Introduction to Deep Learning

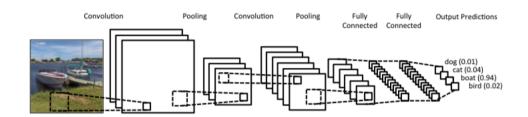
Ariiit Mondal

Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

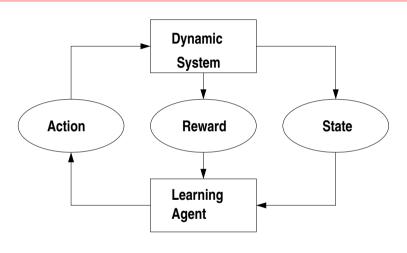
1 CS551

Deep Reinforcement Learning

Introduction



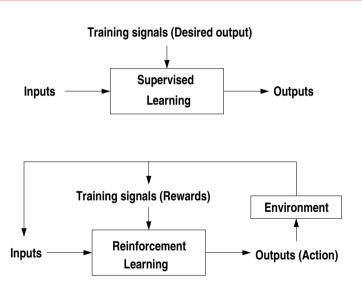
Interaction with environment



Reinforcement learning

- Set of actions that the learner will make in order to maximize its profit
- Action may not only affect the next situation but also subsequent situation
 - Trial and error search
 - Delayed reward
- A learning agent is interacting with environment to achieve a goal
- Agent needs to have idea of state so that it can take right action
- Three key aspects observation, action, goal

Reinforcement vs supervised learning



Reinforcement learning

- It is different from supervised learning
 - Learning from examples provided by a knowledgeable external supervisor
 - Not adequate for learning from interaction
- In interaction problem it is often impractical to obtain examples of desired behavior that are correct and representative of all situations
- Trade-off between exploration and exploitation
 - To improve reward it must prefer effective action from the past (exploit)
 - To discover such action it has to try unselected actions (explore)
 - To discover such action it has to try unselected actions (explore
 - Exploit and exploration cannot be pursued exclusively
- Agent interacts with uncertain environment

	When to use RL
	Data in the form of trajectories
	Need to make a sequence of decision
	Observe (partial, noisy) feedback to state or choice of action
듔	
CS551	
8	

	Examples
	Chess player eg. games
	• Robotics
	Adaptive controller
	All involve interaction between active decision making agent and its environment
51	
CS551	
9	

Elements of RL

- Agent
- Environment
- Policy The way agent behaves at a given time
 - Mapping of state-action pair to state
 - Can use look up table or search method
 - Core of reinforcement learning problem
- Reward function Defines the goal in reinforcement learning problem
 - It maps state-action pair to a single number
 - Objective of RL agent is to maximize total reward
 - Defines bad or good events
 - Must be unalterable by agent, however policy can be changed

Elements of RL (contd.)

- Value function
 - Specifies what is good in long run
 - Value of a state is the total amount of reward an agent can expect to accumulate over future starting from the state
 - Indicates long term desirability of states
 - The action tries to move to a state of highest value (not highest reward)
 - Rewards are mostly given by the environment
 - Value must be estimated or reestimated from the sequence of observation
 - Need efficient method to find values
 - Evolutionary methods (genetic algorithm, simulated annealing) search directly in the space of policies without applying value function

1

Reinforcement learning

 $\arg\max_{-} E_{\pi}[r_0 + r_1 + \ldots + r_T|s_0]$

- Learning agent tries a sequence of actions (a_t)
- ullet Observes outcomes (state s_{t+1} , rewards r_t) of those actions

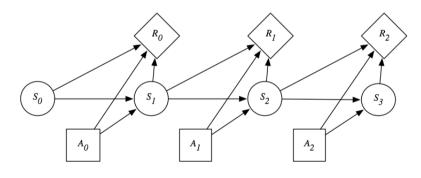
• Selection of policy $\pi(s)$ that optimizes selected outcome

• Statistically estimated relationship between action choice and outcomes $Pr(s_t|s_{t-1},a_{t-1})$

