Introduction to Deep Learning

Ariiit Mondal

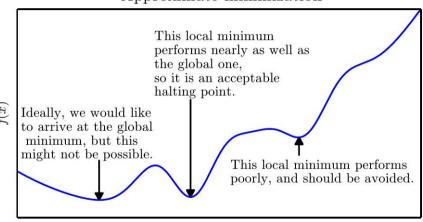
Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

1 CS551

Optimization for Training Deep Models

Minimization of cost function

Approximate minimization



Curvature

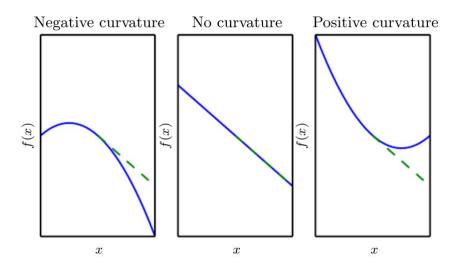


Image source: Deep Learning Book

- Differs from traditional pure optimization problem
- Performance of a task is optimized indirectly
- We optimize $J(\theta) = \mathbb{E}_{(x,y) \sim \hat{p}_{data}} L(f(x,\theta),y)$ where \hat{p} is the empirical distribution
- We would like to optimize $J^*(\theta) = \mathbb{E}_{(x,y) \sim p_{\text{data}}} L(f(x,\theta),y)$ where p is the data generating distribution
 - Also known as risk
- We hope minimizing **J** will minimize **J***

	Empirical risk minimization
	Target is to reduce risk
	• If the true distribution is known, risk minimization is an optimization problem
	• When $p_{data}(x, y)$ is unknown, it becomes machine learning problem
	 Simplest way to convert machine learning problem to optimization problem is to minimize expected cost of training set
CS551	

Empirical risk minimization (contd.)

• We minimize empirical risk

$$\mathbb{E}_{(\mathbf{x},y)\sim\hat{p}_{\mathsf{data}}}[L(f(\mathbf{x},\boldsymbol{\theta}),y)] = \frac{1}{m}\sum_{i}L(f(x^{(i)},\boldsymbol{\theta}),y^{(i)})$$

- We can hope empirical risk minimizes the risk as well
 - Empirical risk minimization is prone to overfitting
- Gradient based solution approach may lead to problem with 0-1 loss cost function

- Objective function usually decomposes as a sum over training example
- Typically in machine learning update of parameters is done based on an expected value of
 the cost function estimated using only a subset of the towns of full cost function.
- the cost function estimated using only a subset of the terms of full cost function $\frac{m}{}$
- Maximum likelihood problem $\theta_{ML} = \arg \max_{\theta} \sum_{i=1}^{m} \log p_{\text{model}}(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}, \theta)$
- Maximizing this sum is equivalent to maximizing the expectation over empirical distribution
- $J(oldsymbol{ heta}) = \mathbb{E}_{(\mathsf{x}, y) \sim \hat{p}_{\mathsf{data}}} \log p_{\mathsf{model}}(\mathsf{x}, y, oldsymbol{ heta})$
- o (1997) Puata

Batch (contd.)

- Common gradient is given by $\nabla_{\theta} = \mathbb{E}_{(x,y) \sim \hat{p}_{data}} \nabla_{\theta} \log p_{model}(x,y,\theta)$
 - It becomes expensive as we need to compute for all examples
 - Random sample is chosen, then average of the same is taken
 - Standard error in mean is $\frac{\sigma}{\sqrt{n}}$ where σ is the true standard deviation
 - Redundancy in training examples is an issue

descent or online method

- Optimization algorithm that uses entire training set is called batch of deterministic gradient descent
- Optimization algorithm that uses single example at a time is known as stochastic gradient

Minibatch

- Larger batch provides more accurate estimate of the gradient but with lesser than linear
- Multicore architecture are usually underutilized by small batches
- If all examples are to be processed parallely then the amount of memory scales with batch size
- Sometime, better run time is observed with specific size of the array
- Sometime, better run time is observed with specific size of the array
- Small batch can add regularization effect due to noise they add in learning process
 Methods that update the parameters based on g only are usually robust and can handle small
- Methods that upon batch size ~ 100

returns

Minibatch (contd.)

