Introduction to Data Science

Decision Trees

Arijit Mondal

Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

Learning

- An agent is learning if it improves its performance on future tasks after making observation about the world
- Why would an agent learn?
 - Designers cannot anticipate all possible situations
 - Designers cannot anticipate all changes over time
 - Sometime, people have no idea how to program a solution
- Inductive learning Learning a general function or rule from specific input-output pairs
- Analytical / deductive learning Going from a known general rule to a new rule that is logically entailed

Paradigms of learning

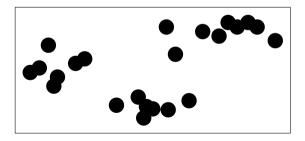
- These are based on the types of feedback
- Supervised learning
 - Both inputs and outputs are given
 - The outputs are typically provided by a friendly teacher
- Reinforcement learning
 - The agent receives some evaluation of its actions (such as a fine for stealing bananas), but is not told the correct action (such as how to buy bananas)
- Unsupervised learning
 - The agent can learn relationships among its percepts, and the trend with time

Supervised learning

- A set of labeled examples $\langle x_1, x_2, \dots, x_n, y \rangle$
 - x_i are input variables
 - y output variable
- Need to find a function $f: X_1 \times X_2 \times \ldots X_n \to Y$
- Goal is to minimize error/loss function
 - Like to minimize over all dataset
 - We have limited dataset

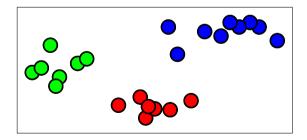
Unsupervised learning

- Learns useful properties of the structure of data set
- Unlabeled data
 - Tries to learn entire probability distribution that generated the dataset
 - Examples
 - Clustering, dimensionality reduction



Unsupervised learning

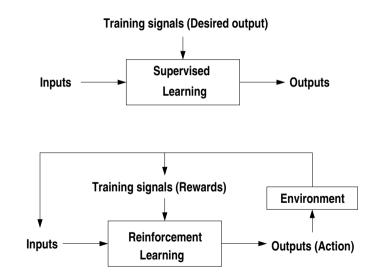
- Learns useful properties of the structure of data set
- Unlabeled data
 - Tries to learn entire probability distribution that generated the dataset
 - Examples
 - Clustering, dimensionality reduction



Reinforcement learning

- Set of actions that the learner will make in order to maximize its profit
- Action may not only affect the next situation but also subsequent situation
 - Trial and error search
 - Delayed reward
- A learning agent is interacting with environment to achieve a goal
- Agent needs to have idea of state so that it can take right action
- Three key aspects observation, action, goal

Reinforcement vs supervised learning



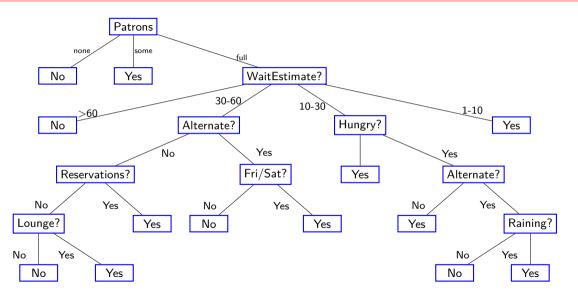
Decision trees

- A decision tree takes as input an object or situation described by a set of properties, and outputs a yes/no "decision"
- A list of variables which potentially affect the decision on whether to wait for a table at a restaurant.
 - Alternate: whether there is a suitable alternative restaurant
 - Lounge: whether the restaurant has a lounge for waiting customers
 - Fri/Sat: true on Fridays and Saturdays
 - Hungry: whether we are hungry
 - Patrons: how many people are in it (None, Some, Full)
 - Price: the restaurant's rating (*, **, ***)
 - Raining: whether it is raining outside
 - Reservation: whether we made a reservation
 - Type: the kind of restaurant (Indian, Chinese, Thai, Fastfood)
 - WaitEstimate: 0-10 mins, 10-30, 30-60, >60.

