Introduction to Deep Learning

Arijit Mondal
Dept. of Computer Science \& Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

Neural Networks

Human brain vs von Neumann computer

- Massive parallelism N
- Distributed representation and computation ∞

- Learning ability
- Generalization ability
\leftarrow
- Adaptability \leftarrow
- Inherent contextual information processing
- Fault tolerance
- Low energy consumption 1

Computer vs Brain

	von Neumann	Neural system \sim
Processor	Complex, high speed, one or a few	Simple, low speed, a large number
Memory \quadSeparate from processor, Local- ized, Noncontent addressable	Integrated into processor, Dis- tributed, Content addressable	
Computing	Centralized, sequential, stored program \quad	Distributed, parallel, self-learning
Reliability	Very vulnerable \checkmark	Robust \checkmark
Expertise	Numeric and symbolic manipula- tions	Perceptual problems
Operating envi- ronment	Well defined, well constrained	Poorly defined, unconstrained

Artificial Neuron: Applications

- Pattern classification

Artificial Neuron: Applications

- Clustering/categorization

Artificial Neuron: Applications

- Prediction

Artificial Neuron: Applications

- Retrieval

Artificial Neuron: Applications

Artificial Neuron

- Control

History

- Started in 1940s by McCulloch and Pitt
- Rosenblatt perceptron convergence theorem (1960)
- In 1980s ANN started gaining popularity
- Again became popular after 2006

Biological Neuron

Cerebral cortex

- It is a flat sheet of neurons about 2-3 millimeter thick with surface area is $2200 \mathrm{~cm}^{2}$
- Twice the area of computer keyboard
- It contains around 10^{11} neurons
- Number of stars in the Milky-way
- Each neuron is connected to $10^{3}-10^{4}$ other neurons
- Total connections is around $10^{14}-10^{15}$
- Connectionist model

Human brain

Neuron

Artificial Neuron

- Neuron pre-activation function
- a(x) $=\sum_{i} w_{i} x_{i}+b=b+w^{T} \times w \sim$
- Neuron output activation function
- $h(\mathrm{x})=\underset{\sim}{g}(a(\mathrm{x}))=\underset{\mathrm{g}}{\mathrm{g}}\left(\sum_{i} w_{i} x_{i}+b\right)$
- Notations
- w - Weight vector
-b - Neuron bias ${ }^{\infty}$
- $g($.$) - Activation function { }^{d}$

Physical interpretation

Classification using single neuron

- Single neuron can do binary classification
- Also known as logistic regression classifier

Artificial neuron

- Can solve linearly separable problems

Artificial neuron: XOR problem

- There are issues for linear separation

Activation function

- Linear activation function
- Not very interesting
- No change in values
- Huge range

Activation function

- Sigmoid function
- Values lie between 0 and 1
- Strictly increasing function
- Bounded

Activation function

- Hyperbolic Tangent (Tanh) function
- Can be positive or negative
- Values lie between -1 and 1
- Strictly increasing function
- Bounded

Activation function

Single hidden layer neural network

- Hidden layer pre-activation

$$
a(x)=b^{1}+w^{1} x
$$

- Hidden layer activation
- Output layer activation

$$
f(x)=\underset{d}{d\left(b^{(2)}+w^{(2) T} h^{1}(x)\right)}
$$

Multi layer neural network

- Pre-activation in layer

$$
k>0\left(h^{(0)}(x)=x\right)
$$

$$
a^{(k)}(x)=b^{(k)}+W^{(k)} h^{(k-1)} x
$$

- Hidden layer activation

$$
\mathrm{h}^{(k)}(\mathrm{x})=\mathrm{g}\left(\mathrm{a}^{(k)}(\mathrm{x})\right)
$$

- Output layer activation

$$
h^{(L+1)}(x)=o\left(a^{(L+1)}(x)\right)=f(x)
$$

Multiclass classification

- Need multiple outputs that is one neuron for each class
- Need to determine probability of $p(y=c \mid x)$
- Softmax activation function is used at the output

$$
\circ(\mathrm{a})=\underline{\operatorname{softmax}(a)}=\left[\begin{array}{ccc}
\frac{a_{2}}{\exp \left(a_{1}\right)} \\
\sum_{c} \exp \left(a_{c}\right) & \frac{a_{B}}{\sum_{c}} & \frac{\exp \left(a_{2}\right)}{\sum_{c} \exp \left(a_{c}\right)} \\
\cdots & \frac{\sum_{c} \exp \left(a_{c}\right)}{\sum_{c} \exp \left(a_{c}\right)}
\end{array}\right]^{T} W
$$

