CS514: Design and Analysis of Algorithms

Arijit Mondal

Dept of CSE

arijit@iitp.ac.in

https://www.iitp.ac.in/~arijit/

IIT Patna

General Information • Class timings • Room - 301 (Block 9) • Monday — 1600-1700 • Tuesday — 1700-1800 • Friday — 1500-1600

Books

Thomas H Cormen, Charles E Lieserson, Ronald L Rivest and Clifford Stein, Introduction to Algorithms, Third Edition, MIT Press/McGraw-Hill
 Saniov Dasgupta, Christos H. Papadimitriou and Umesh V. Vazirani, Algorithms, Tata

• Steven Skiena, *The Algorithm Design Manual*, Springer

• Jon Kleinberg and Éva Tardos, Algorithm Design, Pearson, 2005.

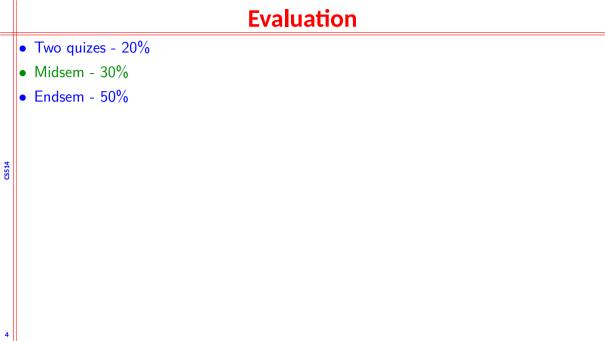
Pohort Sodgowick and Kovin Wayne Algorithms fourth edition Ac

• Robert Sedgewick and Kevin Wayne, *Algorithms*, fourth edition, Addison Wesley, 2011.

• Udi Manber, Algorithms – A Creative Approach, Addison-Wesley, 1989

• Jeff Erickson, Algorithms

McGraw-Hill, 2008.



CS514: Design and Analysis of Algorithms

Introduction

Arijit Mondal

Dept of CSE

arijit@iitp.ac.in

https://www.iitp.ac.in/~arijit/

IIT Patna 5

	Algorithm
	• Is it a jumbled form of <i>logarithm</i> ?
CS514	
6	

	Algorithm
	• Is it a jumbled form of <i>logarithm</i> ?
	 The word algorithm came into existence sometime after 1957
14	
CS514	
6	

	Algorithm
	• Is it a jumbled form of <i>logarithm</i> ?
	• The word algorithm came into existence sometime after 1957
	 Closest word that existed was algorism – it means the process of doing arithmetic using Arabic numerals
CS514	
6	

rithm

	Properties of algorithm
	• Input — an algorithm has zero or more inputs
CS514	
7	

	Properties of algorithm
	Input — an algorithm has zero or more inputs
	Output — an algorithm has one or more outputs
CS514	
7	

Properties of algorithm Input — an algorithm has zero or more inputs Output — an algorithm has one or more outputs

- The state of the control of the cont
- Finiteness an algorithm must terminates after finite number of steps

Properties of algorithm

- Input an algorithm has zero or more inputs
- Output an algorithm has one or more outputs
- Finiteness an algorithm must terminates after finite number of steps
- Definiteness each step of algorithm needs to be defined precisely and unabiguously

Properties of algorithm

Definiteness — each step of algorithm needs to be defined precisely and unabiguously

- Input an algorithm has zero or more inputs
- Output an algorithm has one or more outputs
- Finiteness an algorithm must terminates after finite number of steps
- Finiteness an algorithm must terminates after milite nu
 - add salt to taste

Properties of algorithm

- Input an algorithm has zero or more inputs
- Output an algorithm has one or more outputs
- Finiteness an algorithm must terminates after finite number of steps
- add salt to taste

Effectiveness — operations must all be sufficiently basic that they can in principle be done exactly and in a finite length of time by someone using pencil and paper

Definiteness — each step of algorithm needs to be defined precisely and unabiguously

- Input an algorithm has zero or more inputs
- Output an algorithm has one or more outputs
- Finiteness an algorithm must terminates after finite number of steps
 - Definiteness each step of algorithm needs to be defined precisely and unabiguously
 - add salt to taste
- Effectiveness operations must all be sufficiently basic that they can in principle be done exactly and in a finite length of time by someone using pencil and paper
- If 4 is the largest integer n for which there is a solution to the equation $w^n + x^n + y^n = z^n$ in positive integers w, x, y, and z, then go to step 6

- Algorithm and program
- Pseudo-code

ture use

- $\bullet \ \mathsf{Algorithm} + \mathsf{Data}\text{-}\mathsf{Structures} = \mathsf{Program}$
- Initial solution + Analysis + Solution Refine-
- ment + Data-Structures = Final Program
 Use of recursive definition for initial solution
- Use recurrence equation for proofs and analvsis
- Solution refinement through recursion transformation and traversal
- Data structures for saving past results for fu-

