Introduction to Deep Learning

Arijit Mondal
Dept. of Computer Science \& Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

Feature Engineering

Machine Learning

- A form of applied statistics with
- Increased emphasis on the use of computers to statistically estimate complicated function
- Decreased emphasis on proving confidence intervals around these functions
- Two primary approaches
- Frequentist estimators
- Bayesian inference

Types of Machine Learning Problems

- Supervised
- Unsupervised
- Other variants
- Reinforcement learning
- Semi-supervised

Learning algorithm

- A ML algorithm is an algorithm that is able to learn from data
- Mitchelle (1997)
- A computer program is said to learn from experience E with respect to some class of task T and performance measure P, if its performance at task in T as measured by P, improves with experience E.

Task

- A ML task is usually described in terms of how ML system should process an example
- Example is a collection of features that have been quantitatively measured from some objects or events that we want the learning system process
- Represented as $x \in \mathbb{R}^{n}$ where x_{i} is a feature
- Feature of an image - pixel values

Common ML Task

- Classification
- Need to predict which of the k categories some input belongs to
- Need to have a function $f: \mathbb{R}^{n} \rightarrow\{1,2, \ldots, k\}$
- $y=f(x)$ input x is assigned a category identified by y
- Examples
- Object identification
- Face recognition
- Regression
- Need to predict numeric value for some given input
- Need to have a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
- Examples
- Energy consumption
- Amount of insurance claim

Common ML Task (contd.)

- Classification with missing inputs
- Need to have a set of functions
- Each function corresponds to classifying \times with different subset of inputs missing
- Examples
- Medical diagnosis (expensive or invasive)

Common ML Task (contd.)

- Classification with missing inputs
- Need to have a set of functions
- Each function corresponds to classifying \times with different subset of inputs missing
- Examples
- Medical diagnosis (expensive or invasive)
- Transcription
- Need to convert relatively unstructured data into discrete, textual form
- Optical character recognition
- Speech recognition

Common ML Task (contd.)

- Classification with missing inputs
- Need to have a set of functions
- Each function corresponds to classifying \times with different subset of inputs missing
- Examples
- Medical diagnosis (expensive or invasive)
- Transcription
- Need to convert relatively unstructured data into discrete, textual form
- Optical character recognition
- Speech recognition
- Machine translation
- Conversion of sequence of symbols in one language to some other language
- Natural language processing (English to Spanish conversion)

Common ML Task (contd.)

- Structured output
- Output is a vector with important relationship between the different elements
- Mapping natural language sentence into a tree that describes grammatical structure
- Pixel based image segmentation (eg. identify roads)

Common ML Task (contd.)

- Structured output
- Output is a vector with important relationship between the different elements
- Mapping natural language sentence into a tree that describes grammatical structure
- Pixel based image segmentation (eg. identify roads)
- Anomaly detection
- Observes a set of events or objects and flags if some of them are unusual
- Fraud detection in credit card

Common ML Task (contd.)

- Structured output
- Output is a vector with important relationship between the different elements
- Mapping natural language sentence into a tree that describes grammatical structure
- Pixel based image segmentation (eg. identify roads)
- Anomaly detection
- Observes a set of events or objects and flags if some of them are unusual
- Fraud detection in credit card
- Synthesis and sampling
- Generate new example similar to past examples
- Useful for media application
- Text to speech

Performance measure

- Accuracy is one of the key measures
- The proportion of examples for which the model produces correct outputs
- Similar to error rate
- Error rate often referred as expected 0-1 loss
- Mostly interested how ML algorithm performs on unseen data
- Choice of performance measure may not be straight forward
- Transcription
- Accuracy of the system at transcribing entire sequence
- Any partial credit for some elements of the sequence are correct

Experience

Supervised learning

- Allowed to use labeled dataset
- Example - Iris
- Collection of measurements of different parts of Iris plant
- Each plant means each example
- Features
- Sepal length/width, petal length/width
- Also record which species the plant belong to

Supervised learning (contd.)

- A set of labeled examples $\left\langle x_{1}, x_{2}, \ldots, x_{n}, y\right\rangle$
- x_{i} are input variables
- y output variable
- Need to find a function $f: X_{1} \times X_{2} \times \ldots X_{n} \rightarrow Y$
- Goal is to minimize error/loss function
- Like to minimize over all dataset
- We have limited dataset

Unsupervised learning

- Learns useful properties of the structure of data set
- Unlabeled data
- Tries to learn entire probability distribution that generated the dataset
- Examples
- Clustering, dimensionality reduction

Supervised vs Unsupervised learning

Supervised vs Unsupervised learning

- Unsupervised attempts to learn implicitly or explicitly probability distribution of $p(\mathrm{x})$
- Supervised tries to predict y from \times ie. $p(y \mid x)$
- Unsupervised learning can be decomposed as supervised learning

$$
p(\mathrm{x})=\prod_{i=1}^{n} p\left(x_{i} \mid x_{1}, x_{2}, \ldots, x_{i-1}\right)
$$

Supervised vs Unsupervised learning

- Unsupervised attempts to learn implicitly or explicitly probability distribution of $p(\mathrm{x})$
- Supervised tries to predict y from \times ie. $p(y \mid x)$
- Unsupervised learning can be decomposed as supervised learning

$$
p(\mathrm{x})=\prod_{i=1}^{n} p\left(x_{i} \mid x_{1}, x_{2}, \ldots, x_{i-1}\right)
$$

- Solving supervised learning using traditional unsupervised learning

$$
p(y \mid x)=\frac{p(x, y)}{\sum_{y^{\prime}} p\left(x, y^{\prime}\right)}
$$

Linear regression

- Prediction of the value of a continuous variable
- Example - price of a house, solar power generation in photo-voltaic cell, etc.