- With Hessian matrix batch size becomes $\sim 10{,}000$ (Require to minimize $H^{-1}g$)
- SGD minimizes generalization error on minibatches drawn from a stream of data

Issues in optimization

- III conditioningLocal minima
 - ai iiiiiiiiia
- PlateausSaddle poir
- Saddle points
- Flat region

- Cliffs
- Exploding gradients
- Vanishing gradients
- Long term dependencies
- Inexact gradients

III conditioning

- III conditioning of Hessian matrix
 - Common problem in most of the numerical optimization
 - The ratio of smallest to largest eigen value determines the condition number
 - We have the following

$$f(x) = f(x^{(0)}) + (x - x^{(0)})^T g + \frac{1}{2} (x - x^{(0)})^T H(x - x^{(0)})$$

$$f(x - \epsilon g) = f(x^{(0)}) - \epsilon g^T g + \frac{1}{2} \epsilon g^T H \epsilon g$$

- It becomes a problem when $\frac{1}{2}\epsilon^2\mathbf{g}^\mathsf{T}\mathbf{H}\mathbf{g} \epsilon\mathbf{g}^\mathsf{T}\mathbf{g} > 0$
- In many cases gradient norm does not shrink much during learning and g^THg grows more rapidly
- Makes the learning process slow

Local minima (contd.)

- Neural network and any models with multiple equivalently parameterized latent variables results in local minima
 - This is due to model identifiability
 - Model is identifiable if sufficiently large training set can rule out all but one setting of model parameters
 - Model with latent variables are often not identifiable as exchanging of two variables does not change the model
 - m layers with n unit each can result in $(n!)^m$ arrangements
 - This non-identifiability is known as weight space symmetry
 - Neural network has other non-identifiability scenario
 - ReLU or MaxOut weight is scaled by α and output is scaled by $\frac{1}{\alpha}$

	Local minima (contd.)
	 Model identifiability issues mean that there can be uncountably infinite number of local minima
	• Non-identifiability results in local minima and are equivalent to each other in cost function
	• Local minima can be problematic if they have high cost compared to global minima
1	
CS551	

Other issues

- Saddle points
 - Gradient is 0 but some have higher and some have lower value around the point
 - Hessian matrix has both positive and negative eigen value
- In high dimension local minima are rare, saddle points are common
 - For a function $f: \mathbb{R}^n \to \mathbb{R}$, the expected ratio of number of saddle points to local minima grows exponentially with n
 - Eigenvalue of Hessian matrix
- Cliffs uses gradient clipping
- Long term dependency mostly applicable for RNN
 - $\mathbf{w}^t = \mathsf{Vdiag}(\boldsymbol{\lambda})^t \mathsf{V}^{-1}$
 - vanishing and exploding gradient
- Inexact gradients bias in estimation of gradient

Stochastic gradient descent

- Inputs Learning rate (ϵ_k) , weight parameters (θ)
- Algorithm for SGD:

while stopping criteria not met

Sample a minibatch $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ with labels $\{y^{(i)}\}$

Estimate of gradient $\hat{g} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(f(\mathbf{x}^{(i)}, \theta), y^{(i)})$

Update parameters $\theta = \theta - \epsilon_k \hat{g}$

end while

- Learning rate is a crucial parameter
- Learning rate ϵ_k is used in the kth iteration
- Gradient does not vanishes even when we reach minima as minibatch can introduce noise
- True gradient becomes small and then 0 when batch gradient descent is used
- Sufficient condition on learning rate for convergence of SGD

•
$$\sum_{k=1}^{\infty} \epsilon_k = \infty$$
, $\sum_{k=1}^{\infty} \epsilon_k^2 < \infty$

ullet Common way is to decay the learning rate $\epsilon_k=(1-lpha)\epsilon_0+lpha\epsilon_ au$ with $lpha=rac{k}{ au}$

Stochastic gradient descent

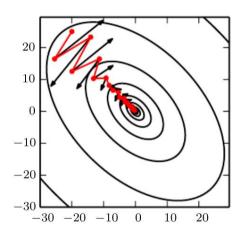
- Choosing learning rate is an art than science!
 - Typically ϵ_{τ} is 1% of ϵ_{0}
- SGD usually performs well for most of the cases
- For large task set SGD may converge within the fixed tolerance of final error before it has processed all training examples

- Idea is to accelerate learning especially in high curvature, small but consistent gradients
- Accumulates an exponential decaying moving average of past gradients and continue to move in that direction
 - ullet Introduces a parameter $oldsymbol{v}$ that play the role of velocity
 - The velocity is set to an exponentially decaying average of negative gradients
- Update is given by

$$v = \alpha v - \epsilon \nabla_{\boldsymbol{\theta}} \left(\frac{1}{m} \sum_{i=1}^{m} L(f(\mathbf{x}^{(i)}, \boldsymbol{\theta}), y^{(i)}) \right)$$

ullet α — hyperparameter, denotes the decay rate

Momentum



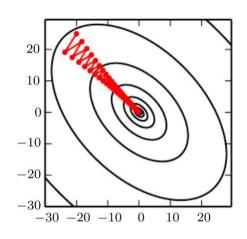


Image source: Deep Learning Book

• Inputs — Learning rate (ϵ) , weight parameters (θ) , momentum parameter (α) , initial