1

Markovian decision process

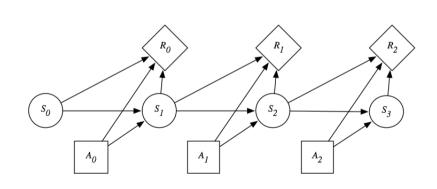
- *S* set of states
- A set of actions
- $Pr(s_t|s_{t-1}, a_{t-1})$ Probabilistic effects
- r_t reward function
- μ_t initial state distribution



The Markov property

• The future state depends only on the current state

$$Pr(s_t|s_{t-1},\ldots,s_0) = Pr(s_t|s_{t-1})$$



- Let U_t be the utility for a trajectory starting from t
- Episodic tasks (eg. games)

$$U_t = r_t + r_{t+1} + r_{t+2} + \ldots + r_T$$

Continuing tasks (eg. can run forever)

$$U_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots = \sum_{k=0}^{\infty} \gamma^k r_{t+k}$$

- γ is known as discount factor and lies between 0 and 1
- At each time step there is a chance of $(1-\gamma)$ that agent dies and no reward after that • Inflation rate - receiving an amount of money today, the value of it tomorrow will be less by a factor of γ

Policy defines the action selection strategy at every state

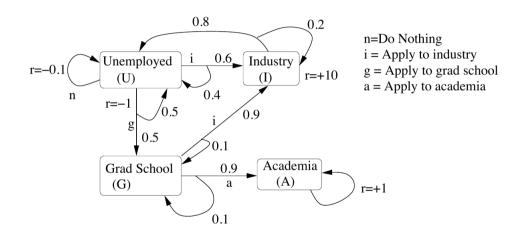
$$\pi(s, a) = P(a_t = a, s_t = s)$$

It can be stochastic or deterministic

Goal is to maximize expected total reward

 $\arg\max_{-} E_{\pi}[r_0 + r_1 + \ldots + r_{\tau}|s_0]$

Example



Value functions

- As we are looking for best policy, it will be useful to estimate the expected return
- Good policy may be chosen by searching over the space of policies
- Value function at a state under a given policy is

$$V^{\pi}(s) = E_{\pi}[r_t + r_{t+1} + \ldots + r_T | s_t = s]$$

Value functions

- As we are looking for best policy, it will be useful to estimate the expected return
- Good policy may be chosen by searching over the space of policies
- Value function at a state under a given policy is

$$V^{\pi}(s) = E_{\pi}[r_t + r_{t+1} + \dots + r_T | s_t = s]$$

$$V^{\pi}(s) = E_{\pi}[r_t | s_t = s] + E_{\pi}[r_{t+1} + \dots + r_T | s_t = s]$$

- As we are looking for best policy, it will be useful to estimate the expected return
- Good policy may be chosen by searching over the space of policies
- Value function at a state under a given policy is

$$V^{\pi}(s) = E_{\pi}[r_{t} + r_{t+1} + \dots + r_{T}|s_{t} = s]$$

$$V^{\pi}(s) = E_{\pi}[r_{t}|s_{t} = s] + E_{\pi}[r_{t+1} + \dots + r_{T}|s_{t} = s]$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a)r(s, a) + E_{\pi}[r_{t+1} + \dots + r_{T}|s_{t} = s]$$

- As we are looking for best policy, it will be useful to estimate the expected return
- Good policy may be chosen by searching over the space of policies
- Value function at a state under a given policy is

$$V^{\pi}(s) = E_{\pi}[r_t + r_{t+1} + \ldots + r_T | s_t = s]$$
 $V^{\pi}(s) = E_{\pi}[r_t | s_t = s] + E_{\pi}[r_{t+1} + \ldots + r_T | s_t = s]$
 $V^{\pi}(s) = \sum_{a \in A} \pi(s, a) r(s, a) + E_{\pi}[r_{t+1} + \ldots + r_T | s_t = s]$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) r(s, a) + E_{\pi}[r_{t+1} + \ldots + r_{T}|s_{t} = s]$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) r(s, a) + \sum_{a \in A} \pi(s, a) \sum_{b \in A} T(s, a, s') E_{\pi}[r_{t+1} + \ldots + r_{T}|s_{t+1} = s']$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) r(s, a) + E_{\pi}[r_{t+1} + \dots + r_{T} | s_{t} = s]$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) r(s, a) + \sum_{a \in A} \pi(s, a) \sum_{a \in A} T(s, a, s') E_{\pi}[r_{t+1} + \dots + r_{T} | s_{t} = s]$$