- Sample problems
 - Finding MAX
 - Finding MAX and MIN
 - Finding MAX and 2nd-MAX
 Fibonacci numbers
 - Fibonacci numbersSearching in ordered /
 - ordered listSorting
 - Pattern matching
 - Permutation and combination
 - Shortest path

```
Finding MAX of n elements (1)
• Given L = \{x_1, x_2, \dots, x_n\}, all x_i are integers. We need to find \max\{L\}

    Sequential comparison:

 1. max(L)
 2. if |L| = 1 return x_1
 3. L' = L - \{x_1\}
 4. x' = \max(L')
5. if (x_1 > x') return x_1
 6. else return x'
```

```
Finding MAX of n elements (1)
• Given L = \{x_1, x_2, \dots, x_n\}, all x_i are integers. We need to find \max\{L\}

    Sequential comparison:

                                                 {5, 6, 10, 3, 1, 12, 2}
 1. max(L)
 2. if |L| = 1 return x_1
 3. L' = L - \{x_1\}
 4. x' = \max(L')
5. if (x_1 > x') return x_1
    else return \chi'
```

9

Finding MAX of n elements (1) • Given $L = \{x_1, x_2, ..., x_n\}$, all x_i are integers. We need to find $\max\{L\}$ • Sequential comparison: 1. $\max(L)$ 2. if |L| = 1 return x_1 3. $L' = L - \{x_1\}$

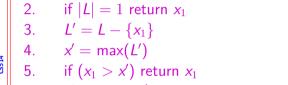
4. $x' = \max(L')$ 5. if $(x_1 > x')$ return x_1

else return χ'

Finding MAX of n elements (1) • Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$ • Sequential comparison: 1. $\max(L)$

 $x_1 = 5, L' = \{6, 10, 3, 1, 12, 2\}$

 $x_1 = 6, L' = \{10, 3, 1, 12, 2\}$



else return χ'

Finding MAX of n elements (1)

```
Given L = {x<sub>1</sub>, x<sub>2</sub>,...,x<sub>n</sub>}, all x<sub>i</sub> are integers. We need to find max{L}
Sequential comparison:
```

1. $\max(L)$ 2. if |L| = 1 return x_1 3. $L' = L - \{x_1\}$ $x_1 = 5, L' = \{6, 10, 3, 1, 12, 2\}$

4. $x' = \max(L')$ 5. if $(x_1 > x')$ return x_1 6. else return x' $x_1 = 6, L' = \{10, 3, 1, 12, 2\}$ $x_1 = 10, L' = \{3, 1, 12, 2\}$

Finding MAX of n elements (1)

- Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$
- Sequential comparison: {5, 6, 10, 3, 1, 12, 2} 1. max(L)
- - 2. if |L| = 1 return x_1

 - 3. $L' = L \{x_1\}$

 - 4. $x' = \max(L')$

 - else return x'

 - 5. if $(x_1 > x')$ return x_1

- $x_1 = 10, L' = \{3, 1, 12, 2\}$

 $x_1 = 5, L' = \{6, 10, 3, 1, 12, 2\}$

- $x_1 = 3, L' = \{1, 12, 2\}$

- $x_1 = 6, L' = \{10, 3, 1, 12, 2\}$

Finding MAX of n elements (1)

• Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$

 Sequential comparison: {5, 6, 10, 3, 1, 12, 2} 1. max(L)

2. if |L| = 1 return x_1 $x_1 = 5, L' = \{6, 10, 3, 1, 12, 2\}$

3. $L' = L - \{x_1\}$ $x_1 = 6, L' = \{10, 3, 1, 12, 2\}$

 $x_1 = 10, L' = \{3, 1, 12, 2\}$ else return x'

 $x_1 = 3, L' = \{1, 12, 2\}$

 $x_1 = 1, L' = \{12, 2\}$

4. $x' = \max(L')$ 5. if $(x_1 > x')$ return x_1

Finding MAX of n elements (1) • Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$ Sequential comparison:

{5, 6, 10, 3, 1, 12, 2} 1. max(L)2. if |L| = 1 return x_1 $x_1 = 5, L' = \{6, 10, 3, 1, 12, 2\}$ 3. $L' = L - \{x_1\}$ $x_1 = 6, L' = \{10, 3, 1, 12, 2\}$ 4. $x' = \max(L')$

 $x_1 = 10, L' = \{3, 1, 12, 2\}$ else return x' $x_1 = 3, L' = \{1, 12, 2\}$ $x_1 = 1, L' = \{12, 2\}$ $x_1 = 12, L' = \{2\}$

5. if $(x_1 > x')$ return x_1

Finding MAX of n elements (1) • Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$ Sequential comparison: {5, 6, 10, 3, 1, 12, 2} 1. max(L)2. if |L| = 1 return x_1 $x_1 = 5, L' = \{6, 10, 3, 1, 12, 2\}$ 3. $L' = L - \{x_1\}$ $x_1 = 6, L' = \{10, 3, 1, 12, 2\}$ 4. $x' = \max(L')$ 5. if $(x_1 > x')$ return x_1 $x_1 = 10, L' = \{3, 1, 12, 2\}$ else return x' $x_1 = 3, L' = \{1, 12, 2\}$ $x_1 = 1, L' = \{12, 2\}$ $x_1 = 12, L' = \{2\}$

