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Support Vector Machine
• An approach for classification
• Developed in 1990s
• Generalization of maximum margin classifier

• Mostly limited to linear boundary
• Support vector classifier — broad range of classes
• SVM — Non-linear class boundary
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Hyperplane
• In n dimensional space a hyperplane is a flat affine subspace of dimension n − 1

• Mathematically it is defined as
• For 2 dimensions — w0 + w1x1 + w2x2 = 0
• For n dimensions — w0 + w1x1 + . . .+ wnxn = 0
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Classification using Hyperplane
• Assume, m training observation in n dimensional space

• Separating hyperplane has the property
• w0 + w1x1 + . . .+ wnxn > 0 if yi = 1
• w0 + w1x1 + . . .+ wnxn < 0 if yi = −1

• Hence, yi(w0 + w1x1 + . . .+ wnxn) > 0

• Classification of test observation x∗ is done based
on the sign of
f(x∗) = w0 + w1x∗1 + . . .+ wnx∗n

• Magnitude of f(x∗)
• Far from 0 — Confident about prediction
• Close to 0 — Less certain
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Maximal margin classifier
• Also known as optimal separating hyperplane
• Separating hyperplane farthest from training ob-

servation
• Compute perpendicular distance from training

point to the hyperplane
• Smallest of these distances represents the mar-

gin
• Target is to find the hyperplane for which the

margin is the largest
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Construction of maximal margin classifier
• Input — m points in n dimension space ie. x1, x2, . . . , xm

• Input — labels y1, y2, . . . , ym for each point xi where yi ∈ {−1, 1}
• Need to solve the following optimization problem

max
w0,w1,...,wn,M

M

subject to
yi(w0 + w1xi1 + wi2 + . . .+ winxin) ≥ M ∀i = 1, . . . ,m

n∑
i=1

w2
i = 1
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Issues
• Maximal margin classifier fails to provide classification in case of overlap
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Issues
• Single observation point can change the hyperplane drastically
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Support Vector Classifier
• Provides greater robustness to individual observations
• Better classification of most of the training observations
• Worthwhile to misclassify a few training observations
• Also known as soft margin classifier
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Support Vector Classifier
• Points can lie within the margin or wrong side of hyperplane
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Optimization with misclassification
• Input — x1, x2, . . . , xm and y1, y2, . . . , ym

• Need to solve the following optimization problem
max

w0,w1,...,wn,M
M

subject to
yi(w0 + w1xi1 + . . .+ winxin) ≥ M(1− ϵi) ∀i = 1, . . . ,m

n∑
i=1

w2
i = 1,

m∑
i=1

ϵi = C

• C is non-negative tuning parameter, ϵi - slack variable
• Classification of test observation remains the same
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Observations
• ϵi = 0 — ith observation is on the correct side of margin
• ϵi > 0 — ith observation is on the wrong side of margin
• ϵi > 1 — ith observation is on the wrong side of hyperplane
• C — budget for the amount that the margin can be violated by m observations

• C = 0 — No violation, ie. maximal margin classifier
• C > 0 — No more than C observation can be on the wrong side of hyperplane
• C is small — Narrow margin, highly fit to data, low bias and high variance
• C is large — Fitting data is less hard, more bias and may have less variance
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Classification with non-linear boundaries
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Classification with non-linear boundaries
• Performance of linear regression can suffer for non-linear data
• Feature space can be enlarged using function of predictors

• For example, instead of fitting with x1, x2, . . . , xn features we could use
x1, x21, x2, x22 . . . , xn, x2n as features

• Optimization problem becomes
max

w0,w11,w12...,wn1,wn2,ϵi,M
M

subject to

yi

w0 +

n∑
j=1

wj1xij +
n∑

j=1

wj2x2ij

 ≥ M(1− ϵi) ∀i = 1, . . . ,m

n∑
i=1

2∑
j=1

w2
ij = 1,

m∑
i=1

ϵi ≤ C, ϵi ≥ 0
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Support Vector Machine
• Extension of support vector classifier that results from enlarging feature space

• It involves inner product of the observations f(x) = w0 +

m∑
i=1

αi⟨x, xi⟩ where αi - one per

training example
• To estimate αi and w0, we need m(m − 1)/2 inner products, ⟨xi, xi′⟩

• It turns out that αi ̸= 0 for support vectors
f(x) = w0 +

∑
i∈S

αi⟨x, xi⟩ where S - set of support vectors
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Support Vector Machine
• Inner product is replaced with kernel, K or K(xi, xi′)

• Kernel quantifies similarity between observations K(xi, xi′) =
∑n

j=1 xijxi′j
• Above one is Linear kernel ie. Pearson correlation

• Polynomial kernel K(xi, xi′) =
(
1 +

∑n
j=1 xijxi′j

)d
where d is positive integer > 1

• Support vector classifier with non-linear kernel is known as support vector machine and the
function will look

f(x) = w0 +
∑
i∈S

αiK(x, xi)

• Radial kernel: K(xi, xi′) = exp
(
−γ

∑n
i=1(xij − xi′j)2

)
where γ > 0
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