Introduction to Deep Learning

Arijit Mondal

Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

Practical Methodology

Introduction

- Successful application of deep learning
 - Require knowledge of different techniques available
 - Need to know the principle how it works
- Common issues faced
 - Require more data
 - Increase or decrease model complexity
 - Choice of regularizer
 - Optimization model
 - Debug procedure
- All are time consuming

Recommended design process

- Determine the goals
 - Choice of error metric
 - Target value for error metric
 - It depends on the problem at hand
- Setup a working end-to-end pipeline
- Find out bottlenecks and components having poor performance
 - Overfitting, underfitting, defect in data or software etc.
- Repeatedly make incremental changes
 - Gather new data
 - Adjust hyperparameter
 - Try with different algorithms

Performance metric

- Determine your goal and error metric
- Achieving absolute zero error is nearly impossible
- Limited by finite data
 - More data can be collected after it is in operation
 - Data collection is a tedious process and requires money, time, human suffering
 - For benchmark, no extra data should be collected
- Performance level
 - Academic setting use previously published results
 - Real world We need to have some information for it to be safe, cost effective, appealing to users

Performance metric

- Performance metric and cost function are different
 - Precision Fraction of detection reported by the model that are correct
 - Recall Fraction of true events that are detected
- PR-curve Threshold required
 - Precision in y-axis and recall in x-axis
- To have single number for comparison **F-score** is used $(F = \frac{2pr}{p+r})$
 - Coverage Fraction of examples for which the machine learning system able to produce response
 - Accuracy vs Coverage trade-off

CS551

Selection of baseline

- Depending on the complexity of the problem, deep learning may be required
- If the problem is "Al-Complete" such as object identification then deep learning may be a good choice
- Initially general category model is selected
- Supervised learning with fixed input
 - Feed forward network with fully connected layers
- Input has known topological structure like image
 - CNN can be chosen
- Input or output is a sequence
 - Gated recurrent network is preferred

Choice of optimization

- SGD with momentum with decay rate
- Batch normalization can help (specially for CNN or network with sigmoidal non-linearities)
- For small batch size it is better to have regularization at the start
- Early stopping is good
- Dropout is a good regularizer
- Start with already existing model

Data

- Check for performance on training data
 - If it is not acceptable, then no more data is required
 - Increase the model size
 - Add more layers, more units
 - Tune learning rate
 - Check optimization algorithm
 - Probably problem with training data!
 - Acceptable in training data, check performance in test data
 - Not acceptable in test data
 - May require more data, reduce model size

Selection of hyperparameters

- Has significant effect on the performance
 - Time
 - Memory
 - Quality
- To choose it manually, understanding of the hyperparameter is required
- For automatic selection, more computation are required
- For some hyperparameters, generalization error follow U shape curve

Manual hyperparameter tuning

- Need to understand the relationship between hyperparameter and
 - Training error
 - Generalization error
 - Computational resource
 - Need to understand effective capacity
- Target of hyperparameter is to minimize generalization error
- Effective capacity
 - Representational capacity of model
 - Learning algorithm to minimize cost function
 - Degree to which the cost function and training procedure regularize the model

Learning rate

- Controls the effective capacity in a very complicated manner
 - Effective capacity is highest when learning rate is correct
- When learning rate is very high, training error may increase
- When learning rate us small, training will be slower and may prematurely stuck with high training error
- Tuning other parameters requires monitoring of training and test error
- If training error is higher than the desired target error
 - Increase capacity

S551

Hyperparameters

Hyperparameters	Capacity	Reason	Caveats
Number of hidden	Increase	More representational	Time and memory will
units		capacity	increase
Learning rate	Need to	Improper learning rate	
	tune opti-	may result in poor per-	
	mally	formance	
Convolution kernel	Increase	Increases the number of	May require 0 padding.
width		parameters	Memory and time will in-
			crease
Implicit 0 padding	Increase	Keeps representation	Memory and time will in-
		size large	crease
Weight decay	Decrease	Model parameters can	
		become large	
Dropout rate	Decrease	Ensemble	

Automatic hyperparameter optimization

- Neural network is good when lot of hyperparameters are available
- Manual tuning of hyperparameters is good but requires experience
- Start point may be known for some cases (manual tuning is possible)
- Hyperparameter optimization
 - Hyperparameter will have their own hyperparameters
 - Easier to choose secondary hyperparameters

Grid search

- Common practice is to perform grid search when number of hyperparameter is three or less
- Smallest and largest values are chosen conservatively
- Picks the value in log scale
- Performs well when applied repeatedly
 - Refinement of ranges
 - Computation cost is very high

Debugging strategies

- Visualize the model in action
- Visualize the worst mistakes
- Reason about software using training and test error
- Fit a tiny data set
- Compare back-propagated derivatives
- Monitor histogram of activations and gradients