Linear regression

- Prediction of the value of a continuous variable
- Example - price of a house, solar power generation in photo-voltaic cell, etc.
- Takes a vector $x \in \mathbb{R}^{n}$ and predict scalar $y \in \mathbb{R}$
- Predicted value will be represented as $\hat{y}=\mathrm{w}^{T} \times$ where w is a vector of parameters
- x_{i} receives positive weight - Increasing the value of the feature will increase the value of y
- x_{i} receives negative weight - Increasing the value of the feature will decrease the value of y
- Weight value is very high/large - Large effect on prediction

Performance

Performance

- Assume, we have m examples not used for training
- This is known as test set
- Design matrix of inputs is $X^{(t e s t)}$ and target output is a vector $\mathrm{y}^{\text {(test) }}$
- Performance is measured by Mean Square Error (MSE)

$$
\mathrm{MSE}_{(\text {test })}=\frac{1}{m} \sum_{i}\left(\hat{y}^{\text {(test })}-y^{(\text {test })}\right)_{i}^{2}=\frac{1}{m}\left\|\hat{y}^{(\text {test })}-y^{(\text {test })}\right\|_{2}^{2}
$$

- Error increases when the Euclidean distance between target and prediction increases

Performance

- Assume, we have m examples not used for training
- This is known as test set
- Design matrix of inputs is $X^{\text {(test) }}$ and target output is a vector $y^{(\text {test })}$
- Performance is measured by Mean Square Error (MSE)

$$
\mathrm{MSE}_{(\text {test })}=\frac{1}{m} \sum_{i}\left(\hat{y}^{\text {(test })}-y^{(\text {test })}\right)_{i}^{2}=\frac{1}{m}\left\|\hat{y}^{(\text {test })}-y^{(\text {test })}\right\|_{2}^{2}
$$

- Error increases when the Euclidean distance between target and prediction increases
- The learning algorithm is allowed to gain experience from training set $\left(X^{(t r a i n)}, y^{(t r a i n)}\right)$
- One of the common ideas is to minimize $\mathrm{MSE}_{(\text {train })}$ for training set

Minimization of MSE

Minimization of MSE

Minimization of MSE

- We have the following now

$$
\begin{aligned}
& \nabla_{w} \mathrm{MSE}_{(\text {train })}=0 \\
\Rightarrow & \nabla_{w} \frac{1}{m}\left\|\hat{\mathrm{y}}^{(\text {train })}-\mathrm{y}^{(\text {train })}\right\|_{2}^{2}=0 \\
\Rightarrow & \frac{1}{m} \nabla_{\mathrm{w}}\left\|\mathrm{X}^{(\text {train })} \mathrm{w}-\mathrm{y}^{(\text {train })}\right\|_{2}^{2}=0
\end{aligned}
$$

Minimization of MSE

- We have the following now

$$
\begin{aligned}
& \nabla_{w} \mathrm{MSE}_{(\text {train })}=0 \\
\Rightarrow & \nabla_{w} \frac{1}{m}\left\|\hat{\mathrm{y}}^{(\text {train })}-\mathrm{y}^{(\text {train })}\right\|_{2}^{2}=0 \\
\Rightarrow & \frac{1}{m} \nabla_{w}\left\|\mathrm{X}^{(\text {train })} \mathrm{w}-\mathrm{y}^{(\text {train })}\right\|_{2}^{2}=0 \\
\Rightarrow & \nabla_{w}\left(\mathrm{X}^{(\text {train })} \mathrm{w}-\mathrm{y}^{(\text {train })}\right)^{T}\left(\mathrm{X}^{(\text {train })} \mathrm{w}-\mathrm{y}^{(\text {train })}\right)=0
\end{aligned}
$$

Minimization of MSE

- We have the following now

$$
\begin{aligned}
& \nabla_{w} \mathrm{MSE}_{(\text {train })}=0 \\
\Rightarrow & \nabla_{w} \frac{1}{m}\left\|\hat{\mathrm{y}}^{\text {(train) }}-\mathrm{y}^{(\text {train })}\right\|_{2}^{2}=0 \\
\Rightarrow & \frac{1}{m} \nabla_{\mathrm{w}}\left\|\mathrm{X}^{(\text {train })} \mathrm{w}-\mathrm{y}^{(\text {train })}\right\|_{2}^{2}=0 \\
\Rightarrow & \nabla_{w}\left(\mathrm{X}^{(\text {train })} \mathrm{w}-\mathrm{y}^{(\text {train })}\right)^{T}\left(\mathrm{X}^{(\text {train })} \mathrm{w}-\mathrm{y}^{(\text {train })}\right)=0 \\
\Rightarrow & \nabla_{w}\left(\mathrm{w}^{T} \mathrm{X}^{(\text {train })} \mathrm{X}^{(\text {train })} \mathrm{w}-2 \mathrm{w}^{T} \mathrm{X}^{(\text {train })} \mathrm{y}^{(\text {train })}+\mathrm{y}^{(\text {train })} \mathrm{y}^{(\text {train })}\right)=0
\end{aligned}
$$