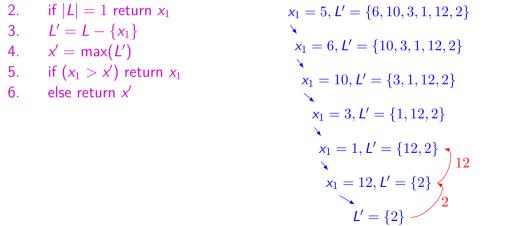
 $L' = \{2\}$

Finding MAX of n elements (1) • Given $L = \{x_1, x_2, ..., x_n\}$, all x_i are integers. We need to find $\max\{L\}$ • Sequential comparison: 1. $\max(L)$ 2. if |L| = 1 return x_1 3. $L' = L - \{x_1\}$

 $x_1 = 12, L' = \{2\}$ $L' = \{2\}$

۰

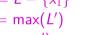
Finding MAX of n elements (1) • Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$ Sequential comparison: $\{5, 6, 10, 3, 1, 12, 2\}$

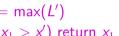


1. max(L)

Finding MAX of n elements (1) • Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$ Sequential comparison: $\{5, 6, 10, 3, 1, 12, 2\}$ 1. max(L) $x_1 = 5, L' = \{6, 10, 3, 1, 12, 2\}$ 2. if |L| = 1 return x_1







5. if
$$(x_1 > x')$$
 return x_1

if
$$(x_1 > x')$$
 return x_1 else return x'

$$> x'$$
) return x_1 eturn x'

$$x_1 = 10, L' = \{3, 1, 12, 2\}$$

 $x_1 = 3, L' = \{1, 12, 2\}$

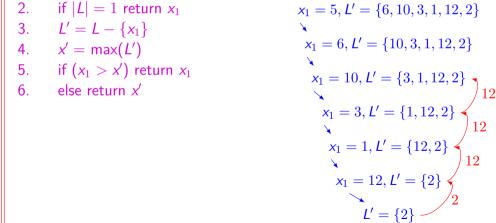
$$x_1 = 3, L' = \{1, 12, 2\}$$

$$x' = \{1$$

 $x_1 = 6, L' = \{10, 3, 1, 12, 2\}$

$$x_1 = 1, L' = \{12, 2\}$$
 $x_1 = 12, L' = \{2\}$
 $L' = \{2\}$

Finding MAX of n elements (1) • Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$ Sequential comparison: $\{5, 6, 10, 3, 1, 12, 2\}$ $x_1 = 5, L' = \{6, 10, 3, 1, 12, 2\}$



1. max(L)

Finding MAX of n elements (1) • Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$ Sequential comparison: $\{5, 6, 10, 3, 1, 12, 2\}$ $x_1 = 5, L' = \{6, 10, 3, 1, 12, 2\}$

2. if |L| = 1 return x_1 3. $L' = L - \{x_1\}$ 4. $x' = \max(L')$

1. max(L)

5. if $(x_1 > x')$ return x_1 else return x'

$$x_{1} = 10, L' = \{3, 1, 12, 2\}$$

$$x_{1} = 3, L' = \{1, 12, 2\}$$

$$x_{1} = 1, L' = \{12, 2\}$$

$$12$$

$$x_{1} = 1, L' = \{12, 2\}$$

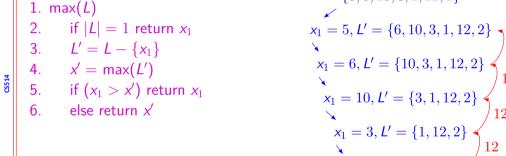
$$12$$

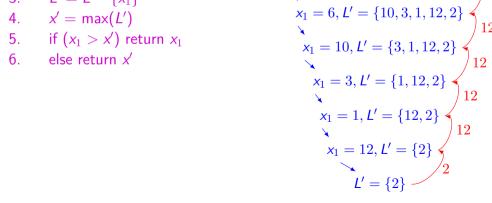
$$x_{1} = 12, L' = \{2\}$$

$$L' = \{2\}$$

 $x_1 = 6, L' = \{10, 3, 1, 12, 2\}$

Finding MAX of n elements (1) • Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$ Sequential comparison: $\{5, 6, 10, 3, 1, 12, 2\}$





Finding MAX of n elements (1) • Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$ Sequential comparison: $\begin{cases} 5, 6, 10, 3, 1, 12, 2 \end{cases}$ $x_1 = 5, L' = \{6, 10, 3, 1, 12, 2\}$

1. max(L)

 $x_1 = 1, L' = \{12, 2\}$ $x_1 = 12, L' = \{2\}$ $L' = \{2\}$

Finding MAX of n elements (1) • Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$

```
• Sequential comparison:
                                                                                    \begin{cases} 5, 6, 10, 3, 1, 12, 2 \end{cases} 
x_1 = 5, L' = \{6, 10, 3, 1, 12, 2\}
```

1. max(L)

2. if |L| = 1 return x_1

3. $L' = L - \{x_1\}$

4. $x' = \max(L')$

5. if $(x_1 > x')$ return x_1 else return x'

Complexity analysis:

