
CS5511

Introducࢢon to Deep Learning

Arijit Mondal
Dept. of Computer Science & Engineering

Indian Insࢢtute of Technology Patna

arijit@iitp.ac.in

CS
55
1

2

Feature Engineering

CS
55
1

3

Machine Learning
• A form of applied statistics with

• Increased emphasis on the use of computers to statistically estimate complicated function
• Decreased emphasis on proving confidence intervals around these functions

• Two primary approaches
• Frequentist estimators
• Bayesian inference

Arijit

Arijit

CS
55
1

4

Types of Machine Learning Problems
• Supervised
• Unsupervised
• Other variants

• Reinforcement learning
• Semi-supervised

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

5

Learning algorithm
• A ML algorithm is an algorithm that is able to learn from data
• Mitchelle (1997)

• A computer program is said to learn from experience E with respect to some class of task
T and performance measure P, if its performance at task in T as measured by P, improves
with experience E.

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

6

Task
• A ML task is usually described in terms of how ML system should process an example

• Example is a collection of features that have been quantitatively measured from some objects
or events that we want the learning system process
• Represented as x ∈ Rn where xi is a feature
• Feature of an image — pixel values

Arijit

Arijit

Arijit

Arijit

CS
55
1

7

Common ML Task
• Classification

• Need to predict which of the k categories some input belongs to
• Need to have a function f : Rn → {1, 2, . . . , k}
• y = f(x) input x is assigned a category identified by y
• Examples

• Object identification
• Face recognition

• Regression
• Need to predict numeric value for some given input
• Need to have a function f : Rn → R
• Examples

• Energy consumption
• Amount of insurance claim

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

8

Common ML Task (contd.)
• Classification with missing inputs

• Need to have a set of functions
• Each function corresponds to classifying x with different subset of inputs missing
• Examples

• Medical diagnosis (expensive or invasive)

• Transcription
• Need to convert relatively unstructured data into discrete, textual form

• Optical character recognition
• Speech recognition

• Machine translation
• Conversion of sequence of symbols in one language to some other language

• Natural language processing (English to Spanish conversion)

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

8

Common ML Task (contd.)
• Classification with missing inputs

• Need to have a set of functions
• Each function corresponds to classifying x with different subset of inputs missing
• Examples

• Medical diagnosis (expensive or invasive)
• Transcription

• Need to convert relatively unstructured data into discrete, textual form
• Optical character recognition
• Speech recognition

• Machine translation
• Conversion of sequence of symbols in one language to some other language

• Natural language processing (English to Spanish conversion)

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

8

Common ML Task (contd.)
• Classification with missing inputs

• Need to have a set of functions
• Each function corresponds to classifying x with different subset of inputs missing
• Examples

• Medical diagnosis (expensive or invasive)
• Transcription

• Need to convert relatively unstructured data into discrete, textual form
• Optical character recognition
• Speech recognition

• Machine translation
• Conversion of sequence of symbols in one language to some other language

• Natural language processing (English to Spanish conversion)

Arijit

Arijit

CS
55
1

9

Common ML Task (contd.)
• Structured output

• Output is a vector with important relationship between the different elements
• Mapping natural language sentence into a tree that describes grammatical structure
• Pixel based image segmentation (eg. identify roads)

• Anomaly detection
• Observes a set of events or objects and flags if some of them are unusual

• Fraud detection in credit card
• Synthesis and sampling

• Generate new example similar to past examples
• Useful for media application
• Text to speech

Arijit

Arijit

Arijit

CS
55
1

9

Common ML Task (contd.)
• Structured output

• Output is a vector with important relationship between the different elements
• Mapping natural language sentence into a tree that describes grammatical structure
• Pixel based image segmentation (eg. identify roads)

• Anomaly detection
• Observes a set of events or objects and flags if some of them are unusual

• Fraud detection in credit card

• Synthesis and sampling
• Generate new example similar to past examples

• Useful for media application
• Text to speech

CS
55
1

9

Common ML Task (contd.)
• Structured output

• Output is a vector with important relationship between the different elements
• Mapping natural language sentence into a tree that describes grammatical structure
• Pixel based image segmentation (eg. identify roads)

• Anomaly detection
• Observes a set of events or objects and flags if some of them are unusual

• Fraud detection in credit card
• Synthesis and sampling

• Generate new example similar to past examples
• Useful for media application
• Text to speech

Arijit

Arijit

CS
55
1

10

Performance measure
• Accuracy is one of the key measures

• The proportion of examples for which the model produces correct outputs
• Similar to error rate

• Error rate often referred as expected 0-1 loss
• Mostly interested how ML algorithm performs on unseen data
• Choice of performance measure may not be straight forward

• Transcription
• Accuracy of the system at transcribing entire sequence
• Any partial credit for some elements of the sequence are correct

