
CS5511

Introduction to Deep Learning

Arijit Mondal
Dept. of Computer Science & Engineering

Indian Institute of Technology Patna

arijit@iitp.ac.in

CS
55

1

2

Deep Feedforward Networks

CS
55

1

3

Deep feedforward networks
• Also known as feedforward neural network or multilayer perceptron

• Goal of such network is to approximate some function f ∗
• For classifier, x is mapped to category y ie. y = f ∗(x)
• A feedforward network maps y = f(x;θ) and learns θ for which the result is the best

function approximation
• Information flows from input to intermediate to output

• No feedback, directed acyclic graph
• For general model, it can have feedback and known as recurrent neural network

• Typically it represents composition of functions
• Three functions f (1), f (2), f (3) are connected in chain
• Overall function realized is f(x) = f (3)(f (2)(f (1)(x)))
• The number of layers provides the depth of the model

• Goal of NN is not to model brain accurately!

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

3

Deep feedforward networks
• Also known as feedforward neural network or multilayer perceptron
• Goal of such network is to approximate some function f ∗

• For classifier, x is mapped to category y ie. y = f ∗(x)
• A feedforward network maps y = f(x;θ) and learns θ for which the result is the best

function approximation

• Information flows from input to intermediate to output
• No feedback, directed acyclic graph
• For general model, it can have feedback and known as recurrent neural network

• Typically it represents composition of functions
• Three functions f (1), f (2), f (3) are connected in chain
• Overall function realized is f(x) = f (3)(f (2)(f (1)(x)))
• The number of layers provides the depth of the model

• Goal of NN is not to model brain accurately!

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

3

Deep feedforward networks
• Also known as feedforward neural network or multilayer perceptron
• Goal of such network is to approximate some function f ∗

• For classifier, x is mapped to category y ie. y = f ∗(x)
• A feedforward network maps y = f(x;θ) and learns θ for which the result is the best

function approximation
• Information flows from input to intermediate to output

• No feedback, directed acyclic graph
• For general model, it can have feedback and known as recurrent neural network

• Typically it represents composition of functions
• Three functions f (1), f (2), f (3) are connected in chain
• Overall function realized is f(x) = f (3)(f (2)(f (1)(x)))
• The number of layers provides the depth of the model

• Goal of NN is not to model brain accurately!

Arijit

Arijit

CS
55

1

3

Deep feedforward networks
• Also known as feedforward neural network or multilayer perceptron
• Goal of such network is to approximate some function f ∗

• For classifier, x is mapped to category y ie. y = f ∗(x)
• A feedforward network maps y = f(x;θ) and learns θ for which the result is the best

function approximation
• Information flows from input to intermediate to output

• No feedback, directed acyclic graph
• For general model, it can have feedback and known as recurrent neural network

• Typically it represents composition of functions
• Three functions f (1), f (2), f (3) are connected in chain
• Overall function realized is f(x) = f (3)(f (2)(f (1)(x)))
• The number of layers provides the depth of the model

• Goal of NN is not to model brain accurately!

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

3

Deep feedforward networks
• Also known as feedforward neural network or multilayer perceptron
• Goal of such network is to approximate some function f ∗

• For classifier, x is mapped to category y ie. y = f ∗(x)
• A feedforward network maps y = f(x;θ) and learns θ for which the result is the best

function approximation
• Information flows from input to intermediate to output

• No feedback, directed acyclic graph
• For general model, it can have feedback and known as recurrent neural network

• Typically it represents composition of functions
• Three functions f (1), f (2), f (3) are connected in chain
• Overall function realized is f(x) = f (3)(f (2)(f (1)(x)))
• The number of layers provides the depth of the model

• Goal of NN is not to model brain accurately!

Arijit

CS
55

1

4

Multilayer neural network

x1 . . . xj . . . xk 1

h1(x) 1

W1 b1

h2(x) 1

W2 b2

f(x)

W3
b3

Arijit

Arijit

Arijit

CS
55

1

5

Issues with linear FFN
• Fit well for linear and logistic regression
• Convex optimization technique may be used
• Capacity of such function is limited
• Model cannot understand interaction between any two variables

Arijit

Arijit

Arijit

Arijit

CS
55

1

6

Overcome issues of linear FFN
• Transform x (input) into ϕ(x) where ϕ is nonlinear transformation

• How to choose ϕ?
• Use a very generic ϕ of high dimension

• Enough capacity but may result in poor generalization
• Very generic feature mapping usually based on principle of local smoothness
• Do not encode enough prior information

• Manually design ϕ

• Require domain knowledge
• Strategy of deep learning is to learn ϕ

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

6

Overcome issues of linear FFN
• Transform x (input) into ϕ(x) where ϕ is nonlinear transformation
• How to choose ϕ?

• Use a very generic ϕ of high dimension
• Enough capacity but may result in poor generalization
• Very generic feature mapping usually based on principle of local smoothness
• Do not encode enough prior information

• Manually design ϕ

• Require domain knowledge
• Strategy of deep learning is to learn ϕ

CS
55

1

6

Overcome issues of linear FFN
• Transform x (input) into ϕ(x) where ϕ is nonlinear transformation
• How to choose ϕ?

• Use a very generic ϕ of high dimension
• Enough capacity but may result in poor generalization
• Very generic feature mapping usually based on principle of local smoothness
• Do not encode enough prior information

• Manually design ϕ

• Require domain knowledge
• Strategy of deep learning is to learn ϕ

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

6

Overcome issues of linear FFN
• Transform x (input) into ϕ(x) where ϕ is nonlinear transformation
• How to choose ϕ?

• Use a very generic ϕ of high dimension
• Enough capacity but may result in poor generalization
• Very generic feature mapping usually based on principle of local smoothness
• Do not encode enough prior information

• Manually design ϕ

• Require domain knowledge

• Strategy of deep learning is to learn ϕ

Arijit

Arijit

CS
55

1

6

Overcome issues of linear FFN
• Transform x (input) into ϕ(x) where ϕ is nonlinear transformation
• How to choose ϕ?