 $T(n) = T(n-1) + 1, \quad n > 1$

= 0. n = 1

$$x_1 = 6, L' = \{10, 3, 1, 12, 2\}$$
rn x_1

$$x_1 = 10, L' = \{3, 4\}$$

$$' = \{3, 1\}$$

$${3, 1, 12, 2}$$

$$x_{1} = 10, L' = \{3, 1, 12, 2\}$$

$$x_{1} = 3, L' = \{1, 12, 2\}$$

$$x_{1} = 1, L' = \{12, 2\}$$

$$12$$

$$x_{1} = 12, L' = \{2\}$$

$$L' = \{2\}$$

$$\{1,12,2\}$$

$$\{12,2\}$$

Finding MAX of n elements (2) • Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$ • Recursive formulation: 1. $\max 2(L)$ 2. if |L| = 1 return x_1 3. Split L into 2 non-empty sets L_1, L_2 4. $x = \max 2(L_1)$

5. $y = \max_{x \in \mathbb{R}} (L_1)$ 6. if (x > y) return x7. else return y

Finding MAX of n elements (2) • Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$ • Recursive formulation: 1. $\max 2(L)$ 2. if |L| = 1 return x_1 3. Split L into 2 non-empty sets L_1, L_2 4. $x = \max 2(L_1)$

5. $y = \max 2(L_2)$ 6. if (x > y) return x

7. else return *y*

- Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$
- Recursive formulation:
- 1. $\max_{l} 2(L)$
 - 2. if |L| = 1 return x_1
- 3. Split L into 2 non-empty sets L_1, L_2
- 4. $x = \max_{l} 2(L_1)$
- 5. $y = \max_{l} 2(L_2)$

- 6. if (x > y) return x
- 7. else return *y*

- $\{5, 6, 10\}$ $\{3, 1, 12, 2\}$

 $\{5, 6, 10, 3, 1, 12, 2\}$

- Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$
- Recursive formulation:
- 1. $\max_{l} 2(L)$
 - 2. if |L| = 1 return x_1
 - 3. Split L into 2 non-empty sets L_1, L_2
- 4. $x = \max_{l} 2(L_1)$

 - 5. $y = \max_{l} 2(L_2)$
- 7. else return *y*
- 6. if (x > y) return x
- - - $\{5, 6, 10\}$ $\{3, 1, 12, 2\}$

 $\{5, 6, 10, 3, 1, 12, 2\}$

- $\{5,6\}\ \{10\}\ \{3,1\}\ \{12,2\}$

Finding MAX of n elements (2) • Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$

- Recursive formulation:
- 1. $\max_{l} 2(L)$
 - 2. if |L| = 1 return x_1
 - 3. Split L into 2 non-empty sets L_1, L_2
 - 4. $x = \max_{l} 2(L_1)$
 - 5. $y = \max_{l} 2(L_2)$
 - 6. if (x > y) return x
 - 7. else return *y*

 - - - - $\{5,6\}\ \{10\}\ \{3,1\}\ \{12,2\}$

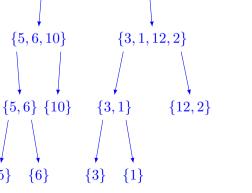
 $\{5, 6, 10, 3, 1, 12, 2\}$

 $\{5, 6, 10\}$ $\{3, 1, 12, 2\}$

Finding MAX of n elements (2) • Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$ Recursive formulation: 1. $\max_{l} 2(L)$ $\{5, 6, 10, 3, 1, 12, 2\}$

2. if |L| = 1 return x_1 3. Split L into 2 non-empty sets L_1, L_2 4. $x = \max_{l} 2(L_1)$ 5. $y = \max_{l} 2(L_2)$

6. if (x > y) return x7. else return *y*



• Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$

- Recursive formulation:
 - 1. $\max_{l} 2(L)$
 - 2. if |L| = 1 return x_1
 - 3. Split L into 2 non-empty sets L_1, L_2
 - 4. $x = \max_{l} 2(L_1)$
 - 5. $y = \max_{l} 2(L_2)$
- 7. else return *y*
- 6. if (x > y) return x

- - $\{5, 6, 10\}$ $\{3, 1, 12, 2\}$

{5, 6, 10, 3, 1, 12, 2}

- $\{5,6\}\ \{10\}\ \{3,1\}\ \{12,2\}$

 $\{3\}$ $\{1\}$

• Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$

- Recursive formulation: 1. $\max_{l} 2(L)$

 - 2. if |L| = 1 return x_1
 - 3. Split L into 2 non-empty sets L_1, L_2
 - 4. $x = \max_{l} 2(L_1)$
 - 5. $y = \max_{l} 2(L_2)$
- 7. else return *y*
- 6. if (x > y) return x
- - $\{5, 6, 10\}$