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

11

Experience
• Kind of experience allowed during learning process

• Supervised
• Unsupervised

Arijit

Arijit

CS
55
1

12

Supervised learning
• Allowed to use labeled dataset
• Example — Iris

• Collection of measurements of different parts of Iris plant
• Each plant means each example
• Features

• Sepal length/width, petal length/width
• Also record which species the plant belong to

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

13

Supervised learning (contd.)
• A set of labeled examples ⟨x1, x2, . . . , xn, y⟩

• xi are input variables
• y output variable

• Need to find a function f : X1 × X2 × . . .Xn → Y
• Goal is to minimize error/loss function

• Like to minimize over all dataset
• We have limited dataset

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

14

Unsupervised learning
• Learns useful properties of the structure of data set
• Unlabeled data

• Tries to learn entire probability distribution that generated the dataset
• Examples

• Clustering, dimensionality reduction

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

15

Supervised vs Unsupervised learning
• Unsupervised attempts to learn implicitly or explicitly probability distribution of p(x)
• Supervised tries to predict y from x ie. p(y|x)

• Unsupervised learning can be decomposed as supervised learning

p(x) =
n∏

i=1

p(xi|x1, x2, . . . , xi−1)

• Solving supervised learning using traditional unsupervised learning

p(y|x) = p(x, y)∑
y′ p(x, y′)

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

15

Supervised vs Unsupervised learning
• Unsupervised attempts to learn implicitly or explicitly probability distribution of p(x)
• Supervised tries to predict y from x ie. p(y|x)
• Unsupervised learning can be decomposed as supervised learning

p(x) =
n∏

i=1

p(xi|x1, x2, . . . , xi−1)

• Solving supervised learning using traditional unsupervised learning

p(y|x) = p(x, y)∑
y′ p(x, y′)

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

15

Supervised vs Unsupervised learning
• Unsupervised attempts to learn implicitly or explicitly probability distribution of p(x)
• Supervised tries to predict y from x ie. p(y|x)
• Unsupervised learning can be decomposed as supervised learning

p(x) =
n∏

i=1

p(xi|x1, x2, . . . , xi−1)

• Solving supervised learning using traditional unsupervised learning

p(y|x) = p(x, y)∑
y′ p(x, y′)

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

16

Linear regression
• Prediction of the value of a continuous variable

• Example — price of a house, solar power generation in photo-voltaic cell, etc.

• Takes a vector x ∈ Rn and predict scalar y ∈ R
• Predicted value will be represented as ŷ = wTx where w is a vector of parameters

• xi receives positive weight — Increasing the value of the feature will increase the value of y
• xi receives negative weight — Increasing the value of the feature will decrease the value of y
• Weight value is very high/large — Large effect on prediction

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

16

Linear regression
• Prediction of the value of a continuous variable

• Example — price of a house, solar power generation in photo-voltaic cell, etc.
• Takes a vector x ∈ Rn and predict scalar y ∈ R

• Predicted value will be represented as ŷ = wTx where w is a vector of parameters
• xi receives positive weight — Increasing the value of the feature will increase the value of y
• xi receives negative weight — Increasing the value of the feature will decrease the value of y
• Weight value is very high/large — Large effect on prediction

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

17

Performance
• Assume, we have m examples not used for training

• This is known as test set

• Design matrix of inputs is X(test) and target output is a vector y(test)

• Performance is measured by Mean Square Error (MSE)

MSE(test) =
1

m
∑

i

(
ŷ(test) − y(test)

)2
i
=

1

m∥ŷ(test) − y(test)∥22

• Error increases when the Euclidean distance between target and prediction increases
• The learning algorithm is allowed to gain experience from training set (X(train), y(train))

• One of the common ideas is to minimize MSE(train) for training set

Arijit

CS
55
1

17

Performance
• Assume, we have m examples not used for training

• This is known as test set
• Design matrix of inputs is X(test) and target output is a vector y(test)

• Performance is measured by Mean Square Error (MSE)

MSE(test) =
1

m
∑

i

(
ŷ(test) − y(test)

)2
i
=

1

m∥ŷ(test) − y(test)∥22

• Error increases when the Euclidean distance between target and prediction increases

• The learning algorithm is allowed to gain experience from training set (X(train), y(train))

• One of the common ideas is to minimize MSE(train) for training set

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

17

Performance
• Assume, we have m examples not used for training

• This is known as test set
• Design matrix of inputs is X(test) and target output is a vector y(test)

• Performance is measured by Mean Square Error (MSE)

MSE(test) =
1

m
∑

i

(
ŷ(test) − y(test)

)2
i
=

1

m∥ŷ(test) − y(test)∥22

• Error increases when the Euclidean distance between target and prediction increases
• The learning algorithm is allowed to gain experience from training set (X(train), y(train))

