Introduction to Data Science

Big Data

Arijit Mondal

Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

• Computer Science is a science of abstraction-creating the right model for a problem and devising the appropriate mechanizable techniques to solve it. — A. Aho and J. Ullman

• Computer Science is a science of abstraction-creating the right model for a problem and devising the appropriate mechanizable techniques to solve it. — A. Aho and J. Ullman

- Computer Science is a science of abstraction-creating the right model for a problem and devising the appropriate mechanizable techniques to solve it. A. Aho and J. Ullman
- Problem space
 - Problems with polynomial time solutions considered as simple problems, easy to describe and understand, computation requirement is relatively less
 - Examples sorting, shortest path, etc.

• Computer Science is a science of abstraction-creating the right model for a problem and devising the appropriate mechanizable techniques to solve it. — A. Aho and J. Ullman

- Problems with polynomial time solutions considered as simple problems, easy to describe and understand, computation requirement is relatively less
 - Examples sorting, shortest path, etc.
- Problems that are challenging for human beings but relatively easy for computers can be described formally, usually takes exponential computation time
 - Examples travelling salesman problem, chess, graph coloring, etc.

• Computer Science is a science of abstraction-creating the right model for a problem and devising the appropriate mechanizable techniques to solve it. — A. Aho and J. Ullman

- Problems with polynomial time solutions considered as simple problems, easy to describe and understand, computation requirement is relatively less
 - Examples sorting, shortest path, etc.
- Problems that are challenging for human beings but relatively easy for computers can be described formally, usually takes exponential computation time
 - Examples travelling salesman problem, chess, graph coloring, etc.
- Problems that are easy for human beings but relatively difficult for computers cannot be described formally,
 - Examples object identification, face recognition, etc.

• Computer Science is a science of abstraction-creating the right model for a problem and devising the appropriate mechanizable techniques to solve it. — A. Aho and J. Ullman

- Problems with polynomial time solutions considered as simple problems, easy to describe and understand, computation requirement is relatively less
 - Examples sorting, shortest path, etc.
- Problems that are challenging for human beings but relatively easy for computers can be described formally, usually takes exponential computation time
 - Examples travelling salesman problem, chess, graph coloring, etc.
- Problems that are easy for human beings but relatively difficult for computers cannot be described formally,
 - Examples object identification, face recognition, etc.
- Undecidable problems that cannot be solved on computers
 - Examples infinite loop detection

What is big data?

• How much data is really big?

What is big data?

- How much data is really big?
- Let us look some statistics https://www.internetlivestats.com/
 - Twitter: 600 million tweets per day
 - Facebook: 600 terabytes of incoming data per day from 1.6 billion active users
 - Google: 3.5 billion search queries each day
 - Instagram: 52 million new photos each day
 - Apple: 130 billion total app downloads
 - Netflix: 125 million hours of video streaming daily
 - Email: 205 billion messages per day

Big data

- Extract meaningful / relevant / useful information from such huge data
- Challenges are
 - Store need large storages / databases
 - Manage efficient access (read / write) of the databases
 - Analyze need methodologies to identify important properties

Big data

- Extract meaningful / relevant / useful information from such huge data
- Challenges are
 - Store need large storages / databases
 - Manage efficient access (read / write) of the databases
 - Analyze need methodologies to identify important properties

Big data pprox Data mining pprox Data science pprox Predictive analytics

Issues in analyzing the data

- Consider the task of measuring popular opinion from the posts in a social media platform
 - Unrepresentative participation
 - Spam and machine generated content
 - High redundancy
 - Susceptible to temporal bias

Three Vs for big data

Achieving solution for big data

- Algorithmics / methodologies for big data
 - Big Oh analysis
 - Hashing
 - Exploiting storage hierarchy
 - Streaming data
 - Filtering
 - Sampling, etc.

- Support from hardware
 - Parallelism
 - Cloud computing
 - MapReduce, etc.

Big Oh analysis

- Random Access Machine
 - Each simple operation takes exactly one step
 - Each memory operation takes exactly one step
- Examples
 - Nearest neighbor $\mathcal{O}(p \cdot n)$
 - Closest pair of points $\mathcal{O}(d \cdot n^2)$
 - Matrix multiplication $\mathcal{O}(n^3)$

- Adding two numbers $\mathcal{O}(1)$
- Binary search $O(\log n)$
- Merge sort $\mathcal{O}(n \log n)$

 $\mathcal{O}(1) \ll \mathcal{O}(\log n) \ll \mathcal{O}(n) \ll \mathcal{O}(n \log n) \ll \mathcal{O}(n^2) \ll \mathcal{O}(n^3)$