Value functions

- As we are looking for best policy, it will be useful to estimate the expected return
- Good policy may be chosen by searching over the space of policies
- Value function at a state under a given policy is

$$V^{\pi}(s) = E_{\pi}[r_{t} + r_{t+1} + \dots + r_{T}|s_{t} = s]$$

$$V^{\pi}(s) = E_{\pi}[r_{t}|s_{t} = s] + E_{\pi}[r_{t+1} + \dots + r_{T}|s_{t} = s]$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a)r(s, a) + E_{\pi}[r_{t+1} + \dots + r_{T}|s_{t} = s]$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) r(s, a) + \sum_{a \in A} \pi(s, a) \sum_{s' \in S} T(s, a, s') E_{\pi}[r_{t+1} + \ldots + r_{T} | s_{t+1} = s']$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) r(s, a) + \sum_{a \in A} \pi(s, a) \sum_{s' \in S} T(s, a, s') V^{\pi}(s')$$

Value of policy Reorganizing the last expression $V^{\pi}(s) = \sum_{a \in A} \pi(s, a) \left(r(s, a) + \gamma \sum_{s' \in S} T(s, a, s') V^{\pi}(s') \right)$

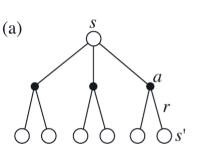
Reorganizing the last expression

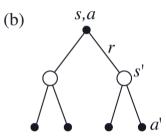
$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) \left(r(s, a) + \gamma \sum_{s' \in S} T(s, a, s') V^{\pi}(s') \right)$$

If we have state-action value functions

$$Q^{\pi}(s, a) = r(s, a) + \gamma \sum_{s' \in S} P(s'|a, s) \sum_{a'} \pi(s', a') Q^{\pi}(s', a')$$

Known as **Bellman's equation**





Solution will be

State value function

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) \left(r(s, a) + \gamma \sum_{s' \in S} T(s, a, s') V^{\pi}(s') \right)$$

 $V^{\pi} = (1 - \gamma T^{\pi})^{-1} R^{\pi}$

- In case of finite number of states, we have a system of linear equations with unique solution to V^{π}
 - Above equation can be written in matrix form as $V^{\pi} = R^{\pi} + \gamma T^{\pi} V^{\pi}$

- Guess initial values for $V_0(s)$
 - It can be 0
- In every iteration say k, the value function for every state will be updated as

$$V_{k+1} = R(s, \pi(s)) + \gamma \sum_{s} T(s, \pi(s), s') V_k(s')$$

Iteration will stop when the difference between two consecutive iteration is within a given threshold

• Absolute error in after (k+1)th iteration

$$V_{k+1}(s) - V^{\pi}(s) = |\sum_{a} \pi(s, a)(R(s, a) + \gamma \sum_{s'} T(s, a, s')V_{k}(s') - \sum_{s} \pi(s, a)(R(s, a) - \gamma \sum_{s'} T(s, a, s')V^{\pi}(s')|$$

