Introduction to Data Science

Big Data

Arijit Mondal
Dept. of Computer Science \& Engineering
Indian Institute of Technology Patna
arijit@iitp.ac.in

Introduction

- Computer Science is a science of abstraction-creating the right model for a problem and devising the appropriate mechanizable techniques to solve it. - A. Aho and J. Ullman

Introduction

- Computer Science is a science of abstraction-creating the right model for a problem and devising the appropriate mechanizable techniques to solve it. - A. Aho and J. Ullman
- Problem space

Introduction

- Computer Science is a science of abstraction-creating the right model for a problem and devising the appropriate mechanizable techniques to solve it. - A. Aho and J. Ullman
- Problem space
- Problems with polynomial time solutions - considered as simple problems, easy to describe and understand, computation requirement is relatively less
- Examples - sorting, shortest path, etc.

Introduction

- Computer Science is a science of abstraction-creating the right model for a problem and devising the appropriate mechanizable techniques to solve it. - A. Aho and J. Ullman
- Problem space
- Problems with polynomial time solutions - considered as simple problems, easy to describe and understand, computation requirement is relatively less
- Examples - sorting, shortest path, etc.
- Problems that are challenging for human beings but relatively easy for computers - can be described formally, usually takes exponential computation time
- Examples - travelling salesman problem, chess, graph coloring, etc.

Introduction

- Computer Science is a science of abstraction-creating the right model for a problem and devising the appropriate mechanizable techniques to solve it. - A. Aho and J. Ullman
- Problem space
- Problems with polynomial time solutions - considered as simple problems, easy to describe and understand, computation requirement is relatively less
- Examples - sorting, shortest path, etc.
- Problems that are challenging for human beings but relatively easy for computers - can be described formally, usually takes exponential computation time
- Examples - travelling salesman problem, chess, graph coloring, etc.
- Problems that are easy for human beings but relatively difficult for computers - cannot be described formally,
- Examples - object identification, face recognition, etc.

Introduction

- Computer Science is a science of abstraction-creating the right model for a problem and devising the appropriate mechanizable techniques to solve it. - A. Aho and J. Ullman
- Problem space
- Problems with polynomial time solutions - considered as simple problems, easy to describe and understand, computation requirement is relatively less
- Examples - sorting, shortest path, etc.
- Problems that are challenging for human beings but relatively easy for computers - can be described formally, usually takes exponential computation time
- Examples - travelling salesman problem, chess, graph coloring, etc.
- Problems that are easy for human beings but relatively difficult for computers - cannot be described formally,
- Examples - object identification, face recognition, etc.
- Undecidable problems - that cannot be solved on computers
- Examples - infinite loop detection

What is big data?

What is big data?

- How much data is really big?
- Let us look some statistics - https://www.internetlivestats.com/
- Twitter: 600 million tweets per day
- Facebook: 600 terabytes of incoming data per day from 1.6 billion active users
- Google: 3.5 billion search queries each day
- Instagram: 52 million new photos each day
- Apple: 130 billion total app downloads
- Netflix: 125 million hours of video streaming daily
- Email: 205 billion messages per day

Big data

- Extract meaningful / relevant / useful information from such huge data
- Challenges are
- Store - need large storages / databases
- Manage - efficient access (read / write) of the databases
- Analyze - need methodologies to identify important properties

Big data

- Extract meaningful / relevant / useful information from such huge data
- Challenges are
- Store - need large storages / databases
- Manage - efficient access (read / write) of the databases
- Analyze - need methodologies to identify important properties

Issues in analyzing the data

- Consider the task of measuring popular opinion from the posts in a social media platform
- Unrepresentative participation
- Spam and machine generated content
- High redundancy
- Susceptible to temporal bias

Three Vs for big data

[^0]
Achieving solution for big data

- Algorithmics / methodologies for big data
- Big Oh analysis
- Hashing
- Exploiting storage hierarchy
- Streaming data
- Filtering
- Sampling, etc.
- Support from hardware
- Parallelism
- Cloud computing
- MapReduce, etc.