• Use a very generic ϕ of high dimension
• Enough capacity but may result in poor generalization
• Very generic feature mapping usually based on principle of local smoothness
• Do not encode enough prior information

• Manually design ϕ

• Require domain knowledge
• Strategy of deep learning is to learn ϕ

Arijit

Arijit

CS
55

1

7

Goal of deep learning
• We have a model y = f(x;θ,w) = ϕ(x;θ)Tw
• We use θ to learn ϕ

• w and ϕ determines the output. ϕ defines the hidden layer
• It looses the convexity of the training problem but benefits a lot
• Representation is parameterized as ϕ(x,θ)

• θ can be determined by solving optimization problem
• Advantages

• ϕ can be very generic
• Human practitioner can encode their knowledge to designing ϕ(x;θ)

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

8

Design issues of feedforward network
• Choice of optimizer
• Cost function
• The form of output unit
• Choice of activation function
• Design of architecture - number of layers, number of units in each layer
• Computation of gradients

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

9

Example
• Let us choose XOR function
• Target function is y = f ∗(x) and our model provides y = f(x;θ)
• Learning algorithm will choose the parameters θ to make f close to f ∗

• Target is to fit output for X = {[0, 0]T, [0, 1]T, [1, 0]T, [1, 1]T}
• This can be treated as regression problem and MSE error can be chosen as loss function

(J(θ) = 1

4

∑
x∈X

(f ∗(x)− f(x;θ))2)

• We need to choose f(x;θ) where θ depends on w and b
• Let us consider a linear model f(x;w, b) = xTw + b
• Solving these, we get w = 0 and b = 1

2

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

9

Example
• Let us choose XOR function
• Target function is y = f ∗(x) and our model provides y = f(x;θ)
• Learning algorithm will choose the parameters θ to make f close to f ∗

• Target is to fit output for X = {[0, 0]T, [0, 1]T, [1, 0]T, [1, 1]T}
• This can be treated as regression problem and MSE error can be chosen as loss function

(J(θ) = 1

4

∑
x∈X

(f ∗(x)− f(x;θ))2)

• We need to choose f(x;θ) where θ depends on w and b
• Let us consider a linear model f(x;w, b) = xTw + b

• Solving these, we get w = 0 and b = 1
2

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

9

Example
• Let us choose XOR function
• Target function is y = f ∗(x) and our model provides y = f(x;θ)
• Learning algorithm will choose the parameters θ to make f close to f ∗

• Target is to fit output for X = {[0, 0]T, [0, 1]T, [1, 0]T, [1, 1]T}
• This can be treated as regression problem and MSE error can be chosen as loss function

(J(θ) = 1

4

∑
x∈X

(f ∗(x)− f(x;θ))2)

• We need to choose f(x;θ) where θ depends on w and b
• Let us consider a linear model f(x;w, b) = xTw + b
• Solving these, we get w = 0 and b = 1

2

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

10

Simple FFN with hidden layer

x1 x2

h1 h2

y

x

h

y

W

w

• Let us assume that the hidden unit h computes f (1)(x;W, c)

• In the next layer y = f (2)(h;w, b) is computed
• Complete model f(x;W, c,w, b) = f (2)(f (1)(x))
• Suppose f (1)(x) = WTx and f 2(h) = hTw then f(x) = wTWTx

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

10

Simple FFN with hidden layer

x1 x2

h1 h2

y

x

h

y

W

w

• Let us assume that the hidden unit h computes f (1)(x;W, c)
• In the next layer y = f (2)(h;w, b) is computed

• Complete model f(x;W, c,w, b) = f (2)(f (1)(x))
• Suppose f (1)(x) = WTx and f 2(h) = hTw then f(x) = wTWTx

Arijit

CS
55

1

10

Simple FFN with hidden layer

x1 x2

h1 h2

y

x

h

y

W

w

• Let us assume that the hidden unit h computes f (1)(x;W, c)
• In the next layer y = f (2)(h;w, b) is computed
• Complete model f(x;W, c,w, b) = f (2)(f (1)(x))

• Suppose f (1)(x) = WTx and f 2(h) = hTw then f(x) = wTWTx

Arijit

CS
55

1

10

Simple FFN with hidden layer

x1 x2

h1 h2

y

x

h

y

W

w

• Let us assume that the hidden unit h computes f (1)(x;W, c)
• In the next layer y = f (2)(h;w, b) is computed
• Complete model f(x;W, c,w, b) = f (2)(f (1)(x))
• Suppose f (1)(x) = WTx and f 2(h) = hTw

then f(x) = wTWTx

Arijit

Arijit

CS
55

1

10

Simple FFN with hidden layer

x1 x2

h1 h2

y

x

h

y

W

w

• Let us assume that the hidden unit h computes f (1)(x;W, c)
• In the next layer y = f (2)(h;w, b) is computed
• Complete model f(x;W, c,w, b) = f (2)(f (1)(x))
• Suppose f (1)(x) = WTx and f 2(h) = hTw then f(x) = wTWTx

Arijit

Arijit

Arijit

CS
55

1

11

Simple FFN with hidden layer (contd.)

x1 x2

h1 h2

y

x

h

y

W

w

• We need to have nonlinear function to describe the features
• Usually NN have affine transformation of learned parameters fol-

lowed by nonlinear activation function
• Let us use h = g(WTx + c)
• Let us use ReLU as activation function g(z) = max{0, z}
• g is chosen element wise hi = g(xTW:,i + ci)

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

12

Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b

• A solution for XOR problem can be as follows

• W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

• Now we have

• X =

0 0
1 0
0 1
1 1

, XW =

0 0
1 1
1 1
2 2

, add bias c

0 −1
1 0
1 0
2 1

, apply h

0 0
1 0
1 0
2 1

, multiply

with w

0
1
1
0

Arijit

Arijit

Arijit

CS
55

1

12

Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b
• A solution for XOR problem can be as follows

• W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

• Now we have

• X =

0 0
1 0
0 1
1 1

, XW =

0 0
1 1
1 1
2 2

, add bias c

0 −1
1 0
1 0
2 1

, apply h

0 0
1 0
1 0
2 1

, multiply

with w

0
1
1
0

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

12

Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b
• A solution for XOR problem can be as follows