• One of the common ideas is to minimize MSE(train) for training set

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

18

Minimizaࢢon of MSE
• We have the following now

∇wMSE(train) = 0

⇒ ∇w
1
m∥ŷ(train) − y(train)∥22 = 0

⇒ 1
m∇w∥X(train)w− y(train)∥22 = 0

⇒ ∇w(X(train)w− y(train))T(X(train)w− y(train)) = 0

⇒ ∇w(wTX(train)TX(train)w− 2wTX(train)Ty(train) + y(train)Ty(train)) = 0

⇒ 2X(train)TX(train)w− 2X(train)Ty(train) = 0

⇒ w = (X(train)TX(train))−1X(train)Ty(train)

• Linear regression with bias term ŷ = [wT w0][x 1]T

CS
55
1

18

Minimizaࢢon of MSE
• We have the following now

∇wMSE(train) = 0

⇒ ∇w
1
m∥ŷ(train) − y(train)∥22 = 0

⇒ 1
m∇w∥X(train)w− y(train)∥22 = 0

⇒ ∇w(X(train)w− y(train))T(X(train)w− y(train)) = 0

⇒ ∇w(wTX(train)TX(train)w− 2wTX(train)Ty(train) + y(train)Ty(train)) = 0

⇒ 2X(train)TX(train)w− 2X(train)Ty(train) = 0

⇒ w = (X(train)TX(train))−1X(train)Ty(train)

• Linear regression with bias term ŷ = [wT w0][x 1]T

CS
55
1

18

Minimizaࢢon of MSE
• We have the following now

∇wMSE(train) = 0

⇒ ∇w
1
m∥ŷ(train) − y(train)∥22 = 0

⇒ 1
m∇w∥X(train)w− y(train)∥22 = 0

⇒ ∇w(X(train)w− y(train))T(X(train)w− y(train)) = 0

⇒ ∇w(wTX(train)TX(train)w− 2wTX(train)Ty(train) + y(train)Ty(train)) = 0

⇒ 2X(train)TX(train)w− 2X(train)Ty(train) = 0

⇒ w = (X(train)TX(train))−1X(train)Ty(train)

• Linear regression with bias term ŷ = [wT w0][x 1]T

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

18

Minimizaࢢon of MSE
• We have the following now

∇wMSE(train) = 0

⇒ ∇w
1
m∥ŷ(train) − y(train)∥22 = 0

⇒ 1
m∇w∥X(train)w− y(train)∥22 = 0

⇒ ∇w(X(train)w− y(train))T(X(train)w− y(train)) = 0

⇒ ∇w(wTX(train)TX(train)w− 2wTX(train)Ty(train) + y(train)Ty(train)) = 0

⇒ 2X(train)TX(train)w− 2X(train)Ty(train) = 0

⇒ w = (X(train)TX(train))−1X(train)Ty(train)

• Linear regression with bias term ŷ = [wT w0][x 1]T

CS
55
1

18

Minimizaࢢon of MSE
• We have the following now

∇wMSE(train) = 0

⇒ ∇w
1
m∥ŷ(train) − y(train)∥22 = 0

⇒ 1
m∇w∥X(train)w− y(train)∥22 = 0

⇒ ∇w(X(train)w− y(train))T(X(train)w− y(train)) = 0

⇒ ∇w(wTX(train)TX(train)w− 2wTX(train)Ty(train) + y(train)Ty(train)) = 0

⇒ 2X(train)TX(train)w− 2X(train)Ty(train) = 0

⇒ w = (X(train)TX(train))−1X(train)Ty(train)

• Linear regression with bias term ŷ = [wT w0][x 1]T

CS
55
1

18

Minimizaࢢon of MSE
• We have the following now

∇wMSE(train) = 0

⇒ ∇w
1
m∥ŷ(train) − y(train)∥22 = 0

⇒ 1
m∇w∥X(train)w− y(train)∥22 = 0

⇒ ∇w(X(train)w− y(train))T(X(train)w− y(train)) = 0

⇒ ∇w(wTX(train)TX(train)w− 2wTX(train)Ty(train) + y(train)Ty(train)) = 0

⇒ 2X(train)TX(train)w− 2X(train)Ty(train) = 0

⇒ w = (X(train)TX(train))−1X(train)Ty(train)

• Linear regression with bias term ŷ = [wT w0][x 1]T

CS
55
1

18

Minimizaࢢon of MSE
• We have the following now

∇wMSE(train) = 0

⇒ ∇w
1
m∥ŷ(train) − y(train)∥22 = 0

⇒ 1
m∇w∥X(train)w− y(train)∥22 = 0

⇒ ∇w(X(train)w− y(train))T(X(train)w− y(train)) = 0

⇒ ∇w(wTX(train)TX(train)w− 2wTX(train)Ty(train) + y(train)Ty(train)) = 0

⇒ 2X(train)TX(train)w− 2X(train)Ty(train) = 0

⇒ w = (X(train)TX(train))−1X(train)Ty(train)

