Introduction to Deep Learning

Arijit Mondal

Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

Neural Networks

Human brain vs von Neumann computer

- Massive parallelism №∕
- Distributed representation and computation $\ensuremath{\mathscr{W}}$
- Learning ability 🛩
- Generalization ability 🤛
- Adaptability 🖉
- Inherent contextual information processing
- Fault tolerance
- Low energy consumption 1

S551

Computer vs Brain

	von Neumann	Neural system 🛩
Processor	Complex, high speed, one or a few	Simple, low speed, a large number
Memory 💧	Separate from processor, Local- ized, N <u>oncontent addressa</u> ble	Integrated into processor, Dis- tributed, Content addressable
Computing	Centralized, sequential, stored program	Distributed, parallel, self-learning
Reliability	Very vulnerable 🗸	Robust ~
Expertise	Numeric and symbolic manipula- tions	Perceptual problems 🛷
Operating envi- ronment	Well defined, well constrained	Poorly defined, unconstrained

• Pattern classification

• Clustering/categorization

• Prediction

• Retrieval

• Optimization

Artificial Neuron

Control

History

- Started in 1940s by McCulloch and Pitt
- Rosenblatt perceptron convergence theorem (1960)
- In 1980s ANN started gaining popularity
- Again became popular after 2006

Biological Neuron

Cerebral cortex

- It is a flat sheet of neurons about 2-3 millimeter thick with surface area is 2200 cm²
 - Twice the area of computer keyboard
- It contains around 10¹¹ neurons
 - Number of stars in the Milky-way
- Each neuron is connected to 10^3 - 10^4 other neurons
- Total connections is around 10^{14} - 10^{15}
- Connectionist model

Human brain

Neuron

• One of the primitive models

Artificial Neuron

• Neuron pre-activation function

•
$$a(\mathbf{x}) = \sum_{i} \underbrace{w_i x_i + b}_{i} = b + \mathbf{w}^T \mathbf{x} \quad \text{and} \quad \mathbf{x} \in \mathcal{A}$$

Neuron output activation function

•
$$h(\mathbf{x}) = \underline{g}(\underline{a(\mathbf{x})}) = \widehat{g}\left(\sum_{i} w_i x_i + b\right)$$

- § Notations
 - w Weight vector 📈
 - b Neuron bias 🛩
 - g(.) Activation function 4

Physical interpretation

Classification using single neuron

- Single neuron can do binary classification
 - Also known as logistic regression classifier

Artificial neuron

• Can solve linearly separable problems

Artificial neuron: XOR problem

• There are issues for linear separation

- Linear activation function
 - Not very interesting
 - No change in values
 - Huge range

- Sigmoid function
 - Values lie between 0 and 1
 - Strictly increasing function
 - Bounded

- Hyperbolic Tangent (Tanh) function
 - Can be positive or negative
 - Values lie between -1 and 1
 - Strictly increasing function
 - Bounded

- Rectified linear activation function
 - Bounded below by 0
 - Strictly increasing function
 - Not upper bounded

Single hidden layer neural network

Hidden layer pre-activation

 $\mathsf{a}(\mathsf{x}) = \mathsf{b}^1 + \mathsf{w}^1 \mathsf{x}$

• Hidden layer activation

 $h(\mathbf{x}) = g(\mathbf{a}(\mathbf{x}))$

Output layer activation

 $f(x) = \underbrace{o(b^{(2)} + w^{(2)T}h^{1}(x))}_{\bigvee}$

Multi layer neural network

- Pre-activation in layer k > 0 (h⁽⁰⁾(x) = x)
 - $a^{(k)}(x) = b^{(k)} + W^{(k)}h^{(k-1)}x$
- Hidden layer activation

 $\mathsf{h}^{(k)}(\mathsf{x}) = \left(\mathsf{g}(\mathsf{a}^{(k)}(\mathsf{x})) \right) /$