- Algorithm:

velocity (v)

- while stopping criteria not met
- - Sample a minibatch from set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}\$ with labels $\{y^{(i)}\}\$
- Estimate of gradient: $g = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(f(x^{(i)}, \theta), y^{(i)})$
- Update of velocity: $\mathbf{v} = \alpha \mathbf{v} \epsilon \mathbf{g}$
 - Update parameters: $\theta = \theta + v$

Momentum

- The step size depends on how large and how aligned a sequence gradients are
- Largest when many successive gradients are in same direction
- If it observes g always, then it will accelerate in -g with terminal velocity $\frac{\epsilon|g|}{1-g}$
- Typical values for α is 0.5, 0.9, 0.99. However this parameter can be adapted.

- Algorithm:
- while stopping criteria not met

Sample a minibatch from set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}\$ with labels $\{y^{(i)}\}\$

- Interim update: $\tilde{\boldsymbol{\theta}} = \boldsymbol{\theta} + \alpha \mathbf{v}$
- Gradient at interim point: $g = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(f(x^{(i)}, \tilde{\theta}), y^{(i)})$
 - Update of velocity: $\mathbf{v} = \alpha \mathbf{v} \epsilon \mathbf{g}$
 - Update parameters: $\theta = \theta + v$

end while

Parameter initialization

- Training algorithms are iterative in nature
- Require to specify initial point
 - Training deep model is difficult task and affected by initial choice
 - Convergence
 - Computation time
 - Numerical instability
 - Need to break symmetry while initializing the parameters

- Learning rate can affect the performance of the model
- Cost may be sensitive in one direction and insensitive in the other directions
- If partial derivative of loss with respect to model remains the same sign then the learning rate should decrease
 - Applicable for full batch optimization

- Parameters with largest partial derivative of the loss will have rapid decrease in learning rate and vice-versa
- Net effect is greater progress
- It performs well on some models

- Inputs Global learning rate (ϵ) , weight parameters (θ) , small constant (δ) , gradient
- Algorithm:

accumulation (r)

while stopping criteria not met

Sample a minibatch from set
$$\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$$
 with labels $\{y^{(i)}\}$

Gradient: $g = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(f(x^{(i)}, \theta), y^{(i)})$ Accumulated squared gradient: $r = r + g \odot g$

Accumulated squared gradient:
$$r = r + g \odot g$$

Update: $\Delta \theta = -\frac{\epsilon}{\delta + \sqrt{r}} \odot g$

Apply update:
$$\theta = \theta + \Delta \theta$$

end while

RMSProp

- Gradient is accumulated using an exponentially weighted moving average
 - Usually, AdaGrad converges rapidly in case of convex function
 - AdaGrad reduces the learning rate based on entire history
- RMSProp tries to discard history from extreme past
- This can be combined with momentum

- Inputs Global learning rate (ϵ) , weight parameters (θ) , small constant (δ) , gradient
- Algorithm:
- while stopping criteria not met

Sample a minibatch from set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}\$ with labels $\{y^{(i)}\}\$

Gradient: $g = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(f(x^{(i)}, \theta), y^{(i)})$

accumulation (r), decay rate (ρ)

Accumulated squared gradient: $\mathbf{r} = \rho \mathbf{r} + (1 - \rho)\mathbf{g} \odot \mathbf{g}$

Update: $\Delta \theta = -\frac{\epsilon}{\sqrt{\lambda + r}} \odot g$

Apply update: $\theta = \theta + \Delta \theta$

end while

- Inputs Global learning rate (ϵ) , weight parameters (θ) , small constant (δ) , gradient accumulation (r), decay rate (ρ) , initial velocity (v), momentum coefficient (α)
- while stopping criteria not met

• Algorithm:

end while

Sample a minibatch from set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}\$ with labels $\{y^{(i)}\}\$

Apply update: $\theta = \theta + v$

Interim update: $\tilde{\boldsymbol{\theta}} = \boldsymbol{\theta} + \alpha \mathbf{v}$ Gradient: $g = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(f(x^{(i)}, \tilde{\theta}), y^{(i)})$

Update of velocity: $\mathbf{v} = \alpha \mathbf{v} - \frac{\epsilon}{\sqrt{r}} \odot \mathbf{g}$