 - - $\{3, 1, 12, 2\}$

{5, 6, 10, 3, 1, 12, 2}

- $\{5,6\}\ \{10\}\ \{3,1\}\ \{12,2\}$

{3}

{5, 6, 10, 3, 1, 12, 2}

 $\{5, 6, 10\}$ $\{3, 1, 12, 2\}$

 $\{5,6\}\ \{10\}\ \{3,1\}\ \{12,2\}$

*{*6*} {*3*} {*1*} {*12*}*

 $5 \left(\right) \left(\right) 6 3 \left(\right) \left(\right) 1$

• Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$

- Recursive formulation: 1. $\max_{l} 2(L)$

 - 2. if |L| = 1 return x_1
 - 3. Split L into 2 non-empty sets L_1, L_2
- 4. $x = \max_{l} 2(L_1)$
 - 5. $y = \max_{l} 2(L_2)$
- 6. if (x > y) return x7. else return y

• Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$

- Recursive formulation:
 - 1. $\max_{l} 2(L)$
 - 2. if |L| = 1 return x_1 3. Split L into 2 non-empty sets L_1, L_2
 - 4. $x = \max_{l} 2(L_1)$
 - 6. if (x > y) return x
 - 7. else return y
- 5. $y = \max_{l} 2(L_2)$

- $\{5, 6, 10\}$ $\{3, 1, 12, 2\}$

{5, 6, 10, 3, 1, 12, 2}

- $\{3\}$ $\{1\}$ $\{12\}$
- $5 \left(\right) \left(\right) 6 3 \left(\right) \left(\right) 1 \left(\right) 12 \right)$

- $\{5,6\}\ \{10\}\ \{3,1\}\ \{12,2\}$

• Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$

- Recursive formulation:
 - 1. $\max_{l} 2(L)$
 - 2. if |L| = 1 return x_1
 - 3. Split L into 2 non-empty sets L_1, L_2
- 4. $x = \max_{l} 2(L_1)$
 - 5. $y = \max_{l} 2(L_2)$
 - 7. else return *y*
- 6. if (x > y) return x
- - - - $\{5,6\}\ \{10\}\ \{3,1\}\ \{12,2\}$

{5, 6, 10, 3, 1, 12, 2}

- $5 \left(\right) \left(\right) 6 3 \left(\right) \left(\right) 1 \left(\right) 12 \left(\right)$
 - $\{3\}$ $\{1\}$ $\{12\}$

- $\{5, 6, 10\}$ $\{3, 1, 12, 2\}$

• Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$

Recursive formulation:

1.
$$\max_{L} 2(L)$$

2. if |L| = 1 return x_1

3. Split L into 2 non-empty sets L_1, L_2

4. $x = \max_{l} 2(L_1)$

5. $y = \max_{l} 2(L_2)$

6. if (x > y) return x

7. else return *y*

 $\{5,6\}\ \{10\}$ $\{3,1\}$ $\{12,2\}$

{5, 6, 10, 3, 1, 12, 2}

 $\{5, 6, 10\}$ $\{3, 1, 12, 2\}$

*{*5*} {*6*} {*3*} {*1*} {*12*}*

 $5 \left(\right) \left(\right) 6 \quad 3 \left(\right) \left(\right) 1 \quad \left(\right) 12 \left(\right)$

Finding MAX of n elements (2) • Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$ Recursive formulation:

1. $\max_{l} 2(L)$

2. if
$$|L| = 1$$
 return x_1

3. Split L into 2 non-empty sets L_1, L_2

4. $x = \max_{l} 2(L_1)$

5. $y = \max_{l} 2(L_2)$

6. if (x > y) return x

7. else return *y*

 $\{5,6\}\ \{10\}$ $\{3,1\}$ $\{12,2\}$

 $\{5, 6, 10\}$

{5, 6, 10, 3, 1, 12, 2}

{3} {1} {12}

 $5 \left(\right) \left(\begin{array}{c} 6 & 3 \\ \end{array} \right) \left(\begin{array}{c} 1 \\ \end{array} \right) 12 \left(\begin{array}{c} 12 \\ \end{array} \right)$

 $\{3, 1, 12, 2\}$

Finding MAX of n elements (2) • Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$ Recursive formulation: 1. $\max_{l} 2(L)$ {5, 6, 10, 3, 1, 12, 2} 2. if |L| = 1 return x_1

3. Split L into 2 non-empty sets L_1, L_2 4. $x = \max_{l} 2(L_1)$

5. $y = \max_{l} 2(L_2)$

6. if (x > y) return x

7. else return *y*

 $\{5,6\}\ \{10\}\ \ \{3,1\}\ \ \{12,2\}$

 $\{5, 6, 10\}$

 $5 \left(\right) \left(\right) 6 3 \left(\right) \left(\right) 1 \left(\right) 12 \left(\right)$ {3} {1} {12}

 $\{3, 1, 12, 2\}$

• Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$

1. $\max_{l} 2(L)$

4. $x = \max_{l} 2(L_1)$

5.
$$y = \max(L_2)$$

7. else return *y*

Complexity analysis:

