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Optimization for Training Deep Models
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Minimization of cost function

Image source: Deep Learning Book
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Curvature

Image source: Deep Learning Book
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Problem of optimization
• Differs from traditional pure optimization problem
• Performance of a task is optimized indirectly
• We optimize J(θ) = E(x,y)∼p̂dataL(f(x,θ), y) where p̂ is the empirical distribution
• We would like to optimize J∗(θ) = E(x,y)∼pdataL(f(x,θ), y) where p is the data generating

distribution
• Also known as risk

• We hope minimizing J will minimize J∗
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Empirical risk minimization
• Target is to reduce risk
• If the true distribution is known, risk minimization is an optimization problem
• When pdata(x, y) is unknown, it becomes machine learning problem
• Simplest way to convert machine learning problem to optimization problem is to minimize

expected cost of training set
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Empirical risk minimization (contd.)
• We minimize empirical risk

E(x,y)∼p̂data [L(f(x,θ), y)] =
1

m
∑

i
L(f(x(i),θ), y(i))

• We can hope empirical risk minimizes the risk as well
• Empirical risk minimization is prone to overfitting
• Gradient based solution approach may lead to problem with 0-1 loss cost function
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Surrogate loss function
• Loss function may not be optimized efficiently

• Exact minimization of 0-1 loss is typically intractable
• Surrogate loss function is used

• Proxy function for the actual loss function
• Negative log likelihood of correct class used as surrogate function

• There are cases when surrogate loss function results in better learning
• 0-1 loss of test set often continues to decrease for a long time after training set 0-1 loss

has reached to 0
• A training algorithm does not halt at local minima usually

• Tries to minimize surrogate loss function but halts when validation loss starts to increase
• Training function can halt when surrogate function has huge derivative
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Batch
• Objective function usually decomposes as a sum over training example
• Typically in machine learning update of parameters is done based on an expected value of

the cost function estimated using only a subset of the terms of full cost function

• Maximum likelihood problem θML = arg max
θ

m∑
i=1

log pmodel(x(i), y(i),θ)

• Maximizing this sum is equivalent to maximizing the expectation over empirical distribution
J(θ) = E(x,y)∼p̂data log pmodel(x, y,θ)
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Batch (contd.)
• Common gradient is given by ∇θ = E(x,y)∼p̂data∇θ log pmodel(x, y,θ)

• It becomes expensive as we need to compute for all examples
• Random sample is chosen, then average of the same is taken
• Standard error in mean is σ√

n where σ is the true standard deviation
• Redundancy in training examples is an issue

• Optimization algorithm that uses entire training set is called batch of deterministic gradient
descent

• Optimization algorithm that uses single example at a time is known as stochastic gradient
descent or online method
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Minibatch
• Larger batch provides more accurate estimate of the gradient but with lesser than linear

returns
• Multicore architecture are usually underutilized by small batches
• If all examples are to be processed parallely then the amount of memory scales with batch

size
• Sometime, better run time is observed with specific size of the array
• Small batch can add regularization effect due to noise they add in learning process
• Methods that update the parameters based on g only are usually robust and can handle small

batch size ∼ 100
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Minibatch (contd.)
• With Hessian matrix batch size becomes ∼ 10,000 (Require to minimize H−1g)
• SGD minimizes generalization error on minibatches drawn from a stream of data
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Issues in optimization
• Ill conditioning
• Local minima
• Plateaus
• Saddle points
• Flat region

• Cliffs
• Exploding gradients
• Vanishing gradients
• Long term dependencies
• Inexact gradients
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Ill conditioning
• Ill conditioning of Hessian matrix

• Common problem in most of the numerical optimization
• The ratio of smallest to largest eigen value determines the condition number
• We have the following

f(x) = f(x(0)) + (x − x(0))Tg +
1

2
(x − x(0))TH(x − x(0))

f(x − ϵg) = f(x(0))− ϵgTg +
1

2
ϵgTHϵg

• It becomes a problem when 1
2ϵ

2gTHg − ϵgTg > 0
• In many cases gradient norm does not shrink much during learning and gTHg grows

more rapidly
• Makes the learning process slow
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Local minima
• For convex optimization problem local minima is often acceptable
• For nonconvex function like neural network many local minima are possible

• This is not a major problem
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Local minima (contd.)
• Neural network and any models with multiple equivalently parameterized latent variables

results in local minima
• This is due to model identifiability
• Model is identifiable if sufficiently large training set can rule out all but one setting of

model parameters
• Model with latent variables are often not identifiable as exchanging of two variables does

not change the model
• m layers with n unit each can result in (n!)m arrangements
• This non-identifiability is known as weight space symmetry

• Neural network has other non-identifiability scenario
• ReLU or MaxOut — weight is scaled by α and output is scaled by 1

