Introduction to Data Science

Arijit Mondal

Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

Measuring distance

• How to best measure the distance between points p and q in d-dimension?

Measuring distance

- How to best measure the distance between points *p* and *q* in *d*-dimension?
- The most obvious choice is Euclidean distance d(p,q) =

$$=\sqrt{\sum_{i=1}^{d}(\underline{p_{i}-q_{i}})^{2}}$$

Measuring distance

- How to best measure the distance between points p and q in d-dimension?
- The most obvious choice is Euclidean distance $d(p,q) = \sqrt{\sum (p_i q_i)^2}$
- Distance metric distance measure needs to satisfy the following criteria
- Positivity, d(x, y) > 0 if and only if Identity, $d(x, y) = 0 \iff x = y$

 - Symmetric, $d(x, y) = d(y, x) \forall x, y$
 - Triangle inequality $\rightarrow [a[+]b])/[c]$

Other type of metrics

- Not all measures are distance metric
- Example
 - Correlation coefficient \rightarrow (-1, 1) $\gamma_{,\gamma}$
 - Cosine similarity →
- - Cheapest airfare

 $cos(p,q) = \frac{p \cdot q}{|p| |q|} -1, 1$

 $\sim 0 \longrightarrow 0$ $d(x,y) \neq d(y,x)$

- Generic distance metric is defined as $d_{\vec{k}}(p,q) = \bigvee_{i=1}^{k} \sum_{j=1}^{n} |p_i q_j|^{\vec{k}} \ll$
 - Parameter (k) provides a way to trade off between the longest and the total dimensional differences
 - $k \mbox{ can vary between } 1 \mbox{ and } \infty$

- Generic distance metric is defined as $d_k(p,q) = \sqrt[k]{\sum_{i=1}^{n} |p_i q_i|^k} \leftarrow \underline{l_k} \qquad L^k$
 - Parameter k provides a way to trade off between the longest and the total dimensional differences
 - $k ext{ can vary between } 1 ext{ and } \infty$
 - L₁ Manhattan distance

- Generic distance metric is defined as $d_k(p,q) = \sqrt[k]{\sum_{i=1}^k |p_i q_i|^k}$ $\mathcal{Y} = Origin$
 - Parameter k provides a way to trade off between the longest and the total dimensional differences
 - $k ext{ can vary between } 1 ext{ and } \infty$
- L₁ Manhattan distance
- L_2 Euclidean distance | L_{∞} - $\max_i \{ i \} \ll$

þ × þi^k ×

- Generic distance metric is defined as $d_k(p,q) = \sqrt[k]{\sum_{i=1}^k |p_i q_i|^k}$
 - Parameter k provides a way to trade off between the longest and the total dimensional differences
 - $k ext{ can vary between } 1 ext{ and } \infty$
- L₁ Manhattan distance
- L₂ Euclidean distance
- L_{∞} Maximum component

Shape of equal distance

CS244

Point vs Vector

- Vectors are usually a point in unit sphere, it provides only direction
- Norms
- Cosine similarity $cos(p,q) = \frac{\overline{p} \cdot q}{|p| \cdot |q|} \checkmark$
- Cosine distance (1 |cos(p, q)|) (triangle inequality does not hold) \checkmark
- Angular distance $d(p,q) = 1 \frac{\cos^{-1}(\cos(p,q))}{\pi}$

Distance between probability distribution

- This is based on information theoretic notion of entropy
 - It measures uncertainty for the value of a sample drawn from the distribution
- Entropy $H(P) = \sum_{i} p_i \log(1/p_i)^{\infty}$

Distance between probability distribution

- This is based on information theoretic notion of entropy
 - It measures uncertainty for the value of a sample drawn from the distribution
- Entropy $H(P) = \sum_{i} p_i \log(1/p_i) \checkmark$
- Standard distance measure for probability distributions is KL-divergence (Kullbach-Leibler) KL(P||Q) = ∑_i p_i log₂(p_i/q_i) ~ V_L = yⁱ
 KL-divergence is not symmetric

Distance between probability distribution

- This is based on information theoretic notion of entropy
 - It measures uncertainty for the value of a sample drawn from the distribution
- Entropy $H(P) = \sum_{i} p_i \log(1/p_i)$
- Standard distance measure for probability distributions is <u>KL-divergence</u> (Kullbach-Leibler) $KL(P||Q) = \sum_{i} p_i \log_2(p_i/q_i)$
- KL-divergence is not symmetric
- Jensen Shannon divergence metric $JS(P, Q) = \frac{1}{2}KL(P||M) + \frac{1}{2}KL(Q||M)$ where $m_i = \frac{p_i + q_i}{2}$
- $\sqrt{JS(P,Q)}$ is a distance metric \checkmark

Nearest neighbor

Nearest neighbor

- Simple, interpretable, non-linear
- Example categorization of books, movies, cricketers, music, etc.

k-nearest<u>neighbor</u>

Finding nearest neighbor

