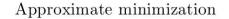
Introduction to Deep Learning

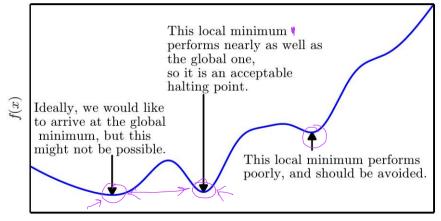
Arijit Mondal

Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

Optimization for Training Deep Models

Minimization of cost function





Curvature

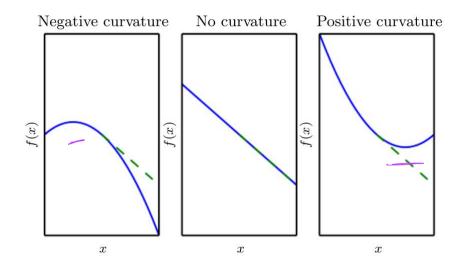
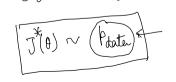


Image source: Deep Learning Book

Problem of optimization

- Differs from traditional pure optimization problem
- Performance of a task is optimized indirectly
- We optimize $J(\theta) = \mathbb{E}_{(x,y) \sim \hat{p}_{data}} L(f(x,\theta), y)$ where \hat{p} is the empirical distribution
- We would like to optimize $\underline{J^*(\theta)} = \mathbb{E}_{(x,y) \sim \underline{(p_{dat})}} L(f(x,\theta), y)$ where p is the data generating distribution
 - Also known as risk
- We hope minimizing *J* will minimize *J**

T(0)~



Empirical risk minimization

- Target is to reduce risk
- If the true distribution is known, risk minimization is an optimization problem
- When $p_{data}(x, y)$ is unknown, it becomes machine learning problem
- Simplest way to convert machine learning problem to optimization problem is to minimize expected cost of training set

Empirical risk minimization (contd.)

• We minimize empirical risk

$$\mathbb{E}_{(\mathbf{x},\mathbf{y})\sim\hat{p}_{data}}[L(f(\mathbf{x},\boldsymbol{\theta}),\mathbf{y})] = \frac{1}{m}\sum_{(i)} L(f(\mathbf{x}^{(i)},\boldsymbol{\theta}),\mathbf{y}^{(i)})$$

- We can hope empirical risk minimizes the risk as well
 - Empirical risk minimization is prone to overfitting
 - Gradient based solution approach may lead to problem with 0-1 loss cost function

Surrogate loss function

- Loss function may not be optimized efficiently
 - Exact minimization of 0-1 loss is typically intractable
- Surrogate loss function is used
 - Proxy function for the actual loss function ${\mathscr N}$
 - Negative log likelihood of correct class used as surrogate function
- There are cases when surrogate loss function results in better learning
 - $\bullet\,$ 0-1 loss of test set often continues to decrease for a long time after training set 0-1 loss has reached to 0
- A training algorithm does not halt at local minima usually
 - Tries to minimize surrogate loss function but halts when validation loss starts to increase
- Training function can halt when surrogate function has huge derivative



CS551

Batch

- Objective function usually decomposes as a sum over training example
- Typically in machine learning update of parameters is done based on an expected value of the cost function estimated using only a subset of the terms of full cost function
- Maximum likelihood problem $\theta_{ML} = \arg \max_{\theta} \left(\sum_{i=1}^{m} \log p_{model}(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}, \theta) \right)$
 - Maximizing this sum is equivalent to maximizing the expectation over empirical distribution $J(\theta) = \mathbb{E}_{(x,y) \sim \hat{p}_{data}} \log p_{model}(x, y, \theta)$ f

Batch (contd.)

- Common gradient is given by $\nabla_{\theta} = \mathbb{E}_{(x,y)} \sqrt{\hat{p}_{data}} \nabla_{\theta} \log p_{model}(x, y, \theta)$
 - It becomes expensive as we need to compute for all examples
 - Random sample is chosen, then average of the same is taken
 - Standard error in mean is $\frac{\sigma}{\sqrt{n}}$ where σ is the true standard deviation $\frac{100}{\sqrt{n}}$
 - Redundancy in training examples is an issue
- Optimization algorithm that uses entire training set is called batch of deterministic gradient descent
- Optimization algorithm that uses single example at a time is known as stochastic gradient/ descent or online method

CS551

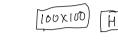
Minibatch

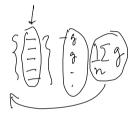
- Larger batch provides more accurate estimate of the gradient but with lesser than linear returns
- <u>Multicore architecture</u> are usually underutilized by small batches
- If all examples are to be processed parallely then the amount of memory scales with batch size
- Sometime, better run time is observed with specific size of the array [
- Small batch can add regularization effect due to noise they add in learning process |
- Methods that update the parameters based on g only are usually robust and can handle small batch size $\sim \frac{100}{16}$, 32, 64, 100

CS551

Minibatch (contd.)