• Linear regression with bias term ŷ = [wT w0][x 1]T

Arijit

Arijit

Arijit

CS
55
1

18

Minimizaࢢon of MSE
• We have the following now

∇wMSE(train) = 0

⇒ ∇w
1
m∥ŷ(train) − y(train)∥22 = 0

⇒ 1
m∇w∥X(train)w− y(train)∥22 = 0

⇒ ∇w(X(train)w− y(train))T(X(train)w− y(train)) = 0

⇒ ∇w(wTX(train)TX(train)w− 2wTX(train)Ty(train) + y(train)Ty(train)) = 0

⇒ 2X(train)TX(train)w− 2X(train)Ty(train) = 0

⇒ w = (X(train)TX(train))−1X(train)Ty(train)

• Linear regression with bias term ŷ = [wT w0][x 1]T

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

19

Moore-Penrose Pseudoinverse
• Let A ∈ Rn×m

• Every A has pseudoinverse A+ ∈ Rm×n and it is unique
• AA+A = A
• A+AA+ = A+

• (AA+)T = AA+

• (A+A)T = A+A

• A+ = limα→0(ATA+ αI)−1AT

• Example
• If A = [1 2]T then A+ = [15

2
5]

• If A =

 1 2
2 1
1 5

 then A+ =

[
0.121212 0.515152 −0.151515
0.030303 −0.121212 0.212121

]

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

20

Regression example

 0

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10 12 14

Y

X

wx

b

y

CS
55
1

21

Regression example

 0

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10 12 14

Y

X

wx

b

y

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

22

Example

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

23

Example: Variaࢢon of MSE wrt w

 24

 26

 28

 30

 32

 34

 36

 38

 40

 42

 44

 0 5 10 15 20 25

M
S

E

w

Arijit

Arijit

Arijit

CS
55
1

24

Example: Best fit

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14

M
S

E

w

Arijit

Arijit

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002

xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001

gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001

gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

Arijit

Arijit

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936

xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122

gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122

gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672

xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

Arijit

Arijit

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184

gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184

gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531

xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938

gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938

gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162

xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409

gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409

gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845

xnew=0.05934gradient=0.0356 xnew=0.03087

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934

gradient=0.0356 xnew=0.03087

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934

gradient=0.0356 xnew=0.03087

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356

xnew=0.03087

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

26

Minimizaࢢon of MSE: Gradient descent
• Assuming MSE(train) = J(w1,w2)

• Target is to min
w1,w2

J(w1,w2)

• Approach
• Start with some w1,w2

• Keep modifying w1,w2 so that J(w1,w2) reduces till the desired accuracy is achieved

• Algorithm

• Repeat the following until convergence wj = wj −
∂

∂wj
J(w1,w2)

• Gradient descent proposes a new point as w′ = w− ϵ∇wf(w) where ϵ is the learning rate

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

26

Minimizaࢢon of MSE: Gradient descent
• Assuming MSE(train) = J(w1,w2)

• Target is to min
w1,w2

J(w1,w2)

• Approach
• Start with some w1,w2

• Keep modifying w1,w2 so that J(w1,w2) reduces till the desired accuracy is achieved
• Algorithm

• Repeat the following until convergence wj = wj −
∂

∂wj
J(w1,w2)

• Gradient descent proposes a new point as w′ = w− ϵ∇wf(w) where ϵ is the learning rate

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

27

Error
• Training error - Error obtained on a training set
• Generalization error - Error on unseen data
• Data assumed to be independent and identically distributed (iid)

• Each data set are independent of each other
• Train and test data are identically distributed

• Expected training and test error will be the same
• It is more likely that the test error is greater than or equal to the expected value of training

error
• Target is to make the training error is small. Also, to make the gap between training and test

error smaller

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

28

Regression example

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14

Training
Test

CS
55
1

29

Regression example: degree 1

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14

Training
Test

Arijit

CS
55
1

30

Regression example: degree 2

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14

Training
Test

Arijit

CS
55
1

31

Regression example: degree 3

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14

Training
Test

Arijit

CS
55
1

32

Regression example: degree 4

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14

Training
Test

Arijit

Arijit

CS
55
1

33

Regression example: degree 5

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14

Training
Test

Arijit

CS
55
1

34

Regression example: degree 6

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14

Training
Test

CS
55
1

35

Underfiࢰng & Overfiࢰng
• Underfitting

• When the model is not able to obtain sufficiently low error value on the training set
• Overfitting