Minimization of MSE

- We have the following now

$$
\begin{aligned}
& \nabla_{w} \mathrm{MSE}_{(\text {train })}=0 \\
\Rightarrow & \nabla_{w} \frac{1}{m}\left\|\hat{\mathrm{y}}^{(\text {train })}-\mathrm{y}^{(\text {train })}\right\|_{2}^{2}=0 \\
\Rightarrow & \frac{1}{m} \nabla_{w}\left\|\mathrm{X}^{(\text {train })} \mathrm{w}-\mathrm{y}^{(\text {train })}\right\|_{2}^{2}=0 \\
\Rightarrow & \nabla_{w}\left(\mathrm{X}^{(\text {train })} \mathrm{w}-\mathrm{y}^{(\text {train })}\right)^{T}\left(\mathrm{X}^{(\text {train })} \mathrm{w}-\mathrm{y}^{(\text {train })}\right)=0 \\
\Rightarrow & \nabla_{w}\left(\mathrm{w}^{T} \mathrm{X}^{(\text {train })} \mathrm{X}^{(\text {train })} \mathrm{w}-2 \mathrm{w}^{T} \mathrm{X}^{(\text {train })} T_{\mathrm{y}} \mathrm{y}^{(\text {train })}+\mathrm{y}^{(\text {train })} T^{(\text {(train })}\right)=0 \\
\Rightarrow & 2 \mathrm{X}^{(\text {train })} \mathrm{X}^{(\text {train })} \mathrm{w}-2 \mathrm{X}^{(\text {train })} T_{\mathrm{y}^{(\text {train })}}=0
\end{aligned}
$$

Minimization of MSE

- We have the following now

$$
\begin{aligned}
& \nabla_{w} \mathrm{MSE}_{(\text {train })}=0 \\
& \Rightarrow \quad \nabla_{w} \frac{1}{m}\left\|\hat{y}^{(\text {train })}-\mathrm{y}^{(\text {train })}\right\|_{2}^{2}=0 \\
& \Rightarrow \quad \frac{1}{m} \nabla_{w}\left\|\mathrm{X}^{(\text {train })} \mathrm{w}-\mathrm{y}^{(\text {train })}\right\|_{2}^{2}=0 \\
& \Rightarrow \quad \nabla_{w}\left(\mathrm{X}^{(\text {train })} \mathrm{w}-\mathrm{y}^{(\text {train })}\right)^{T}\left(\mathrm{X}^{\text {(train })} \mathrm{w}-\mathrm{y}^{(\text {train })}\right)=0 \\
& \Rightarrow \nabla_{w}\left(\mathrm{w}^{T} \mathrm{X}^{(\text {train })}{ }^{T} \mathrm{X}^{(\text {train })} \mathrm{w}-2 \mathrm{w}^{T} \mathrm{X}^{(\text {train })}{ }^{\mathrm{y}} \mathrm{y}^{(\text {train })}+\mathrm{y}^{(\text {train })}{ }^{(} \mathrm{y}^{(\text {train })}\right)=0 \\
& \Rightarrow 2 \mathrm{X}^{(\text {train })}{ }^{T} \mathrm{X}^{(\text {train })} \mathrm{w}-2 \mathrm{X}^{(\text {train })}{ }^{(} \mathrm{y}^{(\text {train })}=0 \\
& \Rightarrow \mathrm{w}=\left(\mathrm{X}^{(\text {train })}{ }^{T} \mathrm{X}^{(\text {train })}\right)^{-1} \mathrm{X}^{(\text {train })}{ }^{T} \mathrm{y}^{(\text {train })}
\end{aligned}
$$

Minimization of MSE

- We have the following now

$$
\begin{aligned}
& \nabla_{w} \mathrm{MSE}_{(\text {train })}=0 \\
& \Rightarrow \quad \nabla_{w} \frac{1}{m}\left\|\hat{y}^{\text {(train) }}-\mathrm{y}^{(\text {train })}\right\|_{2}^{2}=0 \\
& \Rightarrow \quad \frac{1}{m} \nabla_{w}\left\|X^{(\text {train })} \mathrm{w}-\mathrm{y}^{(\text {train })}\right\|_{2}^{2}=0 \\
& \Rightarrow \quad \nabla_{w}\left(\mathrm{X}^{(\text {train })} \mathrm{w}-\mathrm{y}^{(\text {train })}\right)^{T}\left(\mathrm{X}^{(\text {train })} \mathrm{w}-\mathrm{y}^{(\text {train })}\right)=0 \\
& \Rightarrow \nabla_{w}\left(\mathrm{w}^{T} \mathrm{X}^{(\text {train })}{ }^{T} \mathrm{X}^{(\text {train })} \mathrm{w}-2 \mathrm{w}^{T} \mathrm{X}^{(\text {train })}{ }^{\mathrm{y}} \mathrm{y}^{(\text {train })}+\mathrm{y}^{(\text {train })}{ }^{T} \mathrm{y}^{(\text {train })}\right)=0 \\
& \Rightarrow \quad 2 \mathrm{X}^{(\text {train })}{ }^{T} \mathrm{X}^{(\text {train })} \mathrm{w}-2 \mathrm{X}^{(\text {train })}{ }^{(} \mathrm{y}^{(\text {train })}=0 \\
& \Rightarrow \mathrm{w}=\left(\mathrm{X}^{(\text {train })}{ }^{T} \mathrm{X}^{(\text {train })}\right)^{-1} \mathrm{X}^{(\text {train })}{ }^{T} \mathrm{y}^{(\text {train })}
\end{aligned}
$$

- Linear regression with bias term $\hat{y}=\left[\begin{array}{ll}w^{T} & w_{0}\end{array}\right]\left[\begin{array}{ll}x & 1\end{array}\right]^{T}$

