Introduction to Data Science

Distance

Arijit Mondal
Dept. of Computer Science \& Engineering
Indian Institute of Technology Patna
arijit@iitp.ac.in

Measuring distance

- How to best measure the distance between points p and q in d-dimension?

Measuring distance

- How to best measure the distance between points p and q in d-dimension?
- The most obvious choice is Euclidean distance $d(p, q)=\sqrt{\sum_{i=1}^{d}\left(p_{i}-q_{i}\right)^{2}} w$

Measuring distance

- How to best measure the distance between points p and q in d-dimension?
- The most obvious choice is Euclidean distance $d(p, q)=\sqrt{\sum_{i=1}^{d}\left(p_{i}-q_{i}\right)^{2}}$
- Distance metric - distance measure needs to satisfy the following criteria
- Positivity, $d(x, y)>0^{N}, \rightarrow$ if and only if
- Identity, $d(x, y)=0 \Longleftrightarrow x=y$
- Symmetric, $d(x, y)=d(y, x) \forall x, y$
- Triangle inequality $\rightarrow \quad|a|+|b| y|C|$

Other type of metrics

- Not all measures are distance metric
- Example
- Correlation coefficient $\rightarrow(-1,1) \underline{x, y}$
- Cosine similarity \rightarrow

Travel time in a directed network

- Cheapest airfare

Distance metric

- Generic distance metric is defined as $\left.d_{\mathbb{k}}(p, q)=\sqrt[k]{k} \sum_{i=1}^{d}\left|p_{i}-q_{i}\right|{ }^{k}\right) \infty \quad d_{2}$
- Parameter (k) provides a way to trade off between the longest and the total dimensional differences
- k can vary between 1 and ∞

Distance metric

- Generic distance metric is defined as $d_{k}(p, q)=\sqrt[k]{\sum_{i=1}^{d}\left|p_{i}-q_{i}\right|^{k} \leftarrow \underline{L_{k}}}$
- Parameter k provides a way to trade off between the longest and the total dimensional differences
- k can vary between 1 and ∞
- \underline{L}_{1} - Manhattan distance \|

$$
\begin{gathered}
\left(x_{1}, y_{1}\right) \\
L_{1}=\left|\left(x_{2}-x_{1}\right)\right|+\left[\left(y_{2}-y_{1}\right)\right\}
\end{gathered}
$$

Distance metric

- Generic distance metric is defined as $d_{k}(p, q)=\sqrt[k]{\sum_{i=1}^{d}\left|p_{i}-q_{i}\right|^{k} w} \quad \underline{\square}$
- Parameter k provides a way to trade off between the longest and the total dimensional differences
- k can vary between 1 and ∞
- L_{1} - Manhattan distance
- L_{2} - Euclidean distance

$\underline{L_{\infty}}=\max _{i}\left\{p_{i}\right\} W$

Distance metric

- Generic distance metric is defined as $d_{k}(p, q)=\sqrt[k]{\sum_{i=1}^{d}\left|p_{i}-q_{i}\right|^{k}}$
- Parameter k provides a way to trade off between the longest and the total dimensional differences
- k can vary between 1 and ∞
- L_{1} - Manhattan distance
- L_{2} - Euclidean distance
- L_{∞} - Maximum component

Shape of equal distance

- (LT. $\left.L_{2}, L_{5}\right), L_{\infty}$
$x_{1}^{2}+x_{2}^{2}=1$
$\left|x_{1}\right|+\left|x_{2}\right|=1$

L_{2}

$\sqrt[W]{\sum_{i=1}^{d} c_{i}\left(p_{i}-q_{i}\right)^{k}} \rightarrow z$

$\left\llcorner_{\infty}\right.$
$\max \left(|x|,\left|x_{2}\right|\right)$

Point vs Vector

- Vectors are usually a point in unit sphere, it provides only direction
- Norms
- Cosine similarity $-\cos (p, q)=\frac{p \cdot q)}{|p| \cdot|q|} \longleftarrow$
- Cosine distance $-(1-|\cos (p, q)|)$ (triangle jnequality does not hold)
- Angular distance $-\overline{d(p, q)=1-\frac{\cos ^{-1}()(\cos (p, q))}{\pi}} \frac{1}{\pi}$

Distance between probability distribution

- This is based on information theoretic notion of entropy
- It measures uncertainty for the value of a sample drawn from the distribution
- Entropy - $H(P)=\sum_{i} p_{i} \log \left(1 / p_{i}\right)^{w}$

Distance between probability distribution

- This is based on information theoretic notion of entropy
- It measures uncertainty for the value of a sample drawn from the distribution
- Entropy - $H(P)=\sum_{i} p_{i} \log \left(1 / p_{i}\right)$
- Standard distance measure for probability distributions is KL-divergence (Kullbach-Leibler) $K L(P \| Q)=\sum_{i} p_{i} \log _{2}\left(p_{i} / q_{i}\right) \omega \quad q_{i}=p_{i}$
- KL-divergence is not symmetric

Distance between probability distribution

- This is based on information theoretic notion of entropy
- It measures uncertainty for the value of a sample drawn from the distribution
- Entropy - $H(P)=\sum_{i} p_{i} \log \left(1 / p_{i}\right)$
- Standard distance measure for probability distributions is KL-divergence (Kullbach-Leibler) $K L(P \| Q)=\sum_{i} p_{i} \log _{2}\left(p_{i} / q_{i}\right)$
- KL-divergence is not symmetric
- Jensen Shannon divergence metric - JS(P,Q)=$\frac{1}{2} K L(P \| M)+\frac{1}{2} K L(Q \| M)$ where $m_{i}=$ $\left(p_{i}+q_{i}\right) / 2$ \qquad
- $\sqrt{J S(P, Q)}$ is a distance metric

Nearest neighbor

Nearest neighbor

- Simple, interpretable, non-linear
- Example - categorization of books, movies, cricketers, music, etc.

(k)nearest neighbor

Finding nearest neighbor