• When the gap between training set and test set error is too large

CS
55
1

36

Underfiࢰng example

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14

Training
Test

Arijit

CS
55
1

37

Overfiࢰng example

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14

Training
Test

Arijit

Arijit

CS
55
1

38

Be�er fit

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14

Training
Test

Arijit

Arijit

Arijit

Arijit

CS
55
1

39

Capacity
• Ability to fit wide variety of functions

• Low capacity will struggle to fit the training set
• High capacity will can overfit by memorizing the training set

• Capacity can be controlled by choosing hypothesis space
• A polynomial of degree 1 gives linear regression ŷ = b + wx
• By adding x2 term, it can learn quadratic curve ŷ = b + w1x + w2x2

• Output is still a linear function of parameters
• Capacity is determined by the choice of model (Representational capacity)
• Finding best function is very difficult optimization problem

• Learning algorithm does not find the best function but reduces the training error
• Imperfection in optimization algorithm can further reduce the capacity of model (effective

capacity)

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

40

Capacity (contd.)
• Occam’s razor

• Among equally well hypotheses, choose the simplest one
• Vapnik-Chervonenski dimension - Capacity for binary classifier

• Largest possible value of m for which a training set of m different x point that the classifier
can label arbitrarily

• Training and test error is bounded from above by a quantity that grows as model capacity
grows but shrinks as the number of training example increases
• Bounds are usually provided for ML algorithm and rarely provided for DL
• Capacity of deep learning model is difficult as the effective capacity is limited by optimization

algorithm
• Little knowledge on non-convex optimization

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

41

Error vs Capacity

Image source: Deep Learning Book

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

42

Non-parametric model
• Parametric model learns a function described by a parameter vector

• Size of vector is finite and fixed
• Nearest neighbor regression

• Finds out the nearest entry in training set and returns the associated value as the predicted
one

• Mathematically, for a given point x, ŷ = yi where i = arg min ∥Xi,: − x∥22
• Wrapping parametric algorithm inside another algorithm

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

43

Bayes error
• Ideal model is an oracle that knows the true probability distribution for data generation
• Such model can make error because of noise

• Supervised learning
• Mapping of x to y may be stochastic
• y may be deterministic but x does not have all variables

• Error by an oracle in predicting from the true distribution is known as Bayes error

Arijit

Arijit

Arijit

CS
55
1

44

Note
• Training and generalization error varies as the size of training set varies
• Expected generalization error can never increase as the number of training example increases
• Any fixed parametric model with less than the optimal capacity will asymptote to an error

value that exceeds the Bayes error
• It is possible to have optimal capacity but have large gap between training and generalization

error
• Need more training examples

Arijit

Arijit

Arijit

Arijit

CS
55
1

45

No free lunch
• Averaged over all possible data generating distribution, every classification algorithm has same

error rate when classifying unseen points
• No machine learning algorithm is universally any better than any other

Arijit

Arijit

Arijit

CS
55
1

46

Regularizaࢢon
• A set of preferences is applied to learning algorithm so that it performs well on a specific task
• Weight decay - In linear regression, preference on the weights is introduced

• Sum of MSE and squared L2 norms of the weight is minimized ie.

J(w) = MSEtrain + λwTw

• λ = 0 - No preference
• λ becomes large - weight becomes smaller

• Regularization is intended to reduce test error not training error

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

47

Example: Weight decay

 0

 50

 100

 150

 200

 0 2 4 6 8 10 12 14

L=0
L=100

L=1000

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

48

Hyperparameters
• Settings that are used to control the behavior of learning algorithm

• Degree of polynomial
• λ for decay weight

• Hyperparameters are usually not adapted or learned on the training set

Arijit

Arijit

CS
55
1

49

Validaࢢon set
• Test data should not be used to choose the model as well as hyperparameters
• Validation set is constructed from training set

• Typically 80% will be used for training and rest for validation
• Validation set may be used to train hyperparameters

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

50

Cross validaࢢon
• Dividing data set into training and fixed test may result into small test set

• For large data this is not an issue
• For small data set use k-fold cross validation

• Partition the data in k disjoint subsets
• On i-th trial, i-th set used as the test set and rest are treated as training set
• Test error can be determined by averaging the test error across the k trials

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

51

Point esࢢmaࢢon
• To provide single best prediction of some quantity of interest
• Estimation of the relationship between input and output variables
• It can be single parameter or a vector of parameters

• Weights in linear regression
• Notation: true parameter — θ and estimate — θ̂

• Let {x(1), x(2), . . . , x(m)} be set of m independent and identically distributed point.
• A point estimator is a function θ̂m = g(x(1), x(2), . . . , x(m))

• Good estimator is a function whose output is close to θ
• θ is unknown but fixed
• θ̂ depends on data