Accumulated squared gradient: $\mathbf{r} = \rho \mathbf{r} + (1 - \rho)\mathbf{g} \odot \mathbf{g}$

applicable

$$J(oldsymbol{ heta}) pprox J(oldsymbol{ heta}_0) + (oldsymbol{ heta} - oldsymbol{ heta}_0)^T
abla_{oldsymbol{ heta}} J(oldsymbol{ heta}_0) + rac{1}{2} (oldsymbol{ heta} - oldsymbol{ heta}_0)^T \mathsf{H} (oldsymbol{ heta} - oldsymbol{ heta}_0)$$

- Solution for critical point provides $\theta^* = \theta_0 H^{-1}\nabla_{\theta}J(\theta_0)$
- If the function is quadratic then it jumps to minimum
- If the surface is not quadratic but H is positive definite then this approach is also

This approach is known as Newton's method

- Inputs Initial parameters (θ_0)
- Algorithm:

end while

while stopping criteria not met

Sample a minibatch from set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}\$ with labels $\{y^{(i)}\}\$

Compute gradient: $g = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(f(x^{(i)}, \theta), y^{(i)})$

Compute inverse Hessian: H^{-1} Compute update: $\Delta \theta = -H^{-1}g$ Apply update: $\theta = \theta + \Delta \theta$

Compute Hessian: $H = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\boldsymbol{\theta}}^2 L(f(x^{(i)}, \boldsymbol{\theta}), y^{(i)})$

- Issues with deep neural network
 - Vanishing gradients
 - Use smaller learning rate
 - Use proper initialization
 - Use ReLU or MaxOut which does not saturate
- This approach provides inputs that has zero mean and unit variance to every layer of input in neural network

Batch normalization transformation

- Applying to activation x over a mini-batch
- Input values of x over a minibatch $\mathcal{B} = \{x_{1...m}\}$, parameters to be learned γ, β
- Output $\{y_i = \mathsf{BN}_{\gamma,\beta}(x_i)\}$
 - Minibatch mean: $\mu_{\mathcal{B}} = \frac{1}{m} \sum_{i=1}^{m} x_i$
 - Minibatch variance: $\sigma_{\mathcal{B}}^2 = \frac{1}{m} \sum_{i=1}^{m} (x_i \mu_{\mathcal{B}})^2$
 - Normalize: $\hat{x}_i = \frac{x_i \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$
 - Scale and shift: $y_i = \gamma \hat{x}_i + \beta \equiv \mathsf{BN}_{\gamma,\beta}(x_i)$

Computational graph for BN

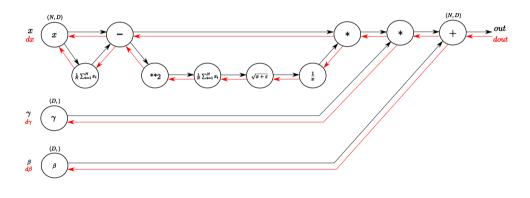


Image source:https://kratzert.github.io

Training & inference using batch-norm

• Input — Network N with trainable parameters θ , subset of activations $\{x^{(k)}\}_{k=1}^K$, Output — Batch-normalized network for inference Ninf

- Steps:
 - Training BN network: $N_{\text{BN}}^{\text{tr}} = N$
 - for k = 1, ..., K
 - Add transformation $y^{(k)} = BN_{\gamma^{(k)},\beta^{(k)}}(x^{(k)})$ to $N_{RN}^{tr} = N$
 - Modify each layer in $N_{RN}^{tr} = N$ with input $x^{(k)}$ to take $y^{(k)}$ instead
 - Train $N_{\text{RN}}^{\text{tr}}$ and optimize $\theta \cup \{\gamma^{(k)}, \beta^{(k)}\}_{k=1}^K$ • $N_{PN}^{inf} = N_{PN}^{tr}$
 - for k = 1, ..., K
 - Process multiple training minibatches and determine $\mathbb{E}[x] = \mathbb{E}_{\mathcal{B}}[\mu_{\mathcal{B}}]$ and V[x] =
 - $\frac{m}{m-1}\mathbb{E}_{\mathcal{B}}[\sigma_{\mathcal{B}}^2]$
 - In $N_{\rm BN}^{\rm inf}$ replace the transform $y={\rm BN}_{\gamma,\beta}(x)$ with $y=\frac{\gamma}{\sqrt{N_{\rm N}}+\epsilon}x+(\beta-\frac{\gamma\mathbb{E}[x]}{\sqrt{N_{\rm N}}+\epsilon})$