• If $\gamma < 1$, then error reduces to 0 gradually

$$-V^{\pi}(s) = |\sum_{s} \pi(s, s)|$$

$$-V^{\pi}(s) = |\sum_{s} \pi(s, s)|$$

$$-V^{\pi}(s) = |\sum \pi(s)|$$

$$\pi(s) = |\nabla \pi(s)|$$

$$(s,a)(R(s,a)+\gamma)$$

$$\pi(s,a)(R(s,a)+\gamma)$$

$$(s,a)(R(s,a)+\gamma)$$

$$(P(s, a) \perp a) \nabla$$

 $\leq \gamma \sum \pi(s, a) \sum_{i} T(s, a, s') |V_k(s') - V^{\pi}(s')|$

Optimal value function may be defined as

$$V^*(s) = \max_{\pi} V^{\pi}(s)$$

$$Q^*(s,a) = \max_{\pi} Q^{\pi}(s,a)$$

Any policy that achieves the optimal value function is known as optimal policy • Usually denoted as π^*

- Optimal value is unique

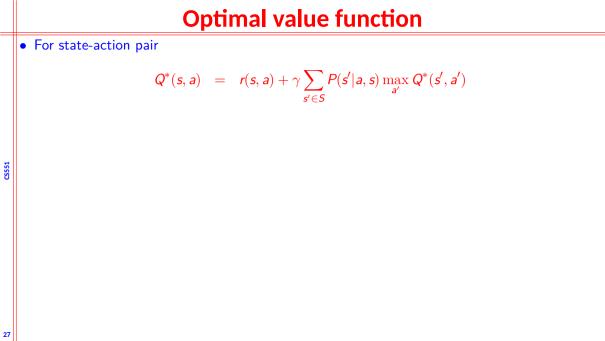
• Suppose
$$V^*$$
, R , T , γ are known, then π^* can be determined as

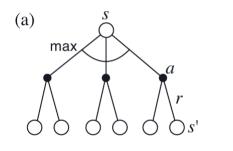
• Suppose
$$V^*,R,T,\gamma$$
 are known, then π^* can be determined as
$$\pi^*(s) = \arg\max_{a \in A} \left(r(s,a) + \gamma \sum_{s'} T(s,a,s') V^*(s) \right)$$

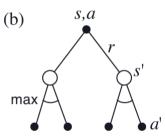
$$\pi^*(s) = \arg \max_{a \in A} \left(r(s, a) + \gamma \sum_{s'} T(s, a, s') V^*(s) \right)$$

• Suppose
$$\pi^*$$
, R , T , γ are known, then V^* can be determined as
$$V^*(s) = \sum_{a \in A} \pi^*(s,a) \left(r(s,a) + \gamma \sum_{s'} T(s,a,s') V^*(s) \right)$$

$$V^*(s) = r(s,\pi(s)) + \gamma \sum_{s'} T(s,\pi(s),s') V^*(s')$$







- Actively search for a can
- Remain stationary and wait for someone to bring a can
- Go back to home base to recharge battery

5′	а	p(s' s,a)	r(s, a, s')
high	search	α	r _{search}
low	search	$1-\alpha$	r _{search}
high	search	$1-\beta$	-3
low	search	eta	r _{search}
high	wait	1	r _{wait}
low	wait	0	r _{wait}
high	wait	0	r _{wait}
low	wait	1	r _{wait}
high	recharge	1	0
low	recharge	0	0
	high low high low high low high low high high	high search low search high search low search high wait low wait high wait low wait high recharge	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Example

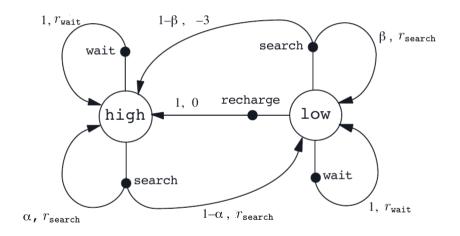


Image source: Reinforcement Learning by Andrew Barto and Richard S. Sutton

 $V^*(h) = \max \left\{ \begin{array}{l} p(h|h,s)[r(h,s,h) + \gamma V^*(h)] + p(I|h,s)[r(h,s,l) + \gamma V^*(l)], \\ p(h|h,w)[r(h,w,h) + \gamma V^*(h)] + p(I|h,w)[r(h,w,l) + \gamma V^*(l)] \end{array} \right\}$