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

52

Bias
• Difference between this estimator’s expected value and the true value of the parameter being

estimated
• bias(θ̂m) = E(θ̂m)− θ

• An estimator will be said unbiased if bias(θ̂m) = 0

• E(θ̂m) = θ

• An estimator will be asymptotically unbiased if lim
m→∞

bias(θ̂m) = 0

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

53

Esࢢmator for Gaussian distribuࢢon
• Let us consider a set of samples {x(1), x(2), . . . , x(m)} that are independently and identically

distributed according to
p(x(i)) = N (x(i);µ, σ2) ∀i = 1, 2, . . . ,m

• Gaussian mean estimator (aka sample mean) — µ̂m =
1

m

m∑
i=1

x(i)

• Bias of sample mean
bias(µ̂m) = E(µ̂m)− µ = E

(
1

m

m∑
i=1

x(i)
)

− µ

=

(
1
m

m∑
i=1

E
(

x(i)
))

− µ =

(
1

m

m∑
i=1

µ

)
− µ = µ− µ = 0

CS
55
1

53

Esࢢmator for Gaussian distribuࢢon
• Let us consider a set of samples {x(1), x(2), . . . , x(m)} that are independently and identically

distributed according to
p(x(i)) = N (x(i);µ, σ2) ∀i = 1, 2, . . . ,m

• Gaussian mean estimator (aka sample mean) — µ̂m =
1

m

m∑
i=1

x(i)

• Bias of sample mean
bias(µ̂m) = E(µ̂m)− µ = E

(
1

m

m∑
i=1

x(i)
)

− µ

=

(
1
m

m∑
i=1

E
(

x(i)
))

− µ =

(
1

m

m∑
i=1

µ

)
− µ = µ− µ = 0

Arijit

Arijit

Arijit

Arijit

CS
55
1

53

Esࢢmator for Gaussian distribuࢢon
• Let us consider a set of samples {x(1), x(2), . . . , x(m)} that are independently and identically

distributed according to
p(x(i)) = N (x(i);µ, σ2) ∀i = 1, 2, . . . ,m

• Gaussian mean estimator (aka sample mean) — µ̂m =
1

m

m∑
i=1

x(i)

• Bias of sample mean
bias(µ̂m) = E(µ̂m)− µ

= E

(
1

m

m∑
i=1

x(i)
)

− µ

=

(
1
m

m∑
i=1

E
(

x(i)
))

− µ =

(
1

m

m∑
i=1

µ

)
− µ = µ− µ = 0

CS
55
1

53

Esࢢmator for Gaussian distribuࢢon
• Let us consider a set of samples {x(1), x(2), . . . , x(m)} that are independently and identically

distributed according to
p(x(i)) = N (x(i);µ, σ2) ∀i = 1, 2, . . . ,m

• Gaussian mean estimator (aka sample mean) — µ̂m =
1

m

m∑
i=1

x(i)

• Bias of sample mean
bias(µ̂m) = E(µ̂m)− µ = E

(
1

m

m∑
i=1

x(i)
)

− µ

=

(
1
m

m∑
i=1

E
(

x(i)
))

− µ =

(
1

m

m∑
i=1

µ

)
− µ = µ− µ = 0

CS
55
1

53

Esࢢmator for Gaussian distribuࢢon
• Let us consider a set of samples {x(1), x(2), . . . , x(m)} that are independently and identically

distributed according to
p(x(i)) = N (x(i);µ, σ2) ∀i = 1, 2, . . . ,m

• Gaussian mean estimator (aka sample mean) — µ̂m =
1

m

m∑
i=1

x(i)

• Bias of sample mean
bias(µ̂m) = E(µ̂m)− µ = E

(
1

m

m∑
i=1

x(i)
)

− µ

=

(
1
m

m∑
i=1

E
(

x(i)
))

− µ

=

(
1

m

m∑
i=1

µ

)
− µ = µ− µ = 0

CS
55
1

53

Esࢢmator for Gaussian distribuࢢon
• Let us consider a set of samples {x(1), x(2), . . . , x(m)} that are independently and identically

distributed according to
p(x(i)) = N (x(i);µ, σ2) ∀i = 1, 2, . . . ,m

• Gaussian mean estimator (aka sample mean) — µ̂m =
1

m

m∑
i=1

x(i)

• Bias of sample mean
bias(µ̂m) = E(µ̂m)− µ = E

(
1

m

m∑
i=1

x(i)
)

− µ

=

(
1
m

m∑
i=1

E
(

x(i)
))

− µ =

(
1

m

m∑
i=1

µ

)
− µ

= µ− µ = 0

CS
55
1

53

Esࢢmator for Gaussian distribuࢢon
• Let us consider a set of samples {x(1), x(2), . . . , x(m)} that are independently and identically

distributed according to
p(x(i)) = N (x(i);µ, σ2) ∀i = 1, 2, . . . ,m

• Gaussian mean estimator (aka sample mean) — µ̂m =
1

m

m∑
i=1

x(i)