- With Hessian matrix batch size becomes \sim 10,000 (Require to minimize $\mathsf{H}^{-1}_{\mathfrak{g}}$
- SGD minimizes generalization error on minibatches drawn from a stream of data





Issues in optimization

- III conditioning \leftarrow
- Local minima •
- Plateaus
- Saddle points 🍛

Flat region

 $\rightarrow \chi^2 - y^2$

- Cliffs -
- Exploding gradients
- Vanishing gradients /
- Long term dependencies
- Inexact gradients

Ill conditioning

- Ill conditioning of Hessian matrix
 - Common problem in most of the numerical optimization
 - The ratio of smallest to largest eigen value determines the condition number $\vdash \geq_0 \cdots \geq_n$
 - We have the following

$$f(\mathbf{x}) = f(\mathbf{x}^{(0)}) + (\mathbf{x} - \mathbf{x}^{(0)})^{T}\mathbf{g} + \frac{1}{2}(\mathbf{x} - \mathbf{x}^{(0)})^{T}\mathbf{H}(\mathbf{x} - \mathbf{x}^{(0)}) \sim \begin{bmatrix} \max\{\lambda\} \\ \min\{\lambda\} \end{bmatrix}$$

$$f(\mathbf{x} - \epsilon \mathbf{g}) = f(\mathbf{x}^{(0)}) - \epsilon \mathbf{g}^{T}\mathbf{g} + \frac{1}{2}\epsilon \mathbf{g}^{T}\mathbf{H}\epsilon \mathbf{g}^{T}\mathbf{g} + \epsilon^{T}\mathbf{g}^{T}\mathbf{g} + \frac{1}{2}\epsilon \mathbf{g}^{T}\mathbf{g}^{T}\mathbf{g} + \frac{1}{2}\epsilon \mathbf{g}^{T}\mathbf{g} + \frac{1}{2}\epsilon \mathbf{g}^{T}\mathbf{g$$

- It becomes a problem when $\frac{1}{2}\epsilon^2 g^T Hg \epsilon g^T g > 0 \swarrow$
- In many cases gradient norm does not shrink much during learning and g^THg grows more rapidly
- Makes the learning process slow

Local minima

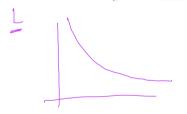
- For convex optimization problem local minima is often acceptable
- For nonconvex function like neural network many local minima are possible
 - This is not a major problem

Local minima (contd.)

- Neural network and any models with multiple equivalently parameterized latent variables results in local minima
 - This is due to model identifiability
 - Model is identifiable if sufficiently large training set can rule out all but one setting of model parameters
 - Model with latent variables are often not identifiable as exchanging of two variables does not change the model
 - *m* layers with *n* unit each can result in $((n!)^m)$ arrangements
 - This non-identifiability is known as weight space symmetry
 - Neural network has other non-identifiability scenario
 - ReLU or MaxOut weight is scaled by $\frac{1}{\alpha}$ and output is scaled by $\frac{1}{\alpha}$

Local minima (contd.)

- Model identifiability issues mean that there can be uncountably infinite number of local minima
- Non-identifiability results in local minima and are equivalent to each other in cost function
- Local minima can be problematic if they have high cost compared to global minima



Other issues

- Saddle points
 - Gradient is 0 but some have higher and some have lower value around the point
 - Hessian matrix has both positive and negative eigen value
- In high dimension local minima are rare, saddle points are common
 - For a function $f: \mathbb{R}^n \to \mathbb{R}$, the expected ratio of number of saddle points to local minima grows exponentially with n is $y = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