Big Oh analysis

- Random Access Machine
- Each simple operation takes exactly one step
- Each memory operation takes exactly one step
- Examples
- Nearest neighbor $-\mathcal{O}(p \cdot n)$
- Closest pair of points - $\mathcal{O}\left(d \cdot n^{2}\right)$
- Matrix multiplication - $\mathcal{O}\left(n^{3}\right)$
- Adding two numbers $-\mathcal{O}(1)$
- Binary search - $\mathcal{O}(\log n)$
- Merge sort - $\mathcal{O}(n \log n)$

$$
\mathcal{O}(1) \ll \mathcal{O}(\log n) \ll \mathcal{O}(n) \ll \mathcal{O}(n \log n) \ll \mathcal{O}\left(n^{2}\right) \ll \mathcal{O}\left(n^{3}\right)
$$

Hashing

- This technique can reduce the computation complexity
- A hash function h takes an object x and maps to a specific integer $h(x)$ and $x=y \Rightarrow h(x)=h(y)$
- Turning a vector of numbers into a single representative number

$$
h(x)=\sum_{i=0}^{n-1} \alpha^{n-(i+1)} x_{i}(\bmod m)
$$

- Examples
- Dictionary maintenance
- Frequency counting
- Duplicate removal
- Canonization
- Cryptographic hashing

Storage hierarchy

- Big data algorithms are often storage-bound or bandwidth-bound rather compute bound
- Cost of waiting around data to arrive exceeds algorithmically manipulation time
- Need to exploit hierarchy of storage for trade-off between performance and cost
- Types of memory
- Cache memory
- Main memory
- Main memory of another machine
- Disk storage

Processing streaming data

- Data may not be stored forever
- In many cases, data can be seen only once

Processing streaming data

- Data may not be stored forever
- In many cases, data can be seen only once
- Example
- Computation of average of streaming number is easy, store number of element and the running sum

Processing streaming data

- Data may not be stored forever
- In many cases, data can be seen only once
- Example
- Computation of average of streaming number is easy, store number of element and the running sum
- Computation of variance can have issues with $\sigma^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n}$

Processing streaming data

- Data may not be stored forever
- In many cases, data can be seen only once
- Example
- Computation of average of streaming number is easy, store number of element and the running sum
- Computation of variance can have issues with $\sigma^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n}$
- The above issue can be resolved if we use $\sigma^{2}=\left(\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}\right)^{2}\right)-(\bar{x})^{2}$

Filtering and Sampling

- Filtering is the process of selecting relevant subset of the data based on specific task
- Removal of data is not due to error but distracting the main goal
- Suppose, a language model needs to developed for Uttar Pradesh
- Tweets posted in Tamil, Spanish, etc. are not meaningful
- Sampling is the process of selecting appropriate size subset in an arbitrary manner
- Right sizing training data
- Data partitioning
- Exploratory data analysis and visualization

Sampling strategies

- Sampling can introduces bias in the data
- Temporal bias
- Lexicographic bias
- Numerical bias, etc.

Sampling strategies

- Sampling can introduces bias in the data
- Temporal bias
- Lexicographic bias
- Numerical bias, etc.
- Uniform sampling strategy can help in many cases
- Desired number of records can be selected
- Quick and reproducible
- One can construct multiple disjoint samples

Sampling strategies

- Sampling can introduces bias in the data
- Temporal bias
- Lexicographic bias
- Numerical bias, etc.
- Uniform sampling strategy can help in many cases
- Desired number of records can be selected
- Quick and reproducible
- One can construct multiple disjoint samples
- Random sampling approach
- Items are selected with some probability distributions
- Generally non-reproducible
- Multiple random samples may not be disjoint

Parallelism

- Needs support from both software and hardware
- A task can be splitted and subtasks are allotted to different computing units
- Parallel processing
- Distributed processing

Parallelism

- Needs support from both software and hardware
- A task can be splitted and subtasks are allotted to different computing units
- Parallel processing
- Distributed processing
- To understand complexity of the problem, consider a social gathering of following scenarios

Parallelism

- Needs support from both software and hardware
- A task can be splitted and subtasks are allotted to different computing units
- Parallel processing
- Distributed processing
- To understand complexity of the problem, consider a social gathering of following scenarios
- 1 person: A date!

Parallelism

- Needs support from both software and hardware
- A task can be splitted and subtasks are allotted to different computing units
- Parallel processing
- Distributed processing
- To understand complexity of the problem, consider a social gathering of following scenarios
- 1 person: A date!
- >2 persons: Dinner among friends

Parallelism

- Needs support from both software and hardware
- A task can be splitted and subtasks are allotted to different computing units
- Parallel processing
- Distributed processing
- To understand complexity of the problem, consider a social gathering of following scenarios
- 1 person: A date!
- >2 persons: Dinner among friends
- > 10 persons: Group meeting

Parallelism

- Needs support from both software and hardware
- A task can be splitted and subtasks are allotted to different computing units
- Parallel processing
- Distributed processing
- To understand complexity of the problem, consider a social gathering of following scenarios
- 1 person: A date!
- > 100 persons: Wedding dinner
- >2 persons: Dinner among friends
- >10 persons: Group meeting