• W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

• Now we have

• X

=

0 0
1 0
0 1
1 1

, XW =

0 0
1 1
1 1
2 2

, add bias c

0 −1
1 0
1 0
2 1

, apply h

0 0
1 0
1 0
2 1

, multiply

with w

0
1
1
0

CS
55

1

12

Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b
• A solution for XOR problem can be as follows

• W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

• Now we have

• X =

0 0
1 0
0 1
1 1

,

XW =

0 0
1 1
1 1
2 2

, add bias c

0 −1
1 0
1 0
2 1

, apply h

0 0
1 0
1 0
2 1

, multiply

with w

0
1
1
0

Arijit

CS
55

1

12

Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b
• A solution for XOR problem can be as follows

• W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

• Now we have

• X =

0 0
1 0
0 1
1 1

, XW

=

0 0
1 1
1 1
2 2

, add bias c

0 −1
1 0
1 0
2 1

, apply h

0 0
1 0
1 0
2 1

, multiply

with w

0
1
1
0

CS
55

1

12

Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b
• A solution for XOR problem can be as follows

• W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

• Now we have

• X =

0 0
1 0
0 1
1 1

, XW =

0 0
1 1
1 1
2 2

,

add bias c

0 −1
1 0
1 0
2 1

, apply h

0 0
1 0
1 0
2 1

, multiply

with w

0
1
1
0

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

12

Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b
• A solution for XOR problem can be as follows

• W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

• Now we have

• X =

0 0
1 0
0 1
1 1

, XW =

0 0
1 1
1 1
2 2

, add bias c

0 −1
1 0
1 0
2 1

, apply h

0 0
1 0
1 0
2 1

, multiply

with w

0
1
1
0

CS
55

1

12

Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b
• A solution for XOR problem can be as follows

• W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

• Now we have

• X =

0 0
1 0
0 1
1 1

, XW =

0 0
1 1
1 1
2 2

, add bias c

0 −1
1 0
1 0
2 1

,

apply h

0 0
1 0
1 0
2 1

, multiply

with w

0
1
1
0

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

12

Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b
• A solution for XOR problem can be as follows

• W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

• Now we have

• X =

0 0
1 0
0 1
1 1

, XW =

0 0
1 1
1 1
2 2

, add bias c

0 −1
1 0
1 0
2 1

, apply h

0 0
1 0
1 0
2 1

, multiply

with w

0
1
1
0

CS
55

1

12

Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b
• A solution for XOR problem can be as follows

• W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

• Now we have

• X =

0 0
1 0
0 1
1 1

, XW =

0 0
1 1
1 1
2 2

, add bias c

0 −1
1 0
1 0
2 1

, apply h

0 0
1 0
1 0
2 1

,

multiply

with w

0
1
1
0

Arijit

CS
55

1

12

Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b
• A solution for XOR problem can be as follows

• W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

• Now we have

• X =

0 0
1 0
0 1
1 1

, XW =

0 0
1 1
1 1
2 2

, add bias c

0 −1
1 0
1 0
2 1

, apply h

0 0
1 0
1 0
2 1

, multiply

with w

0
1
1
0

Arijit

CS
55

1

12

Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b
• A solution for XOR problem can be as follows

• W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

• Now we have

• X =

0 0
1 0
0 1
1 1

, XW =

0 0
1 1
1 1
2 2

, add bias c

0 −1
1 0
1 0
2 1

, apply h

0 0
1 0
1 0
2 1

, multiply

with w

0
1
1
0

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

13

Gradient based learning
• Similar to machine learning tasks, gradient descent based learning is used

• Need to specify optimization procedure, cost function and model family
• For NN, model is nonlinear and function becomes nonconvex

• Usually trained by iterative, gradient based optimizer
• Solved by using gradient descent or stochastic gradient descent (SGD)

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

14

Gradient descent
• For a function y = f(x), derivative (slope at point x) of it is f ′(x) = dy

dx
• A small change in the input can cause output to move to a value given by f(x + ϵ) ≈

f(x) + ϵf ′(x)
• We need to take a jump so that y reduces (assuming minimization problem)
• We can say that f(x − ϵsign(f ′(x))) is less than f(x)
• For multiple inputs partial derivatives are used ie. ∂

∂xi
f(x)

• Gradient vector is represented as ∇xf(x)
• Gradient descent proposes a new point as x′ = x − ϵ∇xf(x) where ϵ is the learning rate

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

15

Stochastic gradient descent
• Large training set are necessary for good generalization
• Cost function used for optimization is J(θ) = 1

m
∑m

i=1 L(x(i), y(i),θ)
• Gradient descent requires ∇θJ(θ) = 1

m
∑m

i=1∇θL(x(i), y(i),θ)

• Computation cost is O(m)

• For SGD, gradient is an expectation estimated from a small sample known as minibatch
(B = {x(1), . . . , x(m′)})

• Estimated gradient is g =
1

m′

m′∑
i=1

∇θL(x(i), y(i),θ)

• New point will be θ = θ − ϵg

Arijit

Arijit

Arijit

CS
55

1

15

Stochastic gradient descent
• Large training set are necessary for good generalization
• Cost function used for optimization is J(θ) = 1

m
∑m

i=1 L(x(i), y(i),θ)
• Gradient descent requires ∇θJ(θ) = 1

m
∑m

i=1∇θL(x(i), y(i),θ)
• Computation cost is O(m)

• For SGD, gradient is an expectation estimated from a small sample known as minibatch
(B = {x(1), . . . , x(m′)})

• Estimated gradient is g =
1

m′

m′∑
i=1

∇θL(x(i), y(i),θ)

• New point will be θ = θ − ϵg

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

15

Stochastic gradient descent
• Large training set are necessary for good generalization
• Cost function used for optimization is J(θ) = 1

m
∑m

i=1 L(x(i), y(i),θ)
• Gradient descent requires ∇θJ(θ) = 1

m
∑m

i=1∇θL(x(i), y(i),θ)
• Computation cost is O(m)

• For SGD, gradient is an expectation estimated from a small sample known as minibatch
(B = {x(1), . . . , x(m′)})