Output layer activation

$$h^{(L+1)}(x) = o(a^{(L+1)}(x)) = f(x)$$

Multiclass classification

probability

oh I I

- Need multiple outputs that is one neuron for each class
- Need to determine probability of p(y = c|x)
- Softmax activation function is used at the output $o(a) = \operatorname{softmax}(a) = \begin{bmatrix} \overbrace{\exp(a_1)}^{(u_1)} & \exp(a_2) \\ \hline \sum_c \exp(a_c) & \hline \sum_c \exp(a_c) \end{bmatrix} \cdots \qquad \underbrace{\exp(a_c)}^T \swarrow \checkmark$
 - Strictly positive
 - Sum to 1
 - Class having the highest probability will be the predicted output

Capacity of neural network

Capacity of neural network

- Universal approximation theorem (Hornik,1991)
 - A single hidden layer neural network with a linear output unit can approximate any continuous function arbitrarily well, given enough hidden units.
- The result is applicable for other hidden layer activation functions such as sigmoid, tanh, etc.
- This is a promising result, but it does not say that there is a learning algorithm to find the necessary parameter values!

N NV

Types of Neural Network

- Feed forward neural network ${\scriptstyle \swarrow}{\scriptstyle \swarrow}$
- Radial basis function network
- Recurrent neural network
- Boltzmann machine
- Long short term memory network
- and many more

Perceptron

• Simplest form of neural network

Feed Forward

• With single hidden layer only

Radial Basis Function

- Typically it will have 3 layers
- Distance from a center vector is computed
- Radial basis function as activation $o = \sum_{i} a_i \exp(\beta(\mathbf{x} \mathbf{c})^2) \ll$
- Usage function approximation, time series prediction, classification, system control

Deep Feed Forward

- Can have multiple hidden layers
- More complicated functions can be represented

Recurrent Neural Network

- It has feedback loop
- Used for modelling dependencies such as temporal

Long Short Term Memory

- Feedback loop with memory
- Application NLP, time series modeling

Auto Encoder

- Learning the data in unsupervised mode
- Dimensionality reduction

Markov chain

Boltzmann Machine

- Stochastic network
- Each neuron can have value either 0 or 1
- Some are hidden neurons
- Total energy (computed using states and the edge weights) is minimized

Learning the parameters

- The network must learn the connection weights from available training examples
- Learning can be
 - Supervised
 - Unsupervised
 - Hybrid
- Four basic types of learning rule
 - Error correction rule
 - Boltzmann learning
 - Hebbian
 - Competitive learning

Error correction rule

- Output is generated based on the weight values but this may vary from desired value
- The error information is used to update the weight value
- Perceptron learning algorithm
 - Initialize the weights and threshold to small random numbers
 - Present a pattern vector and evaluate the output of neuron
 - Update the weight according to $w_j(t+1) = w_j(t) + \eta(d-y)x_j$
- Back propagation algorithm #

Boltzmann learning

- Usually symmetric recurrent network consisting of binary units
- A subset of neurons interact with environment
- Generally it has two modes
 - Clamped Visible neurons are clamped to specific states $\, \mathscr{V} \,$
 - Free-running Visible and hidden unit operate freely 📈
- Stochastic learning rule derived from information theoretic and thermodynamic principles
- Learning rule is given by $\Delta w_{ij} = \eta (\rho_{ij} \rho_{ij})$

Hebbian rule

- One of the oldest learning rules
- If neuron on both sides of a synapse are activated synchronously and repeatedly, the synapse's strength is selectively increased
- Mathematically, it can be described as $w_{ij}(t+1) = w_{ij}(t) + \eta y_j(t) x_i(t)$

Competitive learning rule

- Output units compete among themselves for activation
- Only one output is active at time
- Also known as winner-take-all
- Mathematically, it can be represented as $w_{i^*}x \ge w_ix$
- Competitive learning rule can be stated as

$$\Delta w_{ij} = \begin{cases} \eta(x_j^u - w_{i^*j}) & i = i^* \\ 0 & i \neq i^* \end{cases}$$

Summary

- Error correction rule Single or multilayer perceptron
 - Pattern classification, function approximation, prediction, control
- Boltzmann Recurrent
 - Pattern classification
- Hebbian Multilayer feed forward
 - Pattern classification, data analysis
- Competitive
 - Within class categorization, data compression

S551