6. if (x > y) return x

$$\begin{pmatrix} \\ \\ \\ \end{pmatrix}$$
 3

$$\{3,1\}$$

{3} {1} {12}

Complexity analysis:
$$T(n) = T(n-k) + T(k) + 1, \quad n > 1$$

$$= 0, \quad n = 1$$

$$\{5, 6\} \{10\} \{3, 1\} \{12, 2\}$$

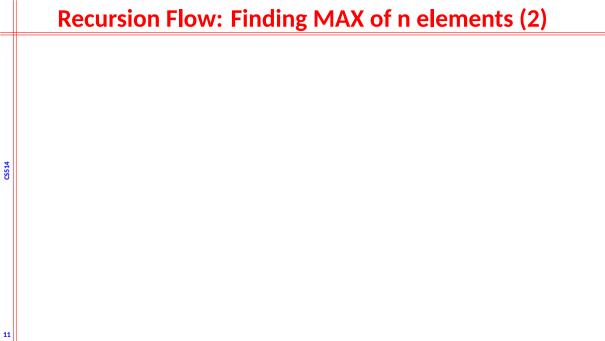
$$\{5, 6\} \{10\} \{3, 1\} \{12, 2\}$$

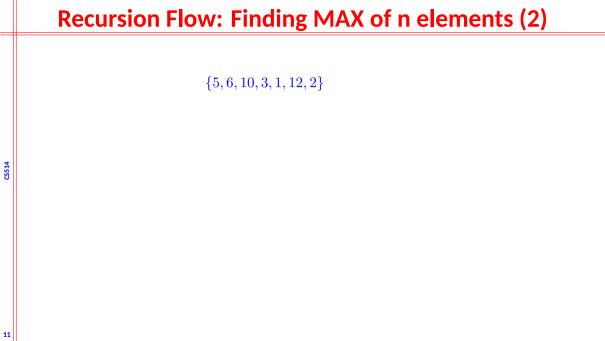
$$\{5,6\} \{10\}$$
 $\{3,1\}$ $\{12,2\}$

$$\stackrel{.}{\setminus}_{12}$$

- {5, 6, 10, 3, 1, 12, 2}

 - $\{3, 1, 12, 2\}$





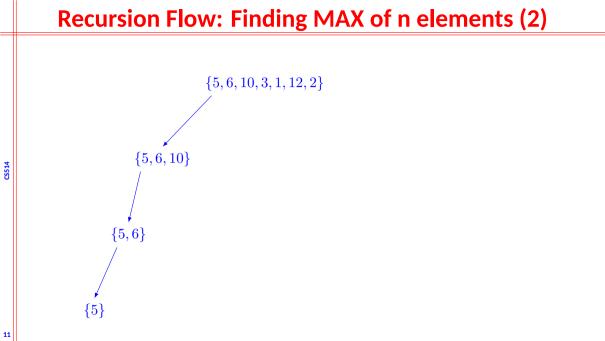
{5, 6, 10, 3, 1, 12, 2}

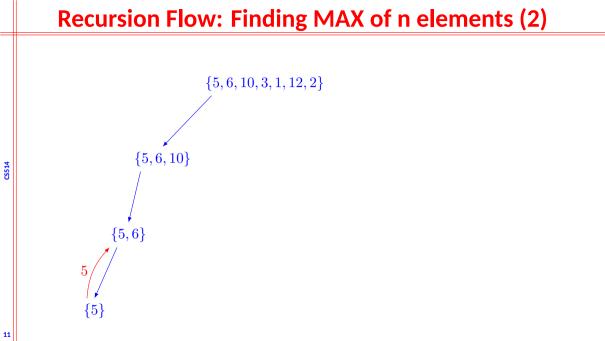
{5, 6, 10}

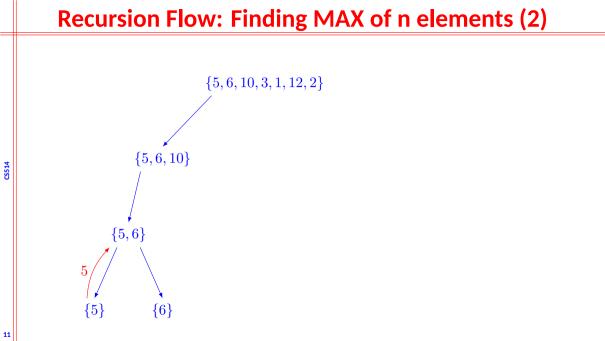
Recursion Flow: Finding MAX of n elements (2) {5, 6, 10, 3, 1, 12, 2} $\{5, 6, 10\}$