Moore-Penrose Pseudoinverse

- Let $\mathrm{A} \in \mathbb{R}^{n \times m}$
- Every A has pseudoinverse $\mathrm{A}^{+} \in \mathbb{R}^{m \times n}$ and it is unique
- $A A^{+} A=A$
- $A^{+} A A^{+}=A^{+}$
- $\left(\mathrm{AA}^{+}\right)^{T}=\mathrm{AA}^{+}$
- $\left(A^{+} A\right)^{T}=A^{+} A$
- $\mathrm{A}^{+}=\lim _{\alpha \rightarrow 0}\left(\mathrm{~A}^{T} \mathrm{~A}+\alpha \mathrm{I}\right)^{-1} \mathrm{~A}^{T}$
- Example
- If $\mathrm{A}=\left[\begin{array}{ll}1 & 2\end{array}\right]^{T}$ then $\mathrm{A}^{+}=\left[\begin{array}{ll}\frac{1}{5} & \frac{2}{5}\end{array}\right]$
- If $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 2 & 1 \\ 1 & 5\end{array}\right]$ then $\mathrm{A}^{+}=\left[\begin{array}{ccc}0.121212 & 0.515152 & -0.151515 \\ 0.030303 & -0.121212 & 0.212121\end{array}\right]$

Regression example

Regression example

Example

Example: Variation of MSE wrt w

Example: Best fit

Gradient descent

Gradient descent

Gradient descent

$$
y=0.3 x^{2}, x_{0}=3, \alpha=0.8 \quad \text { gradient }=1.80002
$$

$$
x_{n e w}=1.56001
$$

Gradient descent

$$
y=0.3 x^{2}, x_{0}=3, \alpha=0.8 \quad \text { gradient }=0.936
$$

$$
x_{\text {new }}=1.56001
$$

Gradient descent

$$
y=0.3 x^{2}, x_{0}=3, \alpha=0.8 \quad \text { gradient }=0.936
$$

$$
x_{\text {new }}=0.81122
$$

Gradient descent

$$
y=0.3 x^{2}, x_{0}=3, \alpha=0.8 \quad \text { gradient }=0.936
$$

$$
x_{\text {new }}=0.81122
$$

Gradient descent

$y=0.3 x^{2}, x_{0}=3, \alpha=0.8 \quad$ gradient $=0.48672$
$x_{\text {new }}=0.81122$

Gradient descent

$y=0.3 x^{2}, x_{0}=3, \alpha=0.8 \quad$ gradient $=0.48672$
$x_{\text {new }}=0.42184$

Gradient descent

$y=0.3 x^{2}, x_{0}=3, \alpha=0.8 \quad$ gradient $=0.48672$
$x_{\text {new }}=0.42184$

Gradient descent

$y=0.3 x^{2}, x_{0}=3, \alpha=0.8 \quad$ gradient $=0.2531$
$x_{\text {new }}=0.42184$

Gradient descent

$y=0.3 x^{2}, x_{0}=3, \alpha=0.8 \quad$ gradient $=0.2531$
$x_{\text {new }}=0.21938$

Gradient descent

$y=0.3 x^{2}, x_{0}=3, \alpha=0.8 \quad$ gradient $=0.2531$
$x_{\text {new }}=0.21938$

Gradient descent

$$
y=0.3 x^{2}, x_{0}=3, \alpha=0.8 \quad \text { gradient }=0.13162
$$

$$
x_{n e w}=0.21938
$$

Gradient descent

$$
y=0.3 x^{2}, x_{0}=3, \alpha=0.8 \quad \text { gradient }=0.13162
$$

$$
x_{n e w}=0.11409
$$

Gradient descent

$y=0.3 x^{2}, x_{0}=3, \alpha=0.8 \quad$ gradient $=0.13162$
$x_{\text {new }}=0.11409$

Gradient descent

$$
y=0.3 x^{2}, x_{0}=3, \alpha=0.8 \quad \text { gradient }=0.06845
$$

$$
x_{n e w}=0.11409
$$

Gradient descent

$$
y=0.3 x^{2}, x_{0}=3, \alpha=0.8 \quad \text { gradient }=0.06845
$$

$$
x_{n e w}=0.05934
$$

Gradient descent

Gradient descent

$y=0.3 x^{2}, x_{0}=3, \alpha=0.8 \quad$ gradient $=0.0356$

$$
x_{\text {new }}=0.05934
$$

Gradient descent

$y=0.3 x^{2}, x_{0}=3, \alpha=0.8 \quad$ gradient $=0.0356$
$x_{\text {new }}=0.03087$

Minimization of MSE: Gradient descent

- Assuming $\mathrm{MSE}_{(\text {train })}=J\left(w_{1}, w_{2}\right)$
- Target is to $\min _{w_{1}, w_{2}} J\left(w_{1}, w_{2}\right)$
- Approach
- Start with some w_{1}, w_{2}
- Keep modifying w_{1}, w_{2} so that $J\left(w_{1}, w_{2}\right)$ reduces till the desired accuracy is achieved

Minimization of MSE: Gradient descent

- Assuming $\mathrm{MSE}_{(\text {train })}=J\left(w_{1}, w_{2}\right)$
- Target is to $\min _{w_{1}, w_{2}} J\left(w_{1}, w_{2}\right)$
- Approach
- Start with some w_{1}, w_{2}
- Keep modifying w_{1}, w_{2} so that $J\left(w_{1}, w_{2}\right)$ reduces till the desired accuracy is achieved
- Algorithm
- Repeat the following until convergence $w_{j}=w_{j}-\frac{\partial}{\partial w_{j}} J\left(w_{1}, w_{2}\right)$
- Gradient descent proposes a new point as $w^{\prime}=w-\epsilon \nabla_{w} f(w)$ where ϵ is the learning rate