• Estimated gradient is g =
1

m′

m′∑
i=1

∇θL(x(i), y(i),θ)

• New point will be θ = θ − ϵg

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

16

SGD example
• Consider the following pair (x, y) of points - (1, 2), (2, 4), (3, 6), (4, 8)
• Let us try to fit a curve as follows y = w × x where w is initialized with 4, learning rate as

0.1

• MSE as cost function. Derivative will be x(w × x − y)
Step Point Derivative New w

1 (1,2) 1*(4.0*1-2)=2.0 3.80
2 (2,4) 2*(3.8*2-4)=7.2 3.08
3 (3,6) 3*(3.1*3-6)=9.7 2.11
4 (4,8) 4*(2.1*4-8)=1.7 1.94
5 (1,2) 1*(1.9*1-2)=-0.1 1.94
6 (2,4) 2*(1.9*2-4)=-0.2 1.97
7 (3,6) 3*(2.0*3-6)=-0.3 1.99
8 (4,8) 4*(2.0*4-8)=-0.1 2.00
9 (4,8) 1*(2.0*1-2)=0.0 2.00

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

16

SGD example
• Consider the following pair (x, y) of points - (1, 2), (2, 4), (3, 6), (4, 8)
• Let us try to fit a curve as follows y = w × x where w is initialized with 4, learning rate as

0.1

• MSE as cost function. Derivative will be x(w × x − y)
Step Point Derivative New w
1 (1,2) 1*(4.0*1-2)=2.0 3.80

2 (2,4) 2*(3.8*2-4)=7.2 3.08
3 (3,6) 3*(3.1*3-6)=9.7 2.11
4 (4,8) 4*(2.1*4-8)=1.7 1.94
5 (1,2) 1*(1.9*1-2)=-0.1 1.94
6 (2,4) 2*(1.9*2-4)=-0.2 1.97
7 (3,6) 3*(2.0*3-6)=-0.3 1.99
8 (4,8) 4*(2.0*4-8)=-0.1 2.00
9 (4,8) 1*(2.0*1-2)=0.0 2.00

CS
55

1

16

SGD example
• Consider the following pair (x, y) of points - (1, 2), (2, 4), (3, 6), (4, 8)
• Let us try to fit a curve as follows y = w × x where w is initialized with 4, learning rate as

0.1

• MSE as cost function. Derivative will be x(w × x − y)
Step Point Derivative New w
1 (1,2) 1*(4.0*1-2)=2.0 3.80
2 (2,4) 2*(3.8*2-4)=7.2 3.08

3 (3,6) 3*(3.1*3-6)=9.7 2.11
4 (4,8) 4*(2.1*4-8)=1.7 1.94
5 (1,2) 1*(1.9*1-2)=-0.1 1.94
6 (2,4) 2*(1.9*2-4)=-0.2 1.97
7 (3,6) 3*(2.0*3-6)=-0.3 1.99
8 (4,8) 4*(2.0*4-8)=-0.1 2.00
9 (4,8) 1*(2.0*1-2)=0.0 2.00

CS
55

1

16

SGD example
• Consider the following pair (x, y) of points - (1, 2), (2, 4), (3, 6), (4, 8)
• Let us try to fit a curve as follows y = w × x where w is initialized with 4, learning rate as

0.1

• MSE as cost function. Derivative will be x(w × x − y)
Step Point Derivative New w
1 (1,2) 1*(4.0*1-2)=2.0 3.80
2 (2,4) 2*(3.8*2-4)=7.2 3.08
3 (3,6) 3*(3.1*3-6)=9.7 2.11
4 (4,8) 4*(2.1*4-8)=1.7 1.94
5 (1,2) 1*(1.9*1-2)=-0.1 1.94
6 (2,4) 2*(1.9*2-4)=-0.2 1.97
7 (3,6) 3*(2.0*3-6)=-0.3 1.99
8 (4,8) 4*(2.0*4-8)=-0.1 2.00
9 (4,8) 1*(2.0*1-2)=0.0 2.00

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

17

GD example
• Consider the following pair (x, y) of points - (1, 2), (2, 4), (3, 6), (4, 8)
• Let us try to fit a curve as follows y = w × x where w is initialized with 4, learning rate as
0.1

• MSE as cost function. Derivative will be 1
4

∑
i xi(w × xi − yi)

Step Derivative New w

1 15 2.5
2 3.75 2.13
3 0.94 2.03
4 0.23 2.01
5 0.06 2.00

Arijit

Arijit

Arijit

CS
55

1

17

GD example
• Consider the following pair (x, y) of points - (1, 2), (2, 4), (3, 6), (4, 8)
• Let us try to fit a curve as follows y = w × x where w is initialized with 4, learning rate as
0.1

• MSE as cost function. Derivative will be 1
4

∑
i xi(w × xi − yi)

Step Derivative New w
1 15 2.5

2 3.75 2.13
3 0.94 2.03
4 0.23 2.01
5 0.06 2.00

Arijit

Arijit

CS
55

1

17

GD example
• Consider the following pair (x, y) of points - (1, 2), (2, 4), (3, 6), (4, 8)
• Let us try to fit a curve as follows y = w × x where w is initialized with 4, learning rate as
0.1

• MSE as cost function. Derivative will be 1
4

∑
i xi(w × xi − yi)

Step Derivative New w
1 15 2.5
2 3.75 2.13

3 0.94 2.03
4 0.23 2.01
5 0.06 2.00

CS
55

1

17

GD example
• Consider the following pair (x, y) of points - (1, 2), (2, 4), (3, 6), (4, 8)
• Let us try to fit a curve as follows y = w × x where w is initialized with 4, learning rate as
0.1

• MSE as cost function. Derivative will be 1
4

∑
i xi(w × xi − yi)

Step Derivative New w
1 15 2.5
2 3.75 2.13
3 0.94 2.03
4 0.23 2.01
5 0.06 2.00

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

18

Cost function
• Similar to other parametric model like linear models
• Parametric model defines distribution p(y|x;θ)
• Principle of maximum likelihood is used (cross entropy between training data and model

prediction)
• Instead of predicting the whole distribution of y, some statistic of y conditioned on x is

predicted
• It can also contain regularization term

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

19

Maximum likelihood estimation
• Consider a set of m examples X = {x(1), . . . , x(m)} drawn independently from the true but

unknown data generating distribution pdata(x)
• Let pmodel(x;θ) be a parametric family of probability distribution