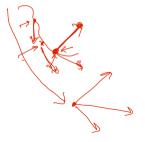
d

- Eigenvalue of Hessian matrix 🖉
- Cliffs uses gradient clipping -
- Long term dependency mostly applicable for RNN
 - $\mathbf{w}^{t} = \mathsf{V}\mathsf{diag}(\boldsymbol{\lambda})^{t} \mathsf{V}^{-1}$
 - vanishing and exploding gradient
- Inexact gradients bias in estimation of gradient

Stochastic gradient descent

- Inputs Learning rate (q_{k}), weight parameters (θ)
- Algorithm for SGD:
 - while stopping criteria not met

Sample a minibatch $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ with labels $\{y^{(i)}\}$ Estimate of gradient $\hat{g} = \underbrace{1}_{m} \sum_{i=1}^{m} \nabla_{\theta} L(f(x^{(i)}, \theta), y^{(i)})$ Update parameters $\theta = \theta - \epsilon_k \hat{g}$ end while



Stochastic gradient descent

- Learning rate is a crucial parameter
- Learning rate ϵ_k is used in the *k*th iteration
- Gradient does not vanishes even when we reach minima as minibatch can introduce noise
- True gradient becomes small and then 0 when batch gradient descent is used
- Sufficient condition on learning rate for convergence of SGD
 - $\sum_{k=1}^{\infty} \epsilon_k = \infty$, $\sum_{k=1}^{\infty} \epsilon_k^2 < \infty$
- Common way is to decay the learning rate $\epsilon_k = (1 \alpha)\epsilon_0 + \alpha\epsilon_{\tau}$ with $\alpha = \frac{k}{\tau}$

Stochastic gradient descent

- Choosing learning rate is an art than science!
 - Typically ϵ_{τ} is 1% of ϵ_{0}
- SGD usually performs well for most of the cases (
- For large task set SGD may converge within the fixed tolerance of final error before it has processed all training examples

Momentum

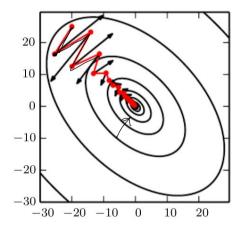
- SGD is the most popular. However, learning may be slow sometime
- Idea is to accelerate learning especially in high curvature, small but consistent gradients
- Accumulates an exponential decaying moving average of past gradients and continue to move in that direction
- Introduces a parameter v that play the role of velocity
 - The velocity is set to an exponentially decaying average of negative gradients
- Update is given by

22

• lpha — hyperparameter, denotes the decay rate

 $\rightarrow \sim$

Momentum



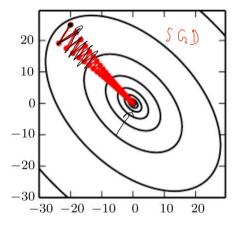


Image source: Deep Learning Book

SGD with momentum

- Inputs Learning rate (ϵ), weight parameters (θ), momentum parameter (α), initial velocity (\mathbf{v})
- Algorithm:

while stopping criteria not met Sample a minibatch from set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ with labels $\{y^{(i)}\}$ Estimate of gradient: $\mathbf{g} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\boldsymbol{\theta}} L(f(\mathbf{x}^{(i)}, \boldsymbol{\theta}), \mathbf{y}^{(i)})$ Update of velocity: $v = \alpha v - \epsilon g$ $\kappa l \sim \ell$ Update parameters: $\theta = \theta + v$ end while V=0, g V= €Eg $\rightarrow r \epsilon g \quad g \quad V = \epsilon g \chi + \epsilon g$ $\rightarrow \epsilon g \chi + \epsilon g \quad Y = \chi (\epsilon g \chi + \epsilon g) + \epsilon g = (\epsilon g \chi^{2} + \chi \epsilon g) + \epsilon g$

Momentum

- The step size depends on how large and how aligned a sequence gradients are
- Largest when many successive gradients are in same direction
- If it observes g always, then it will accelerate in -g with terminal velocity $\left(\frac{\epsilon |g|}{1-c}\right)^{w}$
 - Typical values for α is 0.5, 0.9, 0.99. However this parameter can be adapted.

gt xg tx2g +x3g

Nesternov momentum

- Inputs Learning rate (ϵ), weight parameters (θ), momentum parameter (α), initial velocity (v)
- Algorithm:
 - while stopping criteria not met

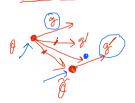
Sample a minibatch from set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ with labels $\{y^{(i)}\}$ Interim update: $\tilde{\theta} = \theta + \alpha y \downarrow \leftarrow$