Error

- Training error - Error obtained on a training set
- Generalization error - Error on unseen data
- Data assumed to be independent and identically distributed (iid)
- Each data set are independent of each other
- Train and test data are identically distributed
- Expected training and test error will be the same
- It is more likely that the test error is greater than or equal to the expected value of training error
- Target is to make the training error is small. Also, to make the gap between training and test error smaller

Regression example

Regression example: degree 1

Regression example: degree 3

Regression example: degree 4

Regression example: degree 5

Regression example: degree 6

Underfitting \& Overfitting

- Underfitting
- When the model is not able to obtain sufficiently low error value on the training set
- Overfitting
- When the gap between training set and test set error is too large

Underfitting example

Overfitting example

Capacity

- Ability to fit wide variety of functions
- Low capacity will struggle to fit the training set
- High capacity will can overfit by memorizing the training set
- Capacity can be controlled by choosing hypothesis space
- A polynomial of degree 1 gives linear regression $\hat{y}=b+w x$
- By adding x^{2} term, it can learn quadratic curve $\hat{y}=b+w_{1} x+w_{2} x^{2}$
- Output is still a linear function of parameters
- Capacity is determined by the choice of model (Representational capacity)
- Finding best function is very difficult optimization problem
- Learning algorithm does not find the best function but reduces the training error
- Imperfection in optimization algorithm can further reduce the capacity of model (effective capacity)

Capacity (contd.)

- Occam's razor
- Among equally well hypotheses, choose the simplest one
- Vapnik-Chervonenski dimension - Capacity for binary classifier
- Largest possible value of m for which a training set of m different \times points that the classifier can label arbitrarily
- Training and test error is bounded from above by a quantity that grows as model capacity grows but shrinks as the number of training example increases
- Bounds are usually provided for ML algorithm and rarely provided for DL
- Capacity of deep learning model is difficult as the effective capacity is limited by optimization algorithm
- Little knowledge on non-convex optimization

Error vs Capacity

Image source: Deep Learning Book

Non-parametric model

- Parametric model learns a function described by a parameter vector
- Size of vector is finite and fixed
- Nearest neighbor regression
- Finds out the nearest entry in training set and returns the associated value as the predicted one
- Mathematically, for a given point $x, \hat{y}=y_{i}$ where $i=\arg \min \left\|X_{i,:}-x\right\|_{2}^{2}$
- Wrapping parametric algorithm inside another algorithm

Bayes error

- Ideal model is an oracle that knows the true probability distribution for data generation
- Such model can make error because of noise
- Supervised learning
- Mapping of x to y may be stochastic
- y may be deterministic but \times does not have all variables
- Error by an oracle in predicting from the true distribution is known as Bayes error

Note

- Training and generalization error varies as the size of training set varies
- Expected generalization error can never increase as the number of training example increases
- Any fixed parametric model with less than the optimal capacity will asymptote to an error value that exceeds the Bayes error
- It is possible to have optimal capacity but have large gap between training and generalization error
- Need more training examples

No free lunch

- Averaged over all possible data generating distribution, every classification algorithm has same error rate when classifying unseen points
- No machine learning algorithm is universally any better than any other

Regularization

- A set of preferences is applied to learning algorithm so that it performs well on a specific task
- Weight decay - In linear regression, preference on the weights is introduced
- Sum of MSE and squared L^{2} norms of the weight is minimized ie.

$$
J(\mathrm{w})=\mathrm{MSE}_{\text {train }}+\lambda \mathrm{w}^{T} \mathrm{w}
$$

- $\lambda=0$ - No preference
- λ becomes large - weight becomes smaller
- Regularization is intended to reduce test error not training error

Example: Weight decay

Hyperparameters

- Settings that are used to control the behavior of learning algorithm
- Degree of polynomial
- λ for decay weight
- Hyperparameters are usually not adapted or learned on the training set

Validation set

- Test data should not be used to choose the model as well as hyperparameters
- Validation set is constructed from training set
- Typically 80% will be used for training and rest for validation
- Validation set may be used to train hyperparameters

Cross validation

- Dividing data set into training and fixed test may result into small test set
- For large data this is not an issue
- For small data set use k-fold cross validation
- Partition the data in k disjoint subsets
- On i-th trial, i-th set used as the test set and rest are treated as training set
- Test error can be determined by averaging the test error across the k trials

Point estimation

- To provide single best prediction of some quantity of interest
- Estimation of the relationship between input and output variables
- It can be single parameter or a vector of parameters
- Weights in linear regression
- Notation: true parameter - $\boldsymbol{\theta}$ and estimate $-\hat{\boldsymbol{\theta}}$
- Let $\left\{x^{(1)}, x^{(2)}, \ldots, x^{(m)}\right\}$ be set of m independent and identically distributed point.
- A point estimator is a function $\hat{\boldsymbol{\theta}}_{m}=g\left(x^{(1)}, x^{(2)}, \ldots, x^{(m)}\right)$
- Good estimator is a function whose output is close to $\boldsymbol{\theta}$
- $\boldsymbol{\theta}$ is unknown but fixed
- $\hat{\boldsymbol{\theta}}$ depends on data

Bias

- Difference between this estimator's expected value and the true value of the parameter being estimated
- $\operatorname{bias}\left(\hat{\boldsymbol{\theta}}_{m}\right)=\mathbb{E}\left(\hat{\boldsymbol{\theta}}_{m}\right)-\boldsymbol{\theta}$
- An estimator will be said unbiased if $\operatorname{bias}\left(\hat{\boldsymbol{\theta}}_{m}\right)=0$
- $\mathbb{E}\left(\hat{\boldsymbol{\theta}}_{m}\right)=\boldsymbol{\theta}$
- An estimator will be asymptotically unbiased if $\lim _{m \rightarrow \infty} \operatorname{bias}\left(\hat{\boldsymbol{\theta}}_{m}\right)=0$