• Maximum likelihood estimator for θ is defined as

θML = arg max
θ

pmodel(X;θ) = arg max
θ

m∏
i=1

pmodel(x(i);θ)

• It can be written as θML = arg max
θ

m∑
i=1

log pmodel(x(i);θ)

• By dividing m we get θML = arg max
θ

EX∼pdata log pmodel(x;θ)

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

19

Maximum likelihood estimation
• Consider a set of m examples X = {x(1), . . . , x(m)} drawn independently from the true but

unknown data generating distribution pdata(x)
• Let pmodel(x;θ) be a parametric family of probability distribution
• Maximum likelihood estimator for θ is defined as

θML = arg max
θ

pmodel(X;θ) = arg max
θ

m∏
i=1

pmodel(x(i);θ)

• It can be written as θML = arg max
θ

m∑
i=1

log pmodel(x(i);θ)

• By dividing m we get θML = arg max
θ

EX∼pdata log pmodel(x;θ)

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

19

Maximum likelihood estimation
• Consider a set of m examples X = {x(1), . . . , x(m)} drawn independently from the true but

unknown data generating distribution pdata(x)
• Let pmodel(x;θ) be a parametric family of probability distribution
• Maximum likelihood estimator for θ is defined as

θML = arg max
θ

pmodel(X;θ) = arg max
θ

m∏
i=1

pmodel(x(i);θ)

• It can be written as θML = arg max
θ

m∑
i=1

log pmodel(x(i);θ)

• By dividing m we get θML = arg max
θ

EX∼pdata log pmodel(x;θ)

Arijit

Arijit

CS
55

1

19

Maximum likelihood estimation
• Consider a set of m examples X = {x(1), . . . , x(m)} drawn independently from the true but

unknown data generating distribution pdata(x)
• Let pmodel(x;θ) be a parametric family of probability distribution
• Maximum likelihood estimator for θ is defined as

θML = arg max
θ

pmodel(X;θ) = arg max
θ

m∏
i=1

pmodel(x(i);θ)

• It can be written as θML = arg max
θ

m∑
i=1

log pmodel(x(i);θ)

• By dividing m we get θML = arg max
θ

EX∼pdata log pmodel(x;θ)

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

20

Maximum likelihood estimation (cont.)
• Minimizing dissimilarity between the empirical p̂data and model distribution pmodel and it is

measured by KL divergence
DKL(p̂data∥pmodel) = arg min

θ
EX∼p̂data [log p̂data(x)− log pmodel(x;θ)]

• We need to minimize − arg min
θ

EX∼p̂data log pmodel(x;θ)

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

20

Maximum likelihood estimation (cont.)
• Minimizing dissimilarity between the empirical p̂data and model distribution pmodel and it is

measured by KL divergence
DKL(p̂data∥pmodel) = arg min

θ
EX∼p̂data [log p̂data(x)− log pmodel(x;θ)]

• We need to minimize − arg min
θ

EX∼p̂data log pmodel(x;θ)

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

21

Conditional log-likelihood
• In most of the supervised learning we estimate P(y|x;θ)
• If X be the all inputs and Y be observed targets then conditional maximum likelihood

estimator is θML = arg max
θ

P(Y|X;θ)

• If the examples are assumed to be i.i.d then we can say

θML = arg max
θ

m∑
i=1

log P(y(i)|x(i);θ)

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

22

Linear regression as maximum likelihood
• Instead of producing single prediction ŷ for a given x, we assume the model produces condi-

tional distribution p(y|x)
• For infinitely large training set, we can observe multiple examples having the same x but

different values of y
• Goal is to fit the distribution p(y|x)

• Let us assume, p(y|x) = N (y; ŷ(x;w), σ2)

• Since the examples are assumed to be i.i.d, conditional log-likelihood is given by
m∑

i=1

log p(y(i)|x(i);θ) = −m logσ − m
2

log(2π)−
m∑

i=1

∥ŷ(i) − y(i)∥2
2σ2

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

22

Linear regression as maximum likelihood
• Instead of producing single prediction ŷ for a given x, we assume the model produces condi-

tional distribution p(y|x)
• For infinitely large training set, we can observe multiple examples having the same x but

different values of y
• Goal is to fit the distribution p(y|x)
• Let us assume, p(y|x) = N (y; ŷ(x;w), σ2)

• Since the examples are assumed to be i.i.d, conditional log-likelihood is given by
m∑

i=1

log p(y(i)|x(i);θ) = −m logσ − m
2

log(2π)−
m∑

i=1

∥ŷ(i) − y(i)∥2
2σ2

Arijit

Arijit

Arijit

Arijit

CS
55

1

22

Linear regression as maximum likelihood
• Instead of producing single prediction ŷ for a given x, we assume the model produces condi-

tional distribution p(y|x)
• For infinitely large training set, we can observe multiple examples having the same x but

different values of y
• Goal is to fit the distribution p(y|x)
• Let us assume, p(y|x) = N (y; ŷ(x;w), σ2)

• Since the examples are assumed to be i.i.d, conditional log-likelihood is given by
m∑

i=1

log p(y(i)|x(i);θ)

= −m logσ − m
2

log(2π)−
m∑

i=1

∥ŷ(i) − y(i)∥2
2σ2

Arijit

Arijit

Arijit

Arijit

CS
55

1

22

Linear regression as maximum likelihood
• Instead of producing single prediction ŷ for a given x, we assume the model produces condi-

tional distribution p(y|x)
• For infinitely large training set, we can observe multiple examples having the same x but

different values of y
• Goal is to fit the distribution p(y|x)
• Let us assume, p(y|x) = N (y; ŷ(x;w), σ2)