Gradient at interim point: $\mathbf{g} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\boldsymbol{\theta}} L(f(\mathbf{x}^{(i)}, \tilde{\boldsymbol{\theta}}), \mathbf{y}^{(i)}) \checkmark$

Update of velocity: $\mathbf{v} = \alpha \mathbf{v} - \epsilon \mathbf{g}$

Update parameters: $\theta = \theta + v$

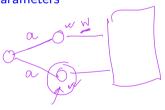
end while





Parameter initialization 🛩

- Training algorithms are iterative in nature
- Require to specify initial point
- Training deep model is difficult task and affected by initial choice
 - Convergence
 - Computation time
 - Numerical instability
- Need to break symmetry while initializing the parameters

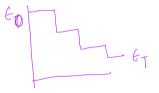


W+G

CS551

Adaptive learning rate

- Learning rate can affect the performance of the model
- Cost may be sensitive in one direction and insensitive in the other directions
- If partial derivative of loss with respect to model remains the same sign then the learning rate should decrease
 - Applicable for full batch optimization



AdaGrad

- Adapts the learning rate of all parameters by scaling them inversely proportional to the square root of the sum of all historical squared values of the gradient \leftarrow
 - Parameters with largest partial derivative of the loss will have rapid decrease in learning rate and vice-versa
 - Net effect is greater progress
- It performs well on some models

Steps for AdaGrad

- Inputs Global learning rate (ϵ), weight parameters (θ), small constant (δ), gradient accumulation (r)
- Algorithm:
 - while stopping criteria not met

Sample a minibatch from set $\{x^{(1)},x^{(2)},\ldots,x^{(m)}\}$ with labels $\{y^{(i)}\}$

Gradient: $\mathbf{g} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\boldsymbol{\theta}} L(f(\mathbf{x}^{(i)}, \boldsymbol{\theta}), \mathbf{y}^{(i)})$ Accumulated squared gradient: $\mathbf{r} = \mathbf{r} + \mathbf{g} \odot \mathbf{g}$ Update: $\Delta \boldsymbol{\theta} = \overbrace{(\delta + \langle \mathbf{r} \rangle \odot \mathbf{g})}^{\epsilon}$ Apply update: $\boldsymbol{\theta} = \boldsymbol{\theta} + \Delta \boldsymbol{\theta}$ end while

RMSProp

- Gradient is accumulated using an exponentially weighted moving average
 - Usually, AdaGrad converges rapidly in case of convex function
 - AdaGrad reduces the learning rate based on entire history
- RMSProp tries to discard history from extreme past
- This can be combined with momentum

Steps for RMSProp

- Inputs Global learning rate (ϵ), weight parameters (θ), small constant (δ), gradient accumulation (r), decay rate (ρ)
- Algorithm:
 - while stopping criteria not met

Sample a minibatch from set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ with labels $\{y^{(i)}\}$ Gradient: $g = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(f(x^{(i)}, \theta), y^{(i)})$ Accumulated squared gradient: $r = \rho r + (1 - \rho) g \odot g$ Update: $\Delta \theta = -\frac{\epsilon}{\sqrt{\delta} + r} \odot g$ Apply update: $\theta = \theta + \Delta \theta$

end while

Steps for RMSProp with Nesternov

 Inputs — Global learning rate (ε), weight parameters (θ), small constant (δ), gradient accumulation (r), decay rate (ρ), initial velocity (v), momentum coefficient (α)

g= ZA:

- Algorithm:
 - while stopping criteria not met

Sample a minibatch from set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ with labels $\{y^{(i)}\}$ Interim update: $\tilde{\theta} = \theta + \alpha v$ Gradient: $\tilde{g} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(f(x^{(i)}, \tilde{\theta}), y^{(i)}) \leftarrow$ Accumulated squared gradient: $r = \rho r + (1 - \rho)g \odot g \models$ Update of velocity: $v = \alpha v - \frac{\epsilon}{\sqrt{r}} \odot g$ Apply update: $\theta = \theta + v$ end while

CS551

Approximate 2nd order method

- Taking 2nd order term to train deep neural network \checkmark
- The cost function at θ near the point θ_0 is given by

$$J(\boldsymbol{\theta}) \approx J(\boldsymbol{\theta}_0) + (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^T \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_0) + \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^T (\widehat{\boldsymbol{H}}(\boldsymbol{\theta} - \boldsymbol{\theta}_0)) \checkmark$$

- Solution for critical point provides ${m heta}^* = {m heta}_0 ({f H}^{-1}
 abla_{m heta} J({m heta}_0)$
 - If the function is quadratic then it jumps to minimum
 - If the surface is not quadratic but H is positive definite then this approach is also applicable
- This approach is known as Newton's method

Mrn.