• Bias of sample mean
bias(µ̂m) = E(µ̂m)− µ = E

(
1

m

m∑
i=1

x(i)
)

− µ

=

(
1
m

m∑
i=1

E
(

x(i)
))

− µ =

(
1

m

m∑
i=1

µ

)
− µ = µ− µ = 0

Arijit

Arijit

Arijit

CS
55
1

54

Esࢢmator for Gaussian distribuࢢon (cont)
• Sample variance

• σ̂2
m =

1

m

m∑
i=1

(x(i) − µ̂m)
2

• Bias of sample variance bias(σ̂2
m) = E(σ̂2

m)− σ2

• It can be shown that, E(σ̂2
m) =

m − 1

m σ2

Arijit

CS
55
1

54

Esࢢmator for Gaussian distribuࢢon (cont)
• Sample variance

• σ̂2
m =

1

m

m∑
i=1

(x(i) − µ̂m)
2

• Bias of sample variance bias(σ̂2
m) = E(σ̂2

m)− σ2

• It can be shown that, E(σ̂2
m) =

m − 1

m σ2

Arijit

CS
55
1

55

Trade off Bias and Variance
• Bias — Expected deviation from the true value of the function parameter
• Variance — Measure of deviation from the expected estimator value
• Choice of estimator — large bias or large variance?

• Use cross-validation
• Compare Mean Square Error

MSE = E(θ̂m − θ)2 = bias(θ̂m)
2 + Var(θ̂m)

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

56

Trade off Bias and Variance (cont)

Image source: Deep Learning Book

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

57

Logisࢢc regression
• Responses may be qualitative (categorical)

• Example: ⟨Hours of study, pass/fail⟩, ⟨MRI scan, benign/malignant⟩
• Output should be 0 or 1

• Predicting qualitative response is known as classification
• Linear regression does not help

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

58

Issues with linear regression

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

59

Logisࢢc regression

Arijit

CS
55
1

60

Logisࢢc model
• Linear regression model to represent probability p(x) = w0 + w1x

• To avoid problem, we use function p(x) = ew0+w1x

1 + ew0+w1x

• Quantity p(x)
1−p(x) = ew0+w1x is known as odds

• Taking log on both the sides, we get log
(

p(x)
1− p(x)

)
= w0 + w1x

• Coefficient can be determined using maximum likelihood
• l(w0,w1) =

∏
i:yi=1

p(xi)
∏

j:yj=0

p(xj)

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

61

Logisࢢc model (contd.)
• Similar to linear regression except the output is mapped between 0 and 1 ie.

p(y|x,θ) = σ(θTx)

where σ(x) = 1

1 + exp(−x) (Sigmoid function)

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

62

Support Vector Machine
• An approach for classification
• Developed in 1990s
• Generalization of maximum margin classifier

• Mostly limited to linear boundary
• Support vector classifier — broad range of classes
• SVM — Non-linear class boundary

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

63

Hyperplane
• In n dimensional space a hyperplane is a flat affine subspace of dimension n − 1

• Mathematically it is defined as
• For 2 dimensions — w0 + w1x1 + w2x2 = 0
• For n dimensions — w0 + w1x1 + . . .+ wnxn = 0

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

64

Classificaࢢon using Hyperplane
• Assume, m training observation in n dimensional space

• Separating hyperplane has the property
• w0 + w1x1 + . . .+ wnxn > 0 if yi = 1
• w0 + w1x1 + . . .+ wnxn < 0 if yi = −1

• Hence, yi(w0 + w1x1 + . . .+ wnxn) > 0

• Classification of test observation x∗ is done based
on the sign of
f(x∗) = w0 + w1x∗1 + . . .+ wnx∗n

• Magnitude of f(x∗)
• Far from 0 — Confident about prediction
• Close to 0 — Less certain

CS
55
1

64

Classificaࢢon using Hyperplane
• Assume, m training observation in n dimensional space
• Separating hyperplane has the property

• w0 + w1x1 + . . .+ wnxn > 0 if yi = 1
• w0 + w1x1 + . . .+ wnxn < 0 if yi = −1

• Hence, yi(w0 + w1x1 + . . .+ wnxn) > 0

• Classification of test observation x∗ is done based
on the sign of
f(x∗) = w0 + w1x∗1 + . . .+ wnx∗n

• Magnitude of f(x∗)
• Far from 0 — Confident about prediction
• Close to 0 — Less certain

Arijit

Arijit

Arijit

Arijit

CS
55
1

64

Classificaࢢon using Hyperplane
• Assume, m training observation in n dimensional space
• Separating hyperplane has the property