• Since the examples are assumed to be i.i.d, conditional log-likelihood is given by
m∑

i=1

log p(y(i)|x(i);θ) = −m logσ − m
2

log(2π)−
m∑

i=1

∥ŷ(i) − y(i)∥2
2σ2

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

23

Learning conditional distributions
• Usually neural networks are trained using maximum likelihood. Therefore the cost function

is negative log-likelihood. Also known as cross entropy between training data and model
distribution

• Cost function J(θ) = −EX,Y∼p̂data log pmodel(y|x,θ)
• Uniform across different models
• Gradient of cost function is very much crucial

• Large and predictable gradient can serve good guide for learning process
• Function that saturates will have small gradient

• Activation function usually produces values in a bounded zone (saturates)
• Negative log-likelihood can overcome some of the problems

• Output unit having exp function can saturate for high negative value
• Log-likelihood cost function undoes the exp of some output functions

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

24

Learning conditional statistics
• Instead of learning the whole distribution p(y|x;θ), we want to learn one conditional statistics

of y given x
• For a predicting function f(x;θ), we would like to predict the mean of y

• Neural network can represent any function f from a very wide range of functions
• Range of function is limited by features like continuity, boundedness, etc.
• Cost function becomes functional rather than a function

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

24

Learning conditional statistics
• Instead of learning the whole distribution p(y|x;θ), we want to learn one conditional statistics

of y given x
• For a predicting function f(x;θ), we would like to predict the mean of y

• Neural network can represent any function f from a very wide range of functions
• Range of function is limited by features like continuity, boundedness, etc.

• Cost function becomes functional rather than a function

Arijit

Arijit

Arijit

CS
55

1

24

Learning conditional statistics
• Instead of learning the whole distribution p(y|x;θ), we want to learn one conditional statistics

of y given x
• For a predicting function f(x;θ), we would like to predict the mean of y

• Neural network can represent any function f from a very wide range of functions
• Range of function is limited by features like continuity, boundedness, etc.
• Cost function becomes functional rather than a function

Arijit

Arijit

Arijit

Arijit

CS
55

1

25

Learning conditional statistics
• Need to solve the optimization problem

f ∗ = arg min
f

EX,Y∼pdata∥y − f(x)∥2

• Using calculus of variation, it gives f ∗(x) = EY∼pdata(y|x)[y]
• Mean of y for each value of x

• Using a different cost function f ∗ = arg min
f

EX,Y∼pdata∥y − f(x)∥1
• Median of y for each value of x

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

25

Learning conditional statistics
• Need to solve the optimization problem

f ∗ = arg min
f

EX,Y∼pdata∥y − f(x)∥2

• Using calculus of variation, it gives f ∗(x) = EY∼pdata(y|x)[y]
• Mean of y for each value of x

• Using a different cost function f ∗ = arg min
f

EX,Y∼pdata∥y − f(x)∥1
• Median of y for each value of x

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

25

Learning conditional statistics
• Need to solve the optimization problem

f ∗ = arg min
f

EX,Y∼pdata∥y − f(x)∥2

• Using calculus of variation, it gives f ∗(x) = EY∼pdata(y|x)[y]
• Mean of y for each value of x

• Using a different cost function f ∗ = arg min
f

EX,Y∼pdata∥y − f(x)∥1

• Median of y for each value of x

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

25

Learning conditional statistics
• Need to solve the optimization problem

f ∗ = arg min
f

EX,Y∼pdata∥y − f(x)∥2

• Using calculus of variation, it gives f ∗(x) = EY∼pdata(y|x)[y]
• Mean of y for each value of x

• Using a different cost function f ∗ = arg min
f

EX,Y∼pdata∥y − f(x)∥1
• Median of y for each value of x

Arijit

Arijit

Arijit

CS
55

1

26

Calculus of variations
• Let us consider functional J[y] =

∫ x2

x1

L(x, y(x), y′(x)) dx

• Let J[y] has local minima at f. Therefore, we can say J[f] ≤ J[f + εη]

• η is an arbitrary function of x such that η(x1) = η(x2) = 0 and differentiable

• Let us assume Φ(ε) = J[f + εη]. Therefore, Φ′(0) ≡ dΦ
dε

∣∣∣∣
ε=0

=

∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx = 0

• Now we can say, dL
dε =

∂L
∂y

dy
dε +

∂L
∂y′

dy′
dε

• As we have y = f + εη and y′ = f′ + εη′, therefore, dL
dε =

∂L
∂y η +

∂L
∂y′ η

′

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

26

Calculus of variations
• Let us consider functional J[y] =

∫ x2

x1

L(x, y(x), y′(x)) dx

• Let J[y] has local minima at f. Therefore, we can say J[f] ≤ J[f + εη]

• η is an arbitrary function of x such that η(x1) = η(x2) = 0 and differentiable

• Let us assume Φ(ε) = J[f + εη]. Therefore, Φ′(0) ≡ dΦ
dε

∣∣∣∣
ε=0

=

∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx = 0

• Now we can say, dL
dε =

∂L
∂y

dy
dε +

∂L
∂y′

dy′
dε

• As we have y = f + εη and y′ = f′ + εη′, therefore, dL
dε =

∂L
∂y η +

∂L
∂y′ η

′

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

26

Calculus of variations
• Let us consider functional J[y] =

∫ x2

x1

L(x, y(x), y′(x)) dx

• Let J[y] has local minima at f. Therefore, we can say J[f] ≤ J[f + εη]

• η is an arbitrary function of x such that η(x1) = η(x2) = 0 and differentiable

• Let us assume Φ(ε) = J[f + εη]. Therefore, Φ′(0) ≡ dΦ
dε

∣∣∣∣
ε=0

=

∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx

= 0

• Now we can say, dL
dε =

∂L
∂y

dy
dε +

∂L
∂y′

dy′
dε

• As we have y = f + εη and y′ = f′ + εη′, therefore, dL
dε =

∂L
∂y η +

∂L
∂y′ η

′

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

26

Calculus of variations
• Let us consider functional J[y] =

∫ x2

x1

L(x, y(x), y′(x)) dx

• Let J[y] has local minima at f. Therefore, we can say J[f] ≤ J[f + εη]