Estimator for Gaussian distribution

- Let us consider a set of samples $\left\{x^{(1)}, x^{(2)}, \ldots, x^{(m)}\right\}$ that are independently and identically distributed according to

$$
p\left(x^{(i)}\right)=\mathcal{N}\left(x^{(i)} ; \mu, \sigma^{2}\right) \quad \forall i=1,2, \ldots, m
$$

Estimator for Gaussian distribution

- Let us consider a set of samples $\left\{x^{(1)}, x^{(2)}, \ldots, x^{(m)}\right\}$ that are independently and identically distributed according to

$$
p\left(x^{(i)}\right)=\mathcal{N}\left(x^{(i)} ; \mu, \sigma^{2}\right) \quad \forall i=1,2, \ldots, m
$$

- Gaussian mean estimator (aka sample mean) - $\hat{\mu}_{m}=\frac{1}{m} \sum_{i=1}^{m} x^{(i)}$

Estimator for Gaussian distribution

- Let us consider a set of samples $\left\{x^{(1)}, x^{(2)}, \ldots, x^{(m)}\right\}$ that are independently and identically distributed according to

$$
p\left(x^{(i)}\right)=\mathcal{N}\left(x^{(i)} ; \mu, \sigma^{2}\right) \quad \forall i=1,2, \ldots, m
$$

- Gaussian mean estimator (aka sample mean) - $\hat{\mu}_{m}=\frac{1}{m} \sum_{i=1}^{m} x^{(i)}$
- Bias of sample mean

$$
\operatorname{bias}\left(\hat{\mu}_{m}\right)=\mathbb{E}\left(\hat{\mu}_{m}\right)-\mu
$$

Estimator for Gaussian distribution

- Let us consider a set of samples $\left\{x^{(1)}, x^{(2)}, \ldots, x^{(m)}\right\}$ that are independently and identically distributed according to

$$
p\left(x^{(i)}\right)=\mathcal{N}\left(x^{(i)} ; \mu, \sigma^{2}\right) \quad \forall i=1,2, \ldots, m
$$

- Gaussian mean estimator (aka sample mean) - $\hat{\mu}_{m}=\frac{1}{m} \sum_{i=1}^{m} x^{(i)}$
- Bias of sample mean

$$
\begin{aligned}
& \operatorname{bias}\left(\hat{\mu}_{m}\right)=\mathbb{E}\left(\hat{\mu}_{m}\right)-\mu=\mathbb{E}\left(\frac{1}{m} \sum_{i=1}^{m} x^{(i)}\right)-\mu
\end{aligned}
$$

Estimator for Gaussian distribution

- Let us consider a set of samples $\left\{x^{(1)}, x^{(2)}, \ldots, x^{(m)}\right\}$ that are independently and identically distributed according to

$$
p\left(x^{(i)}\right)=\mathcal{N}\left(x^{(i)} ; \mu, \sigma^{2}\right) \quad \forall i=1,2, \ldots, m
$$

- Gaussian mean estimator (aka sample mean) - $\hat{\mu}_{m}=\frac{1}{m} \sum_{i=1}^{m} x^{(i)}$
- Bias of sample mean

$$
\begin{aligned}
& \operatorname{Bias} \text { of sample mean } \\
& \operatorname{bias}\left(\hat{\mu}_{m}\right)=\mathbb{E}\left(\hat{\mu}_{m}\right)-\mu=\mathbb{E}\left(\frac{1}{m} \sum_{i=1}^{m} x^{(i)}\right)-\mu \\
&=\left(\frac{1}{m} \sum_{i=1}^{m} \mathbb{E}\left(x^{(i)}\right)\right)-\mu
\end{aligned}
$$

Estimator for Gaussian distribution

- Let us consider a set of samples $\left\{x^{(1)}, x^{(2)}, \ldots, x^{(m)}\right\}$ that are independently and identically distributed according to

$$
p\left(x^{(i)}\right)=\mathcal{N}\left(x^{(i)} ; \mu, \sigma^{2}\right) \quad \forall i=1,2, \ldots, m
$$

- Gaussian mean estimator (aka sample mean) - $\hat{\mu}_{m}=\frac{1}{m} \sum_{i=1}^{m} x^{(i)}$
- Bias of sample mean

$$
\begin{aligned}
\operatorname{bias}\left(\hat{\mu}_{m}\right) & =\mathbb{E}\left(\hat{\mu}_{m}\right)-\mu=\mathbb{E}\left(\frac{1}{m} \sum_{i=1}^{m} x^{(i)}\right)-\mu \\
& =\left(\frac{1}{m} \sum_{i=1}^{m} \mathbb{E}\left(x^{(i)}\right)\right)-\mu=\left(\frac{1}{m} \sum_{i=1}^{m} \mu\right)-\mu
\end{aligned}
$$

Estimator for Gaussian distribution

- Let us consider a set of samples $\left\{x^{(1)}, x^{(2)}, \ldots, x^{(m)}\right\}$ that are independently and identically distributed according to

$$
p\left(x^{(i)}\right)=\mathcal{N}\left(x^{(i)} ; \mu, \sigma^{2}\right) \quad \forall i=1,2, \ldots, m
$$