α
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Local minima (contd.)
• Model identifiability issues mean that there can be uncountably infinite number of local

minima
• Non-identifiability results in local minima and are equivalent to each other in cost function
• Local minima can be problematic if they have high cost compared to global minima
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Other issues
• Saddle points

• Gradient is 0 but some have higher and some have lower value around the point
• Hessian matrix has both positive and negative eigen value

• In high dimension local minima are rare, saddle points are common
• For a function f : Rn → R, the expected ratio of number of saddle points to local minima

grows exponentially with n
• Eigenvalue of Hessian matrix

• Cliffs - uses gradient clipping
• Long term dependency - mostly applicable for RNN

• wt = Vdiag(λ)tV−1

• vanishing and exploding gradient
• Inexact gradients — bias in estimation of gradient
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Stochastic gradient descent
• Inputs — Learning rate (ϵk), weight parameters (θ)
• Algorithm for SGD:

while stopping criteria not met
Sample a minibatch {x(1), x(2), . . . , x(m)} with labels {y(i)}

Estimate of gradient ĝ =
1

m

m∑
i=1

∇θL(f(x(i),θ), y(i))

Update parameters θ = θ − ϵkĝ
end while
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Stochastic gradient descent
• Learning rate is a crucial parameter
• Learning rate ϵk is used in the kth iteration
• Gradient does not vanishes even when we reach minima as minibatch can introduce noise
• True gradient becomes small and then 0 when batch gradient descent is used
• Sufficient condition on learning rate for convergence of SGD

•
∞∑

k=1

ϵk = ∞,
∞∑

k=1

ϵ2k < ∞

• Common way is to decay the learning rate ϵk = (1− α)ϵ0 + αϵτ with α = k
τ
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Stochastic gradient descent
• Choosing learning rate is an art than science!

• Typically ϵτ is 1% of ϵ0
• SGD usually performs well for most of the cases
• For large task set SGD may converge within the fixed tolerance of final error before it has

processed all training examples
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Momentum
• SGD is the most popular. However, learning may be slow sometime
• Idea is to accelerate learning especially in high curvature, small but consistent gradients
• Accumulates an exponential decaying moving average of past gradients and continue to

move in that direction
• Introduces a parameter v that play the role of velocity

• The velocity is set to an exponentially decaying average of negative gradients
• Update is given by

v = αv − ϵ∇θ

(
1

m

m∑
i=1

L(f(x(i),θ), y(i))
)

• α — hyperparameter, denotes the decay rate
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Momentum

Image source: Deep Learning Book
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SGD with momentum
• Inputs — Learning rate (ϵ), weight parameters (θ), momentum parameter (α), initial

velocity (v)
• Algorithm:

while stopping criteria not met
Sample a minibatch from set {x(1), x(2), . . . , x(m)} with labels {y(i)}

Estimate of gradient: g =
1

m

m∑
i=1

∇θL(f(x(i),θ), y(i))

Update of velocity: v = αv − ϵg
Update parameters: θ = θ + v

end while
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Momentum
• The step size depends on how large and how aligned a sequence gradients are
• Largest when many successive gradients are in same direction

• If it observes g always, then it will accelerate in −g with terminal velocity ϵ|g|
1− α

• Typical values for α is 0.5, 0.9, 0.99. However this parameter can be adapted.
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Nesternov momentum
• Inputs — Learning rate (ϵ), weight parameters (θ), momentum parameter (α), initial

velocity (v)
• Algorithm:

while stopping criteria not met
Sample a minibatch from set {x(1), x(2), . . . , x(m)} with labels {y(i)}
Interim update: θ̃ = θ + αv
Gradient at interim point: g = 1

m
∑m

i=1∇θL(f(x(i), θ̃), y(i))
Update of velocity: v = αv − ϵg
Update parameters: θ = θ + v

end while
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Parameter initialization
• Training algorithms are iterative in nature
• Require to specify initial point
• Training deep model is difficult task and affected by initial choice

• Convergence
• Computation time
• Numerical instability

• Need to break symmetry while initializing the parameters
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Adaptive learning rate
• Learning rate can affect the performance of the model
• Cost may be sensitive in one direction and insensitive in the other directions
• If partial derivative of loss with respect to model remains the same sign then the learning

rate should decrease
• Applicable for full batch optimization
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AdaGrad
• Adapts the learning rate of all parameters by scaling them inversely proportional to the square

root of the sum of all historical squared values of the gradient
• Parameters with largest partial derivative of the loss will have rapid decrease in learning

rate and vice-versa
• Net effect is greater progress

• It performs well on some models
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Steps for AdaGrad
• Inputs — Global learning rate (ϵ), weight parameters (θ), small constant (δ), gradient

accumulation (r)
• Algorithm:

while stopping criteria not met
Sample a minibatch from set {x(1), x(2), . . . , x(m)} with labels {y(i)}
Gradient: g = 1

m
∑m

i=1∇θL(f(x(i),θ), y(i))
Accumulated squared gradient: r = r + g ⊙ g
Update: ∆θ = − ϵ