• w0 + w1x1 + . . .+ wnxn > 0 if yi = 1
• w0 + w1x1 + . . .+ wnxn < 0 if yi = −1

• Hence, yi(w0 + w1x1 + . . .+ wnxn) > 0

• Classification of test observation x∗ is done based
on the sign of
f(x∗) = w0 + w1x∗1 + . . .+ wnx∗n

• Magnitude of f(x∗)
• Far from 0 — Confident about prediction
• Close to 0 — Less certain

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

65

Maximal margin classifier
• Also known as optimal separating hyperplane
• Separating hyperplane farthest from training ob-

servation
• Compute perpendicular distance from training

point to the hyperplane
• Smallest of these distances represents the mar-

gin
• Target is to find the hyperplane for which the mar-

gin is the largest

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

66

Construcࢢon of maximal margin classifier
• Input — m points in n dimension space ie. x1, x2, . . . , xm

• Input — labels y1, y2, . . . , ym for each point xi where yi ∈ {−1, 1}
• Need to solve the following optimization problem

max
w0,w1,...,wn,M

M

subject to
yi(w0 + w1xi1 + wi2 + . . .+ winxin) ≥ M ∀i = 1, . . . ,m

n∑
i=1

w2
i = 1

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

67

Issues
• Maximal margin classifier fails to provide classification in case of overlap

Arijit

Arijit

Arijit

CS
55
1

68

Issues
• Single observation point can change the hyperplane drastically

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

69

Support Vector Classifier
• Provides greater robustness to individual observations
• Better classification of most of the training observations
• Worthwhile to misclassify a few training observations
• Also known as soft margin classifier

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

70

Support Vector Classifier
• Points can lie within the margin or wrong side of hyperplane

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

71

Opࢢmizaࢢon with misclassificaࢢon
• Input — x1, x2, . . . , xm and y1, y2, . . . , ym

• Need to solve the following optimization problem
max

w0,w1,...,wn,M
M

subject to
yi(w0 + w1xi1 + . . .+ winxin) ≥ M(1− ϵi) ∀i = 1, . . . ,m

n∑
i=1

w2
i = 1,

m∑
i=1

ϵi = C

• C is non-negative tuning parameter, ϵi - slack variable
• Classification of test observation remains the same

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

72

Observaࢢons
• ϵi = 0 — ith observation is on the correct side of margin
• ϵi > 0 — ith observation is on the wrong side of margin
• ϵi > 1 — ith observation is on the wrong side of hyperplane
• C — budget for the amount that the margin can be violated by m observations

• C = 0 — No violation, ie. maximal margin classifier
• C > 0 — No more than C observation can be on the wrong side of hyperplane
• C is small — Narrow margin, highly fit to data, low bias and high variance
• C is large — Fitting data is less hard, more bias and may have less variance

Arijit

Arijit

Arijit

Arijit

CS
55
1

73

Classificaࢢon with non-linear boundaries

Arijit

Arijit

CS
55
1

74

Classificaࢢon with non-linear boundaries
• Performance of linear regression can suffer for non-linear data
• Feature space can be enlarged using function of predictors

• For example, instead of fitting with x1, x2, . . . , xn features we could use x1, x21, x2, x22 . . . , xn, x2n
as features

• Optimization problem becomes
max

w0,w11,w12...,wn1,wn2,ϵi,M
M

subject to

yi

w0 +

n∑
j=1

wj1xij +

n∑
j=1

wj2x2ij

 ≥ M(1− ϵi) ∀i = 1, . . . ,m

n∑
i=1

2∑
j=1

w2
ij = 1,

m∑
i=1

ϵi ≤ C, ϵi ≥ 0

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

75

Support Vector Machine
• Extension of support vector classifier that results from enlarging feature space

• It involves inaner product of the observations f(x) = w0 +

m∑
i=1

αi⟨x, xi⟩ where αi - one per

training example
• To estimate αi and w0, we need m(m − 1)/2 inner products, ⟨xi, xi′⟩

• It turns out that αi ̸= 0 for support vectors
f(x) = w0 +

∑
i∈S

αi⟨x, xi⟩ where S - set of support vectors

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

76

Support Vector Machine
• Inner product is replaced with kernel, K or K(xi, xi′)

• Kernel quantifies similarity between observations K(xi, xi′) =
∑n

j=1 xijxi′j
• Above one is Linear kernel ie. Pearson correlation

• Polynomial kernel K(xi, xi′) =
(
1 +

∑n
j=1 xijxi′j

)d
where d is positive integer > 1

• Support vector classifier with non-linear kernel is known as support vector machine and the
function will look f(x) = w0 +

∑
i∈S

αiK(x, xi)

• Radial kernel: K(xi, xi′) = exp
(
−γ
∑n

i=1(xij − xi′j)
2
)

where γ > 0

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

CS
55
1

77

Challenges for Deep Learning
• Curse of dimensionality
• Local constancy and smoothness regularization
• Manifold learning

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