- Gaussian mean estimator (aka sample mean) $-\hat{\mu}_{m}=\frac{1}{m} \sum_{i=1}^{m} x^{(i)}$
- Bias of sample mean

$$
\begin{aligned}
& \text { Bias of sample mean } \\
& \begin{aligned}
\operatorname{bias}\left(\hat{\mu}_{m}\right) & =\mathbb{E}\left(\hat{\mu}_{m}\right)-\mu=\mathbb{E}\left(\frac{1}{m} \sum_{i=1}^{m} x^{(i)}\right)-\mu \\
& =\left(\frac{1}{m} \sum_{i=1}^{m} \mathbb{E}\left(x^{(i)}\right)\right)-\mu=\left(\frac{1}{m} \sum_{i=1}^{m} \mu\right)-\mu=\mu-\mu=0
\end{aligned}
\end{aligned}
$$

Estimator for Gaussian distribution (cont)

- Sample variance
- $\hat{\sigma}_{m}^{2}=\frac{1}{m} \sum_{i=1}^{m}\left(x^{(i)}-\hat{\mu}_{m}\right)^{2}$

Estimator for Gaussian distribution (cont)

- Sample variance
- $\hat{\sigma}_{m}^{2}=\frac{1}{m} \sum_{i=1}^{m}\left(x^{(i)}-\hat{\mu}_{m}\right)^{2}$
- Bias of sample variance $\operatorname{bias}\left(\hat{\sigma}_{m}^{2}\right)=\mathbb{E}\left(\hat{\sigma}_{m}^{2}\right)-\sigma^{2}$
- It can be shown that, $\mathbb{E}\left(\hat{\sigma}_{m}^{2}\right)=\frac{m-1}{m} \sigma^{2}$

Trade off Bias and Variance

- Bias - Expected deviation from the true value of the function parameter
- Variance - Measure of deviation from the expected estimator value
- Choice of estimator - large bias or large variance?
- Use cross-validation
- Compare Mean Square Error

$$
\mathrm{MSE}=\mathbb{E}\left(\hat{\theta}_{m}-\theta\right)^{2}=\operatorname{bias}\left(\hat{\theta}_{m}\right)^{2}+\operatorname{Var}\left(\hat{\theta}_{m}\right)
$$

Trade off Bias and Variance (cont)

Logistic regression

－Responses may be qualitative（categorical）
－Example：〈Hours of study，pass／fail〉，〈MRI scan，benign／malignant〉
－Output should be 0 or 1
－Predicting qualitative response is known as classification
－Linear regression does not help

Issues with linear regression

Logistic regression

Logistic model

- Linear regression model to represent probability $p(x)=w_{0}+w_{1} x$
- To avoid problem, we use function $p(x)=\frac{e^{w_{0}+w_{1} x}}{1+e^{w_{0}+w_{1} x}}$
- Quantity $\frac{p(x)}{1-p(x)}=e^{w_{0}+w_{1} x}$ is known as odds
- Taking \log on both the sides, we get $\log \left(\frac{p(x)}{1-p(x)}\right)=w_{0}+w_{1} x$
- Coefficient can be determined using maximum likelihood
- $I\left(w_{0}, w_{1}\right)=\prod_{i: y_{i}=1} p\left(x_{i}\right) \prod_{j: y_{j}=0} p\left(x_{j}\right)$

Logistic model (contd.)

- Similar to linear regression except the output is mapped between 0 and 1 ie.

$$
p(y \mid x, \boldsymbol{\theta})=\sigma\left(\boldsymbol{\theta}^{T} \times\right)
$$

where $\sigma(x)=\frac{1}{1+\exp (-x)}$ (Sigmoid function)

Support Vector Machine

- An approach for classification
- Developed in 1990s
- Generalization of maximum margin classifier
- Mostly limited to linear boundary
- Support vector classifier - broad range of classes
- SVM - Non-linear class boundary

Hyperplane

- In n dimensional space a hyperplane is a flat affine subspace of dimension $n-1$
- Mathematically it is defined as
- For 2 dimensions - $w_{0}+w_{1} x_{1}+w_{2} x_{2}=0$
- For n dimensions $-w_{0}+w_{1} x_{1}+\ldots+w_{n} x_{n}=0$

Classification using Hyperplane

Classification using Hyperplane

- Assume, m training observation in n dimensional space
- Separating hyperplane has the property
- $w_{0}+w_{1} x_{1}+\ldots+w_{n} x_{n}>0$ if $y_{i}=1$
- $w_{0}+w_{1} x_{1}+\ldots+w_{n} x_{n}<0$ if $y_{i}=-1$

Classification using Hyperplane

- Assume, m training observation in n dimensional space
- Separating hyperplane has the property
- $w_{0}+w_{1} x_{1}+\ldots+w_{n} x_{n}>0$ if $y_{i}=1$
- $w_{0}+w_{1} x_{1}+\ldots+w_{n} x_{n}<0$ if $y_{i}=-1$
- Hence, $y_{i}\left(w_{0}+w_{1} x_{1}+\ldots+w_{n} x_{n}\right)>0$
- Classification of test observation x^{*} is done based on the sign of

$$
f\left(x^{*}\right)=w_{0}+w_{1} x_{1}^{*}+\ldots+w_{n} x_{n}^{*}
$$

- Magnitude of $f\left(x^{*}\right)$
- Far from 0 - Confident about prediction
- Close to 0 - Less certain

Maximal margin classifier

- Also known as optimal separating hyperplane
- Separating hyperplane farthest from training observation
- Compute perpendicular distance from training point to the hyperplane
- Smallest of these distances represents the margin
- Target is to find the hyperplane for which the margin is the largest