0- - - 9

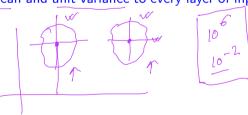
Steps for Newton's method

- Inputs Initial parameters (θ_0)
- Algorithm:
 - while stopping criteria not met

Sample a minibatch from set {x⁽¹⁾, x⁽²⁾,..., x^(m)} with labels {y⁽ⁱ⁾} Compute gradient: $g = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(f(x^{(i)}, \theta), y^{(i)}) \checkmark$ Compute Hessian: $H = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta}^{2} L(f(x^{(i)}, \theta), y^{(i)}) \checkmark$ Compute inverse Hessian: (H^{-1}) Compute update: $\Delta \theta = -H^{-1}g$ Apply update: $\theta = \theta + \Delta \theta$ end while

Batch normalization

- Reduces internal covariate shift
- Issues with deep neural network
 - Vanishing gradients <
 - Use smaller learning rate
 - Use proper initialization
 - Use ReLU or MaxOut which does not saturate 1/2/2010/
- This approach provides inputs that has zero mean and unit variance to every layer of input in neural network



CS551

Batch normalization transformation

DW

- Applying to activation x over a mini-batch
- Input values of x over a minibatch $\mathcal{B} = \{x_{1...m}\}$, parameters to be learned γ, β
- Output $\{y_i = BN_{\gamma,\beta}(x_i)\}$ 7 Le - all fraining • Minibatch mean: $\mu_{\mathcal{B}} = \frac{1}{m} \sum_{i=1}^{m} (x_i)$ • Minibatch variance: $\sigma_{\mathcal{B}}^2 = \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$
 - Normalize: $\hat{x}_i = \frac{x_i \mu_B}{\sqrt{\sigma_B^2 + \hat{\epsilon}}}$ GNX
 - Scale and shift: $\dot{y_i} = \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$

Computational graph for BN

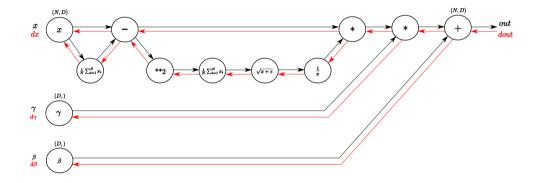


Image source:https://kratzert.github.io

Training & inference using batch-norm

 Input — Network N with trainable parameters θ, subset of activations {x^(k)}^K_{k=1}, Output — Batch-normalized network for inference N^{inf}_{BN}

• Steps:

- Training BN network: $N_{BN}^{tr} = N$
- for k = 1, ..., K
 - Add transformation $y^{(k)} = \mathsf{BN}_{\gamma^{(k)},\beta^{(k)}}(x^{(k)})$ to $N^{\mathsf{tr}}_{\mathsf{BN}} = N$
 - Modify each layer in $N_{BN}^{tr} = N$ with input $x^{(k)}$ to take $y^{(k)}$ instead
- Train $N_{\mathsf{BN}}^{\mathsf{tr}}$ and optimize $\boldsymbol{\theta} \cup \{\gamma^{(k)}, \beta^{(k)}\}_{k=1}^{K}$
- $N_{\rm BN}^{\rm inf} = N_{\rm BN}^{\rm tr}$
- for k = 1, ..., K
 - Process multiple training minibatches and determine $\mathbb{E}[x] = \mathbb{E}_{\mathcal{B}}[\mu_{\mathcal{B}}]$ and $V[x] = \frac{m}{m-1}\mathbb{E}_{\mathcal{B}}[\sigma_{\mathcal{B}}^2]$

• In $N_{\text{BN}}^{\text{inf}}$ replace the transform $y = \text{BN}_{\gamma,\beta}(x)$ with $y = \frac{\gamma}{\sqrt{V[x]+\epsilon}}x + (\beta - \frac{\gamma \mathbb{E}[x]}{\sqrt{V[x]+\epsilon}})$