Parallelism

- Needs support from both software and hardware
- A task can be splitted and subtasks are allotted to different computing units
- Parallel processing
- Distributed processing
- To understand complexity of the problem, consider a social gathering of following scenarios
- 1 person: A date!
- >2 persons: Dinner among friends
- > 10 persons: Group meeting
- > 100 persons: Wedding dinner
- > 1000 persons: Community festival

Parallelism

- Needs support from both software and hardware
- A task can be splitted and subtasks are allotted to different computing units
- Parallel processing
- Distributed processing
- To understand complexity of the problem, consider a social gathering of following scenarios
- 1 person: A date!
- >2 persons: Dinner among friends
- > 10 persons: Group meeting
- > 100 persons: Wedding dinner
- > 1000 persons: Community festival
- > 10000 persons: Political rally

Parallelism

- Needs support from both software and hardware
- A task can be splitted and subtasks are allotted to different computing units
- Parallel processing
- Distributed processing
- To understand complexity of the problem, consider a social gathering of following scenarios
- 1 person: A date!
- >2 persons: Dinner among friends
- >10 persons: Group meeting
- > 100 persons: Wedding dinner
- > 1000 persons: Community festival
- > 10000 persons: Political rally
- Challenges of parallelization and distributed computing
- Coordination
- Communication
- Fault tolerance
- Cloud computing services may be explored

Grid search

- Easiest way to exploit parallelism is to have independent execution on independent data
- Each independent run can a different setting of hyper-parameters
- Many hyper-parameters need to be selected
- Learning rate
- Epoch
- k in clustering
- Batch size
- Depth of network
- Weight decay, etc.

Typical big data problem

- A large scale data-science task will involve the following primarily
- Iterate over large number of items
- Extract something of interest from each item
- Aggregate intermediate results
- Produce final output

MapReduce

- MapReduce paradigm for distributed computing has spread widely through open-source implementations like Hadoop and Spark
- Simple parallel programming model
- Straight forward scaling to hundreds/thousands of machines
- Fault tolerant through redundancy

Challenges in parallelization

- How do we assign tasks to machines?
- What if we have more tasks than machines?
- What if machines need to share partial results?
- How do we aggregate partial results?
- How do we know all the machines have finished tasks?
- What if machines fail?

MapReduce

- Scale out: large shared-memory is a big concern
- Move processing to the data: clusters have limited bandwidth
- Process data sequentially, avoid random access: seeks are expensive, disk throughput is reasonable
- Seamless scalability
- Hadoop has two primary subsystems
- Hadoop / MapReduce - distributed big data processing infrastructure (abstract / paradigm, fault-tolerant, schedule, execution)
- HDFS (Hadoop Distributed File System) — fault-tolerant, high-bandwidth, high availability distributed storage

MapReduce (contd.)

- Programmer needs to specify only two functions - Map and Reduce
- Map - reads in a file and produces key-value pairs
- Reduce - aggregates and processes the key-value pairs having the same key
- MapReduce runtime system
- Processor scheduling
- Data distribution
- Synchronization
- Error and fault tolerance

Example of MapReduce

Hadoop Distributed File System

- Store data on the local disks of nodes in the cluster, because RAM may not be sufficient to hold all the data in memory
- Disk access is typically slow, but disk throughput is reasonable, so linear scans through files are fine
- Replicate everything multiple times for reliability on commodity hardware

Trustworthy systems

- Al systems have achieved good performance level such that it can be deployed in practical field
- Object recognition can help cars to see
- Personalized voice assistant - alexa / siri
- Computer can beat the best alphago player
- Al has a very big role to play in many different domains such as medical, law, etc.
- However AI systems are brittle and unfair in many cases
- Assign small noise to traffic signal can change the interpretation
- A small noise can make a benign tumor to be reported as malignant

Panda

Noise

Gibbon

Properties for trustworthy systems

- Accuracy - How well does the Al system do on new (unseen) data compared to data on which it was trained and tested
- Robustness - How sensitive is the system's outcome to a change in the input
- Fairness - Are the system outcome unbiased?
- Accountability - Who or what is responsible for the system's outcome
- Transparency - Is it clear to external observer how the system's output produced
- Interpretability - Can the system's output be justified with an explanation that a human can understand
- Ethical - Was the data collected in ethical manner? Will the system's outcome be used in an ethical manner?

Summary

- Big data requires knowledge from multiple domains
- Data bases
- Computer architecture
- Machine learning
- Handling of large data
- Scope of big data is huge
- Large data is a huge resource
- Mining or analyzing such data can provide more insights
- Better predictive models can be build
- Many interesting applications can be developed
- Needs to ensure reliability, safety, ethics, etc.

[^0]: image source: internet