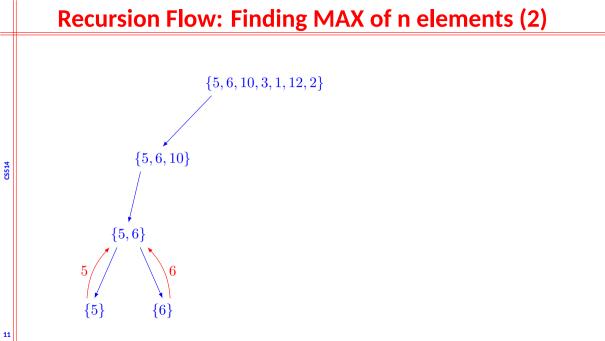
CS514

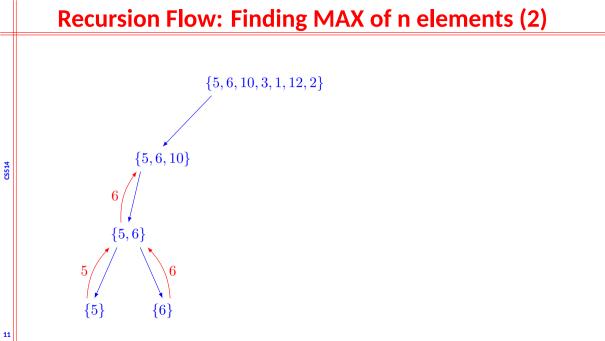
 $\{5, 6\}$







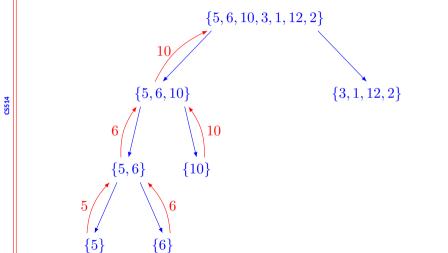




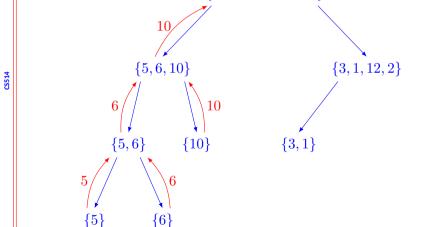
Recursion Flow: Finding MAX of n elements (2) {5, 6, 10, 3, 1, 12, 2} $\{5, 6, 10\}$ CS514 {5,6} {10}

Recursion Flow: Finding MAX of n elements (2) {5, 6, 10, 3, 1, 12, 2} $\{5, 6, 10\}$ CS514 10 $\{5, 6\}$ {10}

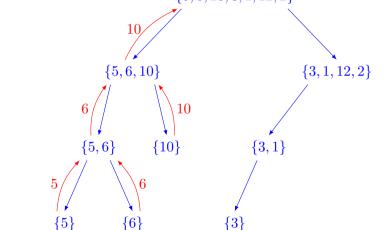
Recursion Flow: Finding MAX of n elements (2) {5, 6, 10, 3, 1, 12, 2} 10 $\{5, 6, 10\}$ CS514 10 $\{5, 6\}$ {10}



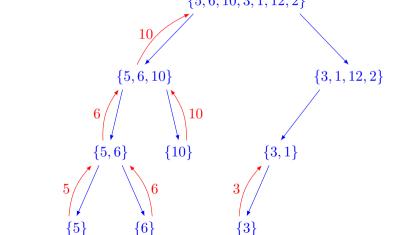
Recursion Flow: Finding MAX of n elements (2) {5, 6, 10, 3, 1, 12, 2}



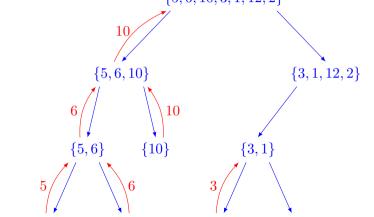
Recursion Flow: Finding MAX of n elements (2) $\{5,6,10,3,1,12,2\}$



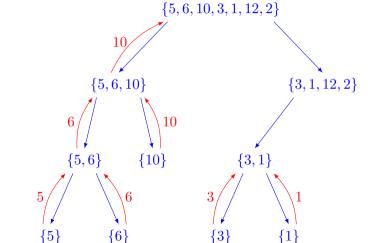
Recursion Flow: Finding MAX of n elements (2) {5, 6, 10, 3, 1, 12, 2}

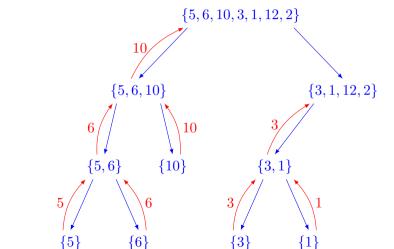


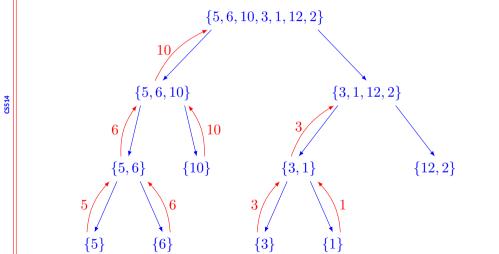
Recursion Flow: Finding MAX of n elements (2) {5,6,10,3,1,12,2}