• η is an arbitrary function of x such that η(x1) = η(x2) = 0 and differentiable

• Let us assume Φ(ε) = J[f + εη]. Therefore, Φ′(0) ≡ dΦ
dε

∣∣∣∣
ε=0

=

∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx = 0

• Now we can say, dL
dε =

∂L
∂y

dy
dε +

∂L
∂y′

dy′
dε

• As we have y = f + εη and y′ = f′ + εη′, therefore, dL
dε =

∂L
∂y η +

∂L
∂y′ η

′

Arijit

CS
55

1

26

Calculus of variations
• Let us consider functional J[y] =

∫ x2

x1

L(x, y(x), y′(x)) dx

• Let J[y] has local minima at f. Therefore, we can say J[f] ≤ J[f + εη]

• η is an arbitrary function of x such that η(x1) = η(x2) = 0 and differentiable

• Let us assume Φ(ε) = J[f + εη]. Therefore, Φ′(0) ≡ dΦ
dε

∣∣∣∣
ε=0

=

∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx = 0

• Now we can say, dL
dε =

∂L
∂y

dy
dε +

∂L
∂y′

dy′
dε

• As we have y = f + εη and y′ = f′ + εη′, therefore, dL
dε =

∂L
∂y η +

∂L
∂y′ η

′

Arijit

Arijit

Arijit

Arijit

CS
55

1

26

Calculus of variations
• Let us consider functional J[y] =

∫ x2

x1

L(x, y(x), y′(x)) dx

• Let J[y] has local minima at f. Therefore, we can say J[f] ≤ J[f + εη]

• η is an arbitrary function of x such that η(x1) = η(x2) = 0 and differentiable

• Let us assume Φ(ε) = J[f + εη]. Therefore, Φ′(0) ≡ dΦ
dε

∣∣∣∣
ε=0

=

∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx = 0

• Now we can say, dL
dε =

∂L
∂y

dy
dε +

∂L
∂y′

dy′
dε

• As we have y = f + εη and y′ = f′ + εη′, therefore, dL
dε

=
∂L
∂y η +

∂L
∂y′ η

′

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

26

Calculus of variations
• Let us consider functional J[y] =

∫ x2

x1

L(x, y(x), y′(x)) dx

• Let J[y] has local minima at f. Therefore, we can say J[f] ≤ J[f + εη]

• η is an arbitrary function of x such that η(x1) = η(x2) = 0 and differentiable

• Let us assume Φ(ε) = J[f + εη]. Therefore, Φ′(0) ≡ dΦ
dε

∣∣∣∣
ε=0

=

∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx = 0

• Now we can say, dL
dε =

∂L
∂y

dy
dε +

∂L
∂y′

dy′
dε

• As we have y = f + εη and y′ = f′ + εη′, therefore, dL
dε =

∂L
∂y η +

∂L
∂y′ η

′

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

27

Calculus of variations (contd.)
• Now we have ∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx =

∫ x2

x1

(
∂L
∂f η +

∂L
∂f′ η

′
)

dx

=

∫ x2

x1

(
∂L
∂f η − η

d
dx

∂L
∂f′

)
dx + ∂L

∂f′ η
∣∣∣∣x2

x1

• Hence
∫ x2

x1

η

(
∂L
∂f − d

dx
∂L
∂f′

)
dx = 0

• Euler-Lagrange equation ∂L
∂f − d

dx
∂L
∂f′ = 0

Arijit

Arijit

CS
55

1

27

Calculus of variations (contd.)
• Now we have ∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx =

∫ x2

x1

(
∂L
∂f η +

∂L
∂f′ η

′
)

dx

=

∫ x2

x1

(
∂L
∂f η − η

d
dx

∂L
∂f′

)
dx + ∂L

∂f′ η
∣∣∣∣x2

x1

• Hence
∫ x2

x1

η

(
∂L
∂f − d

dx
∂L
∂f′

)
dx = 0

• Euler-Lagrange equation ∂L
∂f − d

dx
∂L
∂f′ = 0

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

27

Calculus of variations (contd.)
• Now we have ∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx =

∫ x2

x1

(
∂L
∂f η +

∂L
∂f′ η

′
)

dx

=

∫ x2

x1

(
∂L
∂f η − η

d
dx

∂L
∂f′

)
dx + ∂L

∂f′ η
∣∣∣∣x2

x1

• Hence
∫ x2

x1

η

(
∂L
∂f − d

dx
∂L
∂f′

)
dx = 0

• Euler-Lagrange equation ∂L
∂f − d

dx
∂L
∂f′ = 0

Arijit

CS
55

1

27

Calculus of variations (contd.)
• Now we have ∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx =

∫ x2

x1

(
∂L
∂f η +

∂L
∂f′ η

′
)

dx

=

∫ x2

x1

(
∂L
∂f η − η

d
dx

∂L
∂f′

)
dx + ∂L

∂f′ η
∣∣∣∣x2

x1

• Hence
∫ x2

x1

η

(
∂L
∂f − d

dx
∂L
∂f′

)
dx = 0

• Euler-Lagrange equation ∂L
∂f − d

dx
∂L
∂f′ = 0

Arijit

Arijit

CS
55

1

28

Example
• Let us consider distance between two points A[y] =

∫ x2

x1

√
1 + [y′(x)]2 dx

• y ′(x) = dy
dx , y1 = f(x1) , y2 = f(x2)

• We have, ∂L
∂f − d

dx
∂L
∂f′ = 0 where L =

√
1 + [f′(x)]2

• As f does not appear explicitly in L, hence d
dx

∂L
∂f′ = 0

• Now we have, d
dx

f′(x)√
1 + [f′(x)]2

= 0

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

28

Example
• Let us consider distance between two points A[y] =

∫ x2

x1

√
1 + [y′(x)]2 dx

• y ′(x) = dy
dx , y1 = f(x1) , y2 = f(x2)

• We have, ∂L
∂f − d

dx
∂L
∂f′ = 0 where L =

√
1 + [f′(x)]2

• As f does not appear explicitly in L, hence d
dx

∂L
∂f′ = 0

• Now we have, d
dx

f′(x)√
1 + [f′(x)]2

= 0

Arijit

Arijit

CS
55

1

28

Example
• Let us consider distance between two points A[y] =

∫ x2

x1

√
1 + [y′(x)]2 dx

• y ′(x) = dy
dx , y1 = f(x1) , y2 = f(x2)

