Introduction to Data Science

Distance

Arijit Mondal
Dept. of Computer Science \& Engineering
Indian Institute of Technology Patna
arijit@iitp.ac.in

Measuring distance

- How to best measure the distance between points p and q in d-dimension?

Measuring distance

- How to best measure the distance between points p and q in d-dimension?
- The most obvious choice is Euclidean distance $d(p, q)=\sqrt{\sum_{i=1}^{d}\left(p_{i}-q_{i}\right)^{2}}$

Measuring distance

- How to best measure the distance between points p and q in d-dimension?
- The most obvious choice is Euclidean distance $d(p, q)=\sqrt{\sum_{i=1}^{d}\left(p_{i}-q_{i}\right)^{2}}$
- Distance metric - distance measure needs to satisfy the following criteria
- Positivity, $d(x, y)>0$
- Identity, $d(x, y)=0 \Longleftrightarrow x=y$
- Symmetric, $d(x, y)=d(y, x) \forall x, y$
- Triangle inequality

Other type of metrics

- Not all measures are distance metric
- Example
- Correlation coefficient
- Cosine similarity
- Travel time in a directed network
- Cheapest airfare

Distance metric

- Generic distance metric is defined as $d_{k}(p, q)=\sqrt[k]{\sum_{i=1}^{d}\left|p_{i}-q_{i}\right|^{k}}$
- Parameter k provides a way to trade off between the longest and the total dimensional differences
- k can vary between 1 and ∞

Distance metric

- Generic distance metric is defined as $d_{k}(p, q)=\sqrt[k]{\sum_{i=1}^{d}\left|p_{i}-q_{i}\right|^{k}}$
- Parameter k provides a way to trade off between the longest and the total dimensional differences
- k can vary between 1 and ∞
- L_{1} - Manhattan distance

Distance metric

- Generic distance metric is defined as $d_{k}(p, q)=\sqrt[k]{\sum_{i=1}^{d}\left|p_{i}-q_{i}\right|^{k}}$
- Parameter k provides a way to trade off between the longest and the total dimensional differences
- k can vary between 1 and ∞
- L_{1} - Manhattan distance
- L_{2} - Euclidean distance

Distance metric

- Generic distance metric is defined as $d_{k}(p, q)=\sqrt[k]{\sum_{i=1}^{d}\left|p_{i}-q_{i}\right|^{k}}$
- Parameter k provides a way to trade off between the longest and the total dimensional differences
- k can vary between 1 and ∞
- L_{1} - Manhattan distance
- L_{2} - Euclidean distance
- L_{∞} - Maximum component
- $L_{1}, L_{2}, L_{5}, L_{\infty}$

Point vs Vector

- Vectors are usually a point in unit sphere, it provides only direction
- Norms
- Cosine similarity $-\cos (p, q)=\frac{p \cdot q}{|p| \cdot|q|}$
- Cosine distance - $(1-|\cos (p, q)|)$ (triangle inequality does not hold)
- Angular distance $-d(p, q)=1-\frac{\cos ^{-1}(\cos (p, q))}{\pi}$

Distance between probability distribution

- This is based on information theoretic notion of entropy
- It measures uncertainty for the value of a sample drawn from the distribution
- Entropy - $H(P)=\sum_{i} p_{i} \log \left(1 / p_{i}\right)$

Distance between probability distribution

- This is based on information theoretic notion of entropy
- It measures uncertainty for the value of a sample drawn from the distribution
- Entropy - $H(P)=\sum_{i} p_{i} \log \left(1 / p_{i}\right)$
- Standard distance measure for probability distributions is KL-divergence (Kullbach-Leibler) $K L(P \| Q)=\sum_{i} p_{i} \log _{2}\left(p_{i} / q_{i}\right)$
- KL-divergence is not symmetric

Distance between probability distribution

- This is based on information theoretic notion of entropy
- It measures uncertainty for the value of a sample drawn from the distribution
- Entropy - $H(P)=\sum_{i} p_{i} \log \left(1 / p_{i}\right)$
- Standard distance measure for probability distributions is KL-divergence (Kullbach-Leibler) $K L(P \| Q)=\sum_{i} p_{i} \log _{2}\left(p_{i} / q_{i}\right)$
- KL-divergence is not symmetric
- Jensen Shannon divergence metric - JS(P,Q) $=\frac{1}{2} K L(P \| M)+\frac{1}{2} K L(Q \| M)$ where $m_{i}=$ $\left(p_{i}+q_{i}\right) / 2$
- $\sqrt{J S(P, Q)}$ is a distance metric

Nearest neighbor

Nearest neighbor

- Simple, interpretable, non-linear
- Example - categorization of books, movies, cricketers, music, etc.

k-nearest neighbor

Finding nearest neighbor