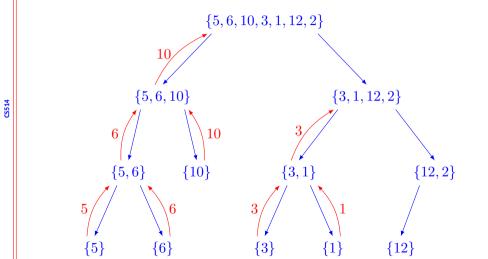


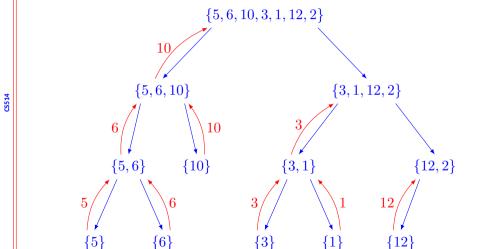
{6}

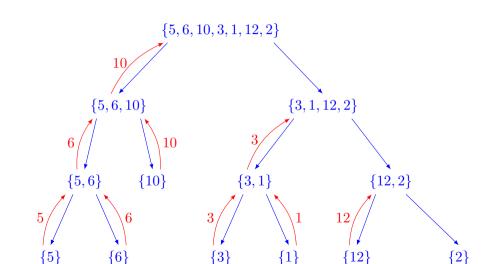




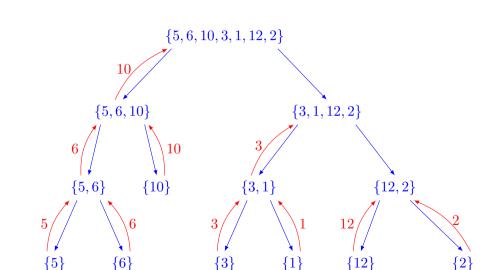




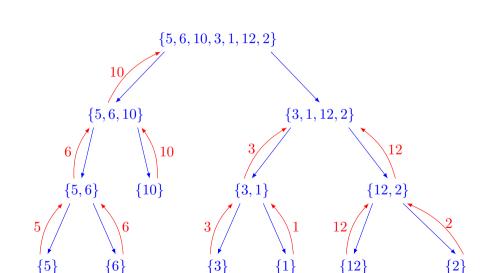




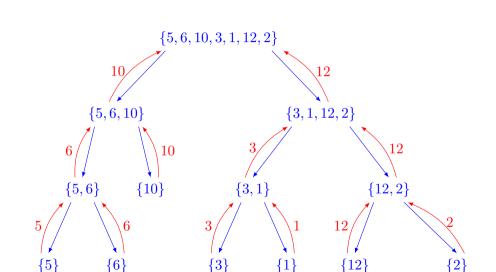
5514



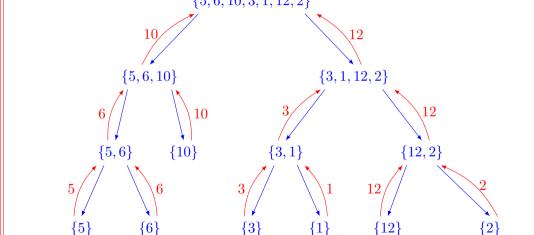
5514



SS14



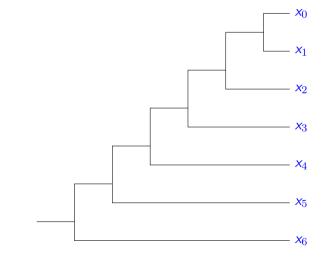
SS14



SS14

Comparison Tournament

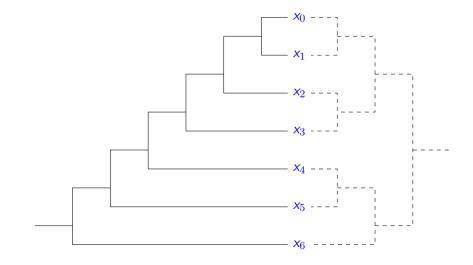
• Finding of maximum can be viewed as a tournament of players taken two at a time



CS514

Comparison Tournament

• Finding of maximum can be viewed as a tournament of players taken two at a time



```
MAX & MIN (1)
• Given L = \{x_1, x_2, \dots, x_n\}, all x_i are integers. We need to find max\{L\} and min\{L\}

    Sequential comparison

 1. maxmin(L)
 2. if |L|=1 return \langle x_1, x_1 \rangle
 3. L' = L - \{x_1\}
 4. \langle y_1, y_2 \rangle = \mathsf{maxmin}(L')
 5. if x_1 > y_1 then m_1 = x_1 else m_1 = y_1
 6. if x_1 < y_2 then m_2 = x_1 else m_2 = y_2
  7. return \langle m_1, m_2 \rangle
```

```
• Given L = \{x_1, x_2, \dots, x_n\}, all x_i are integers. We need to find \max\{L\} and \min\{L\}
```

- Recursive definition
 - 1. maxmin2(L)
 - 2. if |L|=1 return $\langle x_1, x_1 \rangle$
 - 3. if |L|=2 if $x_1 > x_2$ return $\langle x_1, x_2 \rangle$ else return $\langle x_2, x_1 \rangle$

 - 4. Split L into 2 non-empty sets L_1, L_2
- 5. $\langle y_1, y_2 \rangle = \text{maxmin2}(L_1)$

9. return $\langle m_1, m_2 \rangle$

- 6. $\langle z_1, z_2 \rangle = \text{maxmin2}(L_2)$
- 7. if $y_1 > z_1$ then $m_1 = y_1$ else $m_1 = z_1$
- 8. if $y_2 < z_2$ then $m_2 = y_2$ else $m_2 = z_2$

- Recursive definition Choice of split
 - Recurrence relation:

 - $T(n) = 0, \qquad n = 1$

 - $= T(k) + T(n-k) + 2, \quad n=2$

CS514

Thank you!