• We have, ∂L
∂f − d

dx
∂L
∂f′ = 0 where L =

√
1 + [f′(x)]2

• As f does not appear explicitly in L, hence d
dx

∂L
∂f′ = 0

• Now we have, d
dx

f′(x)√
1 + [f′(x)]2

= 0

Arijit

Arijit

Arijit

CS
55

1

28

Example
• Let us consider distance between two points A[y] =

∫ x2

x1

√
1 + [y′(x)]2 dx

• y ′(x) = dy
dx , y1 = f(x1) , y2 = f(x2)

• We have, ∂L
∂f − d

dx
∂L
∂f′ = 0 where L =

√
1 + [f′(x)]2

• As f does not appear explicitly in L, hence d
dx

∂L
∂f′ = 0

• Now we have, d
dx

f′(x)√
1 + [f′(x)]2

= 0

Arijit

CS
55

1

29

Example
• Taking derivative we get d2f

dx2 · 1[√
1 + [f′(x)]2

]3 = 0

• Therefore we have, d2f
dx2 = 0

• Hence we have f(x) = mx + b with m =
y2 − y1
x2 − x1

and b =
x2y1 − x1y2

x2 − x1

Arijit

CS
55

1

29

Example
• Taking derivative we get d2f

dx2 · 1[√
1 + [f′(x)]2

]3 = 0

• Therefore we have, d2f
dx2 = 0

• Hence we have f(x) = mx + b with m =
y2 − y1
x2 − x1

and b =
x2y1 − x1y2

x2 − x1

Arijit

CS
55

1

29

Example
• Taking derivative we get d2f

dx2 · 1[√
1 + [f′(x)]2

]3 = 0

• Therefore we have, d2f
dx2 = 0

• Hence we have f(x) = mx + b with m =
y2 − y1
x2 − x1

and b =
x2y1 − x1y2

x2 − x1

Arijit

Arijit

Arijit

CS
55

1

30

Output units
• Choice of cost function is directly related with the choice of output function
• In most cases cost function is determined by cross entropy between data and model dis-

tribution
• Any kind of output unit can be used as hidden unit

Arijit

Arijit

Arijit

CS
55

1

31

Linear units
• Suited for Gaussian output distribution
• Given features h, linear output unit produces ŷ = WTh + b
• This can be treated as conditional probability p(y|x) = N (y; ŷ, I)
• Maximizing log-likelihood is equivalent to minimizing mean square error

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

32

Sigmoid unit
• Mostly suited for binary classification problem that is Bernoulli output distribution
• The neural networks need to predict p(y = 1|x)

• If linear unit has been chosen, p(y = 1|x) = max
{
0,min{1,WTh + b}

}
• Gradient?

• Model should have strong gradient whenever the answer is wrong
• Let us assume unnormalized log probability is linear with z = WTh + b
• Therefore, log P̃(y) = yz ⇒ P̃(y) = exp(yz) ⇒ P(y) = exp(yz)∑

y′∈{0,1} exp(y′z)

• It can be written as P(y) = σ((2y − 1)z)
• The loss function for maximum likelihood is

J(θ) = − log P(y|x) = − logσ((2y − 1)z) = ζ((1− 2y)z)

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

33

Softmax unit
• Similar to sigmoid. Mostly suited for multinoulli distribution
• We need to predict a vector ŷ such that ŷi = P(Y = i|x)
• A linear layer predicts unnormalized probabilities z = WTh + b that is zi = log P̃(y = i|x)
• Formally, softmax(z)i =

exp zi∑
j exp(zj)

• Log in log-likelihood can undo exp log softmax(z)i = zi − log
∑

j
exp(zj)• Does it saturate?

• What about incorrect prediction?
• Invariant to addition of some scalar to all input variables ie.

softmax(z) = softmax(z + c)

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

34

Hidden units
• Active area of research and does not have good guiding theoretical principle
• Usually rectified linear unit (ReLU) is chosen in most of the cases
• Design process consists of trial and error, then the suitable one is chosen
• Some of the activation functions are not differentiable (eg. ReLU)

• Still gradient descent performs well
• Neural network does not converge to local minima but reduces the value of cost function

to a very small value

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

35

Generalization of ReLU
• ReLU is defined as g(z) = max{0, z}
• Using non-zero slope, hi = g(z,α)i = max(0, zi) + αi min(0, zi)

• Absolute value rectification will make αi = −1 and g(z) = |z|
• Leaky ReLU assumes very small values for αi

• Parametric ReLU tries to learn αi parameters
• Maxout unit g(z)i = max

j∈G(i)
zj

• Suitable for learning piecewise linear function

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

36

Logistic sigmoid & hyperbolic tangent
• Logistic sigmoid g(z) = σ(z)
• Hyperbolic tangent g(z) = tanh(z)

• tanh(z) = 2σ(2z)− 1

• Widespread saturation of sigmoidal unit is an issue for gradient based learning
• Usually discouraged to use as hidden units

• Usually, hyperbolic tangent function performs better where sigmoidal function must be
used
• Behaves linearly at 0
• Sigmoidal activation function are more common in settings other than feedforward net-

work

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

37

Other hidden units
• Differentiable functions are usually preferred
• Activation function h = cos(Wx + b) performs well for MNIST data set
• Sometimes no activation function helps in reducing the number of parameters
• Radial Basis Function - ϕ(x, c) = ϕ(∥x − c∥)

• Gaussian - exp(−(εr)2)
• Softplus - g(x) = ζ(x) = log(1 + exp(x))
• Hard tanh - g(x) = max(−1,min(1, x))
• Hidden unit design is an active area of research

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55

1

38

Architecture design
• Structure of neural network (chain based architecture)

• Number of layers
• Number of units in each layer
• Connectivity of those units

• Single hidden layer is sufficient to fit the training data
• Often deeper networks are preferred

• Fewer number of units
• Fewer number of parameters
• Difficult to optimize

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