Hashing

- This technique can reduce the computation complexity
- A hash function h takes an object x and maps to a specific integer h(x) and x = y ⇒ h(x) = h(y)
- Turning a vector of numbers into a single representative number

$$h(x) = \sum_{i=0}^{n-1} \alpha^{n-(i+1)} x_i \pmod{m}$$

- Big Data
- Examples
 - Dictionary maintenance
 - Frequency counting
 - Duplicate removal
 - Canonization
 - Cryptographic hashing

Storage hierarchy

- Big data algorithms are often storage-bound or bandwidth-bound rather compute bound
- Cost of waiting around data to arrive exceeds algorithmically manipulation time
- Need to exploit hierarchy of storage for trade-off between performance and cost
- Types of memory
 - Cache memory
 - Main memory
 - Main memory of another machine
 - Disk storage

- Data may not be stored forever
- In many cases, data can be seen only once

- Data may not be stored forever
- In many cases, data can be seen only once
- Example
 - Computation of average of streaming number is easy, store number of element and the running sum

- Data may not be stored forever
- In many cases, data can be seen only once
- Example
 - Computation of average of streaming number is easy, store number of element and the running sum
 - Computation of variance can have issues with $\sigma^2 = \frac{\sum_{i=1}^{n} (x_i \bar{x})^2}{n}$

- Data may not be stored forever
- In many cases, data can be seen only once
- Example
 - Computation of average of streaming number is easy, store number of element and the running sum
 - Computation of variance can have issues with $\sigma^2 = \frac{\sum_{i=1}^{n} (x_i \bar{x})^2}{\bar{x}_i}$
 - The above issue can be resolved if we use $\sigma^2 = \left(\frac{1}{n}\sum_{i=1}^{n}(x_i)^2\right) (\bar{x})^2$

Filtering and Sampling

- Filtering is the process of selecting relevant subset of the data based on specific task
- Removal of data is not due to error but distracting the main goal
 - Suppose, a language model needs to developed for Uttar Pradesh
 - Tweets posted in Tamil, Spanish, etc. are not meaningful
- Sampling is the process of selecting appropriate size subset in an arbitrary manner
 - Right sizing training data
 - Data partitioning
 - Exploratory data analysis and visualization

Sampling strategies

- Sampling can introduces bias in the data
 - Temporal bias
 - Lexicographic bias
 - Numerical bias, etc.

Sampling strategies

- Sampling can introduces bias in the data
 - Temporal bias
 - Lexicographic bias
 - Numerical bias, etc.
- Uniform sampling strategy can help in many cases
 - Desired number of records can be selected
 - Quick and reproducible
 - One can construct multiple disjoint samples

Sampling strategies

- Sampling can introduces bias in the data
 - Temporal bias
 - Lexicographic bias
 - Numerical bias, etc.
- Uniform sampling strategy can help in many cases
 - Desired number of records can be selected
 - Quick and reproducible
 - One can construct multiple disjoint samples
- Random sampling approach
 - Items are selected with some probability distributions
 - Generally non-reproducible
 - Multiple random samples may not be disjoint

- Needs support from both software and hardware
- A task can be splitted and subtasks are allotted to different computing units
 - Parallel processing
 - Distributed processing

- Needs support from both software and hardware
- A task can be splitted and subtasks are allotted to different computing units
 - Parallel processing
 - Distributed processing
- To understand complexity of the problem, consider a social gathering of following scenarios

- Needs support from both software and hardware
- A task can be splitted and subtasks are allotted to different computing units
 - Parallel processing
 - Distributed processing
- To understand complexity of the problem, consider a social gathering of following scenarios
 - 1 person: A date!

- Needs support from both software and hardware
- A task can be splitted and subtasks are allotted to different computing units
 - Parallel processing
 - Distributed processing
- To understand complexity of the problem, consider a social gathering of following scenarios
 - 1 person: A date!
 - \bullet > 2 persons: Dinner among friends

- Needs support from both software and hardware
- A task can be splitted and subtasks are allotted to different computing units
 - Parallel processing
 - Distributed processing
- To understand complexity of the problem, consider a social gathering of following scenarios
 - 1 person: A date!
 - > 2 persons: Dinner among friends
 - \bullet > 10 persons: Group meeting

- Needs support from both software and hardware
- A task can be splitted and subtasks are allotted to different computing units
 - Parallel processing
 - Distributed processing
- To understand complexity of the problem, consider a social gathering of following scenarios
 - 1 person: A date!