 $V^{*}(h) = \max\{r_{s} + \gamma[\alpha V^{*}(h) + (1 - \alpha)V^{*}(h)], r_{w} + \gamma V^{*}(h)\}$ $V^{*}(h) = \max\left\{ \begin{cases} \beta r_{s} - 3(1 - \beta) + \gamma[(1 - \beta)V^{*}(h) + \beta V^{*}(h)] \\ r_{w} + \gamma V^{*}(h) \end{cases} \right\}$

Finding a good policy (iterative approach)

- Start with an initial policy π_0
- Repeat the following
 - Determine the V^{π} using policy evaluation
 - Determine a new policy π' which is greedy with respect to V^{π}
- Terminate when $\pi = \pi'$

Finding a good policy (iterative approach)

- Start with an initial value $V_0(s)$
- In every iteration, update the value function

$$V_k(s) = \max_{a \in A} \left(R(s, a) + \gamma \sum_{s'} T(s, a, s') V_{k-1}(s') \right)$$

$$V_k(s) = \max_{a \in A} \left(R(s, a) \right)$$

$$V_k(s) = \max_{s \in A} \binom{R(s)}{s}$$

$$V_k(s) = \max_{a \in A} R(s, a)$$

$$V(z)$$
 $P(z,z)$

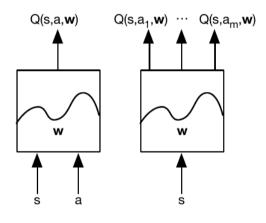
The algorithm converges to the true value of V^*

Stop when maximum value change between iterations is below threshold

- Estimate the optimal value function $Q^*(s, a)$
- The maximum value that can be achieved under any policy
- Policy based RL
 - Look for optimal policy π^*
 - Policy achieving maximum future reward
- Model based RL
 - A model of the environment is developed
 - Plan is made using the model

Q-Networks

• Represent value function by Q-network with weights w, $Q(s, a, w) \approx Q^*(s, a)$



Q learning

Optimal Q-values should obey Bellman equation

$$Q^*(s, a) = E_{s'} \left[r + \gamma \max_{a'} Q^*(s', a') | s, a \right]$$

• Right hand side may be treated as target

$$I = \left(r + \gamma \max_{\mathbf{a}'} Q(\mathbf{s}', \mathbf{a}', \mathbf{w}) - Q(\mathbf{s}, \mathbf{a}, \mathbf{w})\right)^2$$

- Can diverge using neural networks because of
 - Correlations between samplesNon-stationary targets
 - Non-stationary targets

• Data set are generated from agents own experience

$$s_1, a_1, r_2, s_2$$

 s_2, a_2, r_3, s_3
...
 $s_t, a_t, r_{t+1}, s_{t+1}$

• Sample experience from data set and apply update

$$I = \left(r + \gamma \max_{\mathbf{a}'} Q(\mathbf{s}', \mathbf{a}', \mathbf{w}^{-}) - Q(\mathbf{s}, \mathbf{a}, \mathbf{w})\right)^{2}$$

CS551

Deep reinforcement learning

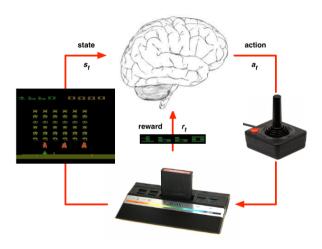


Image source:Deep reinforcement learning by David Silver

DQN

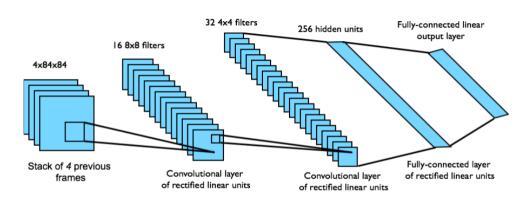


Image source:Deep reinforcement learning by David Silver

	References
CS551	 Reinforcement Learning: An Introduction by Andrew Barto and Richard S. Sutton Human-level control through deep reinforcement learning by Deep Mind, Google
41	