δ+
√

r ⊙ g
Apply update: θ = θ +∆θ

end while
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RMSProp
• Gradient is accumulated using an exponentially weighted moving average

• Usually, AdaGrad converges rapidly in case of convex function
• AdaGrad reduces the learning rate based on entire history

• RMSProp tries to discard history from extreme past
• This can be combined with momentum
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Steps for RMSProp
• Inputs — Global learning rate (ϵ), weight parameters (θ), small constant (δ), gradient

accumulation (r), decay rate (ρ)
• Algorithm:

while stopping criteria not met
Sample a minibatch from set {x(1), x(2), . . . , x(m)} with labels {y(i)}
Gradient: g = 1

m
∑m

i=1∇θL(f(x(i),θ), y(i))
Accumulated squared gradient: r = ρr + (1− ρ)g ⊙ g
Update: ∆θ = − ϵ√

δ+r ⊙ g
Apply update: θ = θ +∆θ

end while

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit



CS
55

1

33

Steps for RMSProp with Nesternov
• Inputs — Global learning rate (ϵ), weight parameters (θ), small constant (δ), gradient ac-

cumulation (r), decay rate (ρ), initial velocity (v), momentum coefficient (α)
• Algorithm:

while stopping criteria not met
Sample a minibatch from set {x(1), x(2), . . . , x(m)} with labels {y(i)}
Interim update: θ̃ = θ + αv
Gradient: g = 1

m
∑m

i=1∇θL(f(x(i), θ̃), y(i))
Accumulated squared gradient: r = ρr + (1− ρ)g ⊙ g
Update of velocity: v = αv − ϵ√

r ⊙ g
Apply update: θ = θ + v

end while

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit



CS
55

1

34

Approximate 2nd order method
• Taking 2nd order term to train deep neural network
• The cost function at θ near the point θ0 is given by

J(θ) ≈ J(θ0) + (θ − θ0)
T∇θJ(θ0) +

1

2
(θ − θ0)

TH(θ − θ0)

• Solution for critical point provides θ∗ = θ0 − H−1∇θJ(θ0)
• If the function is quadratic then it jumps to minimum
• If the surface is not quadratic but H is positive definite then this approach is also

applicable
• This approach is known as Newton’s method
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Steps for Newton’s method
• Inputs — Initial parameters (θ0)
• Algorithm:

while stopping criteria not met
Sample a minibatch from set {x(1), x(2), . . . , x(m)} with labels {y(i)}
Compute gradient: g = 1

m
∑m

i=1∇θL(f(x(i),θ), y(i))
Compute Hessian: H = 1

m
∑m

i=1∇2
θL(f(x(i),θ), y(i))

Compute inverse Hessian: H−1

Compute update: ∆θ = −H−1g
Apply update: θ = θ +∆θ

end while
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Batch normalization
• Reduces internal covariate shift
• Issues with deep neural network

• Vanishing gradients
• Use smaller learning rate
• Use proper initialization
• Use ReLU or MaxOut which does not saturate

• This approach provides inputs that has zero mean and unit variance to every layer of input
in neural network

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit



CS
55

1

37

Batch normalization transformation
• Applying to activation x over a mini-batch
• Input — values of x over a minibatch B = {x1...m}, parameters to be learned — γ, β

• Output — {yi = BNγ,β(xi)}

• Minibatch mean: µB =
1

m

m∑
i=1

xi

• Minibatch variance: σ2
B =

1

m

m∑
i=1

(xi − µB)
2

• Normalize: x̂i =
xi − µB√
σ2
B + ϵ

• Scale and shift: yi = γx̂i + β ≡ BNγ,β(xi)

Reference: Batch normalization: Accelerating Deep

Network Training by Reducing Internal Covariate

Shift, S Ioffe, C Szegedy, 2015

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit



CS
55

1

38

Computational graph for BN

Image source:https://kratzert.github.io
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Training & inference using batch-norm
• Input — Network N with trainable parameters θ, subset of activations {x(k)}K

k=1, Output —
Batch-normalized network for inference Ninf

BN
• Steps:

• Training BN network: Ntr
BN = N

• for k = 1, . . . ,K
• Add transformation y(k) = BNγ(k),β(k)(x(k)) to Ntr

BN = N
• Modify each layer in Ntr

BN = N with input x(k) to take y(k) instead
• Train Ntr

BN and optimize θ ∪ {γ(k), β(k)}K
k=1

• Ninf
BN = Ntr

BN
• for k = 1, . . . ,K

• Process multiple training minibatches and determine E[x] = EB[µB] and V[x] =
m

m−1EB[σ
2
B]

• In Ninf
BN replace the transform y = BNγ,β(x) with y = γ√

V[x]+ϵ
x + (β − γE[x]√

V[x]+ϵ
)