- Sum to 1
- Class having the highest probability will be the predicted output

$$
\begin{aligned}
& \text { probe }<1 \\
& \approx \lll
\end{aligned}
$$

Capacity of neural network

Capacity of neural network

- Universal approximation theorem (Hornik,1991) |
$* \mid$ A single hidden layer neural network with a linear output unit can approximate any \mid continuous function arbitrarily well, given enough hidden units.
- The result is applicable for other hidden layer activation functions such as sigmoid, tanh, etc.
- This is a promising result, but it does not say that there is a learning algorithm to find the necessary parameter values!

Types of Neural Network

- Feed forward neural network N
- Radial basis function network
- Recurrent neural network
- Boltzmann machine
- Long short term memory network
- and many more

Perceptron

$$
\bullet \text { - Input } \quad \text { - Output }
$$

Feed Forward

Radial Basis Function

- Typically it will have 3 layers
- Distance from a center vector is computed
- Radial basis function as activation $o=\sum_{i} a_{i} \exp \left(\beta\left(\underline{\mathrm{x}-\mathrm{c})^{2}}\right) ~ w\right.$
- Usage - function approximation, time series prediction, classification, system control

- Input - Output • - Hidden

Deep Feed Forward

- Can have multiple hidden layers
- More complicated functions can be represented

Recurrent Neural Network

- It has feedback loop
- Used for modelling dependencies such as temporal

Long Short Term Memory

- Feedback loop with memory
- Application - NLP, time series modeling

Auto Encoder

- Learning the data in unsupervised mode
- Dimensionality reduction

Markov chain

- - Memory

Boltzmann Machine

- Stochastic network
- Each neuron can have value either 0 or 1
- Some are hidden neurons
- Total energy (computed using states and the edge weights) is minimized

Learning the parameters

- The network must learn the connection weights from available training examples
- Learning can be
- Supervised
- Unsupervised
- Hybrid
- Four basic types of learning rule
- Error correction rule
- Boltzmann learning
- Hebbian
- Competitive learning

Error correction rule

- Output is generated based on the weight values but this may vary from desired value
- The error information is used to update the weight value
- Perceptron learning algorithm
- Initialize the weights and threshold to small random numbers h
- Present a pattern vector and evaluate the output of neuron
- Update the weight according to $w_{j}(t+1)=w_{j}(t)+\eta(d-y) x_{j}$
- Back propagation algorithm 1

Boltzmann learning

- Usually symmetric recurrent network consisting of binary units
- A subset of neurons interact with environment
- Generally it has two modes
- Clamped - Visible neurons are clamped to specific states
- Free-running - Visible and hidden unit operate freely w
- Stochastic learning rule derived from information theoretic and thermodynamic principles
- Learning rule is given by $\Delta w_{i j}=\eta\left(\hat{\bar{\rho}}_{i j}\right)-\left(\hat{\rho}_{i j}\right)$

Hebbian rule

- One of the oldest learning rules
- If neuron on both sides of a synapse are activated synchronously and repeatedly, the synapse's strength is selectively increased
- Mathematically, it can be described as $w_{i j}(t+1)=w_{i j}(t)+\eta\left(x_{j}(t) x_{i}(t)\right.$

Competitive learning rule

- Output units compete among themselves for activation
- Only one output is active at time
- Also known as winner-take-all
- Mathematically, it can be represented as $w_{i^{*}} x \geq w_{i} x$
- Competitive learning rule can be stated as

$$
\Delta w_{i j}= \begin{cases}\eta\left(x_{j}^{u}-w_{i^{*} j}\right) & i=i^{*} \\ 0 & i \neq i^{*}\end{cases}
$$

Summary

- Error correction rule - Single or multilayer perceptron
W
- Pattern classification, function approximation, prediction, control
- Boltzmann - Recurrent
- Pattern classification
- Hebbian - Multilayer feed forward
- Pattern classification, data analysis
- Competitive
- Within class categorization, data compression

