenance on the plane in between; or
- you can add a flight segment in between that gets the plane from the destination of i to the origin of j with adequate time in between.
- Example:
- B (depart 6am) - W (arrive 7am)
- Ph (depart 11am) - SF (arrive 2pm)
- Ph (depart 7am) - Pt (arrive 8am)
- SF (depart 2:15pm) - S (arrive 3:15pm)
- W (depart 8am) - LA (arrive 11am)
- LV (depart 5pm) - S (arrive 6pm)
- Can k aircrafts serve all m flight segments?

Image segmentation

- Given the following
- An image with V number of pixels and E number of pairs of neighboring pixels
- $a_{i} \geq 0$ is likelihood pixel i in foreground
- $b_{i} \geq 0$ is likelihood pixel i in background
- $p_{i j} \geq 0$ is separation penalty for labeling one of i and j as foreground, and the other as background
- Goals:
- Accuracy: if $a_{i}>b_{i}$ in isolation, prefer to label i in foreground
- Smoothness: if many neighbors of i are labeled foreground, we should be inclined to label i as foreground
- Find partition (A, B) that maximizes: $\sum_{i \in A} a_{i}+\sum_{j \in B} b_{j}-$

$$
\sum_{\substack{(i, j) \in E}} p_{i j}
$$