Observations

Example	Input Attributes										Goal
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
x ₁	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	$_1 = Yes$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	$_{2} = No$
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0-10	$_{3} = Yes$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$_4 = Yes$
\mathbf{x}_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	60	$_{5} = No$
\mathbf{x}_{6}	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	$_{6} = Yes$
\mathbf{x}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	$_{7} = No$
x ₈	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	$_{8} = Yes$
\mathbf{x}_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	60	$_{9} = No$
x ₁₀	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	$_{10} = No$
x ₁₁	No	No	No	No	None	\$	No	No	Thai	0-10	$_{11} = No$
x ₁₂	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60	$_{12} = Yes$

Sample decision tree

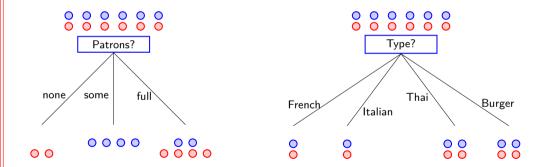


Decision Tree Learning

- Aim: find a small tree consistent with the training examples
- Idea: (recursively) choose "most significant" attribute as root of (sub) tree
- 1. pick an attribute to split at a non-terminal node
- 2. split examples into groups based on attribute value
- 3. for each group:
 - A. if no examples return majority from parent
 - B. else if all examples in same class return class
 - C. else loop to step 1

Choosing an attribute

Idea: A good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"



Attribute selection

- Information content (Entropy): $I(P(v_1), \ldots, P(v_n)) = \sum_{j=1} -P(v_j) \log_2 P(v_j)$
- For a training set containing p positive examples and n negative examples:

$$\left(\frac{p}{p+n},\frac{n}{p+n}\right) = -\frac{p}{p+n}\log_2\frac{p}{p+n} - \frac{n}{p+n}\log_2\frac{n}{p+n}$$

• A chosen attribute A divides the training set E into subsets E_1, \ldots, E_v according to their values for A_i where A has v distinct values

$$\mathsf{remainder}(A) = \sum_{i=1}^{v} \frac{p_i + n_i}{p + n} I\left(\frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i}\right)$$

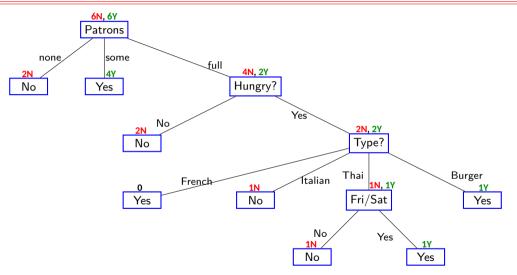
- Information gain (IG) or reduction in entropy $IG(A) = I\left(\frac{p}{p+n}, \frac{n}{p+n}\right) \text{remainder}(A)$
- Choose the attribute with the largest IG

Information gain: example

• For the training set p = n = 6, $l(\frac{6}{12}, \frac{6}{12}) = 1$ bit $IG(Patrons) = 1 - [\frac{2}{12}l(0, 1) + \frac{4}{12}l(1, 0) + \frac{6}{12}l(\frac{2}{6}, \frac{4}{6})] = 0.0541$ $IG(Type) = 1 - [\frac{2}{12}l(\frac{1}{2}, \frac{1}{2}) + \frac{2}{12}l(\frac{1}{2}, \frac{1}{2}) + \frac{4}{12}l(\frac{2}{4}, \frac{2}{4}) + \frac{4}{12}l(\frac{2}{4}, \frac{2}{4})] = 0$

• Patrons will be selected

Final decision tree



A good tree

- Not too small: need to handle important but possibly subtle distinctions in data
- Not too big:
 - Computational efficiency (avoid redundant, spurious attributes)
 - Avoid over-fitting training examples