Construction of maximal margin classifier

- Input - m points in n dimension space ie. $x_{1}, x_{2}, \ldots, x_{m}$
- Input - labels $y_{1}, y_{2}, \ldots, y_{m}$ for each point x_{i} where $y_{i} \in\{-1,1\}$
- Need to solve the following optimization problem

$$
\begin{aligned}
& \quad \max _{w_{0}, w_{1}, \ldots, w_{n}, M} M \\
& \text { subject to } \\
& \quad y_{i}\left(w_{0}+w_{1} x_{i 1}+w_{i 2}+\ldots+w_{i n} x_{i n}\right) \geq M \quad \forall i=1, \ldots, m \\
& \quad \sum_{i=1}^{n} w_{i}^{2}=1
\end{aligned}
$$

- Maximal margin classifier fails to provide classification in case of overlap

Issues

- Single observation point can change the hyperplane drastically

Support Vector Classifier

- Provides greater robustness to individual observations
- Better classification of most of the training observations
- Worthwhile to misclassify a few training observations
- Also known as soft margin classifier

Support Vector Classifier

- Points can lie within the margin or wrong side of hyperplane

Optimization with misclassification

- Input - $x_{1}, x_{2}, \ldots, x_{m}$ and $y_{1}, y_{2}, \ldots, y_{m}$
- Need to solve the following optimization problem

$$
\max _{w_{0}, w_{1}, \ldots, w_{n}, M}
$$

subject to

$$
\begin{aligned}
& y_{i}\left(w_{0}+w_{1} x_{i 1}+\ldots+w_{i n} x_{i n}\right) \geq M\left(1-\epsilon_{i}\right) \quad \forall i=1, \ldots, m \\
& \sum_{i=1}^{n} w_{i}^{2}=1, \quad \sum_{i=1}^{m} \epsilon_{i}=C
\end{aligned}
$$

- C is non-negative tuning parameter, ϵ_{i} - slack variable
- Classification of test observation remains the same

Observations

- $\epsilon_{i}=0$ - ith observation is on the correct side of margin
- $\epsilon_{i}>0$ - ith observation is on the wrong side of margin
- $\epsilon_{i}>1$ - ith observation is on the wrong side of hyperplane
- C - budget for the amount that the margin can be violated by m observations
- $C=0$ - No violation, ie. maximal margin classifier
- $C>0$ - No more than C observation can be on the wrong side of hyperplane
- C is small - Narrow margin, highly fit to data, low bias and high variance
- C is large - Fitting data is less hard, more bias and may have less variance

Classification with non-linear boundaries

$$
\left.\begin{array}{|llllllll}
\hline & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
& \bullet \\
\bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \\
\bullet & \bullet & \bullet & \bullet & \bullet
\end{array}\right)
$$

Classification with non-linear boundaries

- Performance of linear regression can suffer for non-linear data
- Feature space can be enlarged using function of predictors
- For example, instead of fitting with $x_{1}, x_{2}, \ldots, x_{n}$ features we could use $x_{1}, x_{1}^{2}, x_{2}, x_{2}^{2} \ldots, x_{n}, x_{n}^{2}$ as features
- Optimization problem becomes

$$
\begin{aligned}
& \max _{w_{0}, w_{11}, w_{12} \ldots, w_{n 1}, w_{n 2}, \epsilon_{i}, M} \\
& \text { subject to } \\
& \qquad y_{i}\left(w_{0}+\sum_{j=1}^{n} w_{j 1} x_{i j}+\sum_{j=1}^{n} w_{j 2} x_{i j}^{2}\right) \geq M\left(1-\epsilon_{i}\right) \quad \forall i=1, \ldots, m \\
& \quad \sum_{i=1}^{n} \sum_{j=1}^{2} w_{i j}^{2}=1, \quad \sum_{i=1}^{m} \epsilon_{i} \leq C, \quad \epsilon_{i} \geq 0
\end{aligned}
$$

Support Vector Machine

- Extension of support vector classifier that results from enlarging feature space
- It involves inner product of the observations $f(x)=w_{0}+\sum_{i=1}^{m} \alpha_{i}\left\langle x, x_{i}\right\rangle$ where α_{i} - one per training example
- To estimate α_{i} and w_{0}, we need $m(m-1) / 2$ inner products, $\left\langle x_{i}, x_{i^{\prime}}\right\rangle$
- It turns out that $\alpha_{i} \neq 0$ for support vectors

$$
f(x)=w_{0}+\sum_{i \in S} \alpha_{i}\left\langle x, x_{i}\right\rangle \text { where } S \text { - set of support vectors }
$$

Support Vector Machine

- Inner product is replaced with kernel, K or $K\left(x_{i}, x_{i^{\prime}}\right)$
- Kernel quantifies similarity between observations $K\left(x_{i}, x_{i^{\prime}}\right)=\sum_{j=1}^{n} x_{i j} x_{i^{\prime} j}$
- Above one is Linear kernel ie. Pearson correlation
- Polynomial kernel $K\left(x_{i}, x_{i^{\prime}}\right)=\left(1+\sum_{j=1}^{n} x_{i j} x_{i^{\prime} j}\right)^{d}$ where d is positive integer >1
- Support vector classifier with non-linear kernel is known as support vector machine and the function will look

$$
f(x)=w_{0}+\sum_{i \in S} \alpha_{i} K\left(x, x_{i}\right)
$$

- Radial kernel: $K\left(x_{i}, x_{i^{\prime}}\right)=\exp \left(-\gamma \sum_{i=1}^{n}\left(x_{i j}-x_{i^{\prime} j}\right)^{2}\right)$ where $\gamma>0$

Challenges for Deep Learning

- Curse of dimensionality
- Local constancy and smoothness regularization
- Manifold learning