 \bullet > 100 persons: Wedding dinner

- \bullet > 2 persons: Dinner among friends
- > 10 persons: Group meeting

Big Data

- Needs support from both software and hardware
- A task can be splitted and subtasks are allotted to different computing units
 - Parallel processing
 - Distributed processing
- To understand complexity of the problem, consider a social gathering of following scenarios
 - 1 person: A date!
 - > 2 persons: Dinner among friends
 - \bullet > 10 persons: Group meeting

- $\bullet > 100$ persons: Wedding dinner
- > 1000 persons: Community festival

- Needs support from both software and hardware
- A task can be splitted and subtasks are allotted to different computing units
 - Parallel processing
 - Distributed processing
- To understand complexity of the problem, consider a social gathering of following scenarios
 - 1 person: A date!
 - > 2 persons: Dinner among friends
 - \bullet > 10 persons: Group meeting

- $\bullet > 100$ persons: Wedding dinner
- > 1000 persons: Community festival
- > 10000 persons: Political rally

- Needs support from both software and hardware
- A task can be splitted and subtasks are allotted to different computing units
 - Parallel processing
 - Distributed processing
- To understand complexity of the problem, consider a social gathering of following scenarios
 - 1 person: A date!
 - > 2 persons: Dinner among friends
 - \bullet > 10 persons: Group meeting

- $\bullet > 100$ persons: Wedding dinner
- > 1000 persons: Community festival
- > 10000 persons: Political rally
- Challenges of parallelization and distributed computing
 - Coordination
 - Communication
 - Fault tolerance
- Cloud computing services may be explored

Big Data

Grid search

- Easiest way to exploit parallelism is to have independent execution on independent data
- Each independent run can a different setting of hyper-parameters
- Many hyper-parameters need to be selected
 - Learning rate
 - Epoch
 - k in clustering

- Batch size
- Depth of network
- Weight decay, etc.

Typical big data problem

- A large scale data-science task will involve the following primarily
 - Iterate over large number of items
 - Extract something of interest from each item
 - Aggregate intermediate results
 - Produce final output

MapReduce

- MapReduce paradigm for distributed computing has spread widely through open-source implementations like Hadoop and Spark
 - Simple parallel programming model
 - Straight forward scaling to hundreds/thousands of machines
 - Fault tolerant through redundancy

Challenges in parallelization

- How do we assign tasks to machines?
- What if we have more tasks than machines?
- What if machines need to share partial results?
- How do we aggregate partial results?
- How do we know all the machines have finished tasks?
- What if machines fail?

MapReduce

- Scale out: large shared-memory is a big concern
- Move processing to the data: clusters have limited bandwidth
- Process data sequentially, avoid random access: seeks are expensive, disk throughput is reasonable
- Seamless scalability
- Hadoop has two primary subsystems
 - Hadoop / MapReduce distributed big data processing infrastructure (abstract / paradigm, fault-tolerant, schedule, execution)
 - HDFS (Hadoop Distributed File System) fault-tolerant, high-bandwidth, high availability distributed storage

MapReduce (contd.)

- Programmer needs to specify only two functions Map and Reduce
 - Map reads in a file and produces key-value pairs
 - Reduce aggregates and processes the key-value pairs having the same key
- MapReduce runtime system
 - Processor scheduling
 - Data distribution

- Synchronization
- Error and fault tolerance

Example of MapReduce

Hadoop Distributed File System

- Store data on the local disks of nodes in the cluster, because RAM may not be sufficient to hold all the data in memory
- Disk access is typically slow, but disk throughput is reasonable, so linear scans through files are fine
- Replicate everything multiple times for reliability on commodity hardware

Trustworthy systems

- Al systems have achieved good performance level such that it can be deployed in practical field
 - Object recognition can help cars to see
 - Personalized voice assistant alexa / siri
 - Computer can beat the best alphago player
- Al has a very big role to play in many different domains such as medical, law, etc.
- However AI systems are brittle and unfair in many cases
 - Assign small noise to traffic signal can change the interpretation
 - A small noise can make a benign tumor to be reported as malignant

Properties for trustworthy systems

- Accuracy How well does the AI system do on new (unseen) data compared to data on which it was trained and tested
- Robustness How sensitive is the system's outcome to a change in the input
- Fairness Are the system outcome unbiased?
- Accountability Who or what is responsible for the system's outcome
- $\bullet\,$ Transparency Is it clear to external observer how the system's output produced
- Interpretability Can the system's output be justified with an explanation that a human can understand
- Ethical Was the data collected in ethical manner? Will the system's outcome be used in an ethical manner?

Summary

- Big data requires knowledge from multiple domains
 - Data bases
 - Computer architecture
 - Machine learning
 - Handling of large data
- Scope of big data is huge
 - Large data is a huge resource
 - Mining or analyzing such data can provide more insights
 - Better predictive models can be build
 - Many interesting applications can be developed
 - Needs to ensure reliability, safety, ethics, etc.

