Introduction to Data Science

Linear Algebra

Arijit Mondal

Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

• Matrix is every where!!

col

now

- Matrix is every where!!
- Data A data can be represented as $n \times m$ matrix,
 - A row represents an example
 - Each column represent distinct feature / dimension

- Matrix is every where!!
- Data A data can be represented as $n \times m$ matrix,
 - A row represents an example
 - Each column represent distinct feature / dimension
- Geometric point set A $n \times m$ matrix can denote n points in m dimension space)

· (n, y,7

- Matrix is every where!!
- Data A data can be represented as $n \times m$ matrix,
 - A row represents an example
 - Each column represent distinct feature / dimension
- Geometric point set A $n \times m$ matrix can denote n points in m dimension space
- Systems of equations Equation like $y = c_0 + c_1 x_1 + c_{m-1} x_{m-1}$ can be modeled as $n \times m$ matrix

- Matrix is every where!!
- Data A data can be represented as $n \times m$ matrix,
 - A row represents an example
 - Each column represent distinct feature / dimension
- Geometric point set A $n \times m$ matrix can denote n points in m dimension space
- Systems of equations Equation like $y = c_0 + c_1x_1 + c_{m-1}x_{m-1}$ can be modeled as $n \times m$ matrix
- Graphs & Networks City network, chemical structure, etc.

- Matrix is every where!!
- Data A data can be represented as $n \times m$ matrix,
 - A row represents an example
 - Each column represent distinct feature / dimension
- Geometric point set A $n \times m$ matrix can denote n points in m dimension space
- Systems of equations Equation like $y = c_0 + c_1 x_1 + c_{m-1} x_{m-1}$ can be modeled as $n \times m$ matrix
- Graphs & Networks City network, chemical structure, etc.
- Rearrangements Permutation of given set of elements

Geometry & Vectors

• Vectors — A $1 \times d$ dimension matrix. In geometry sense a ray from the origin through the given point in d dimension

A

• Normalization — In many scenarios the vectors are normalized to have unit norm

Brond

- Dot Product
 - Useful to reduce vector to scalar
 - Can be used to measure angle

Matrix operations

- Addition: C = A + B, $C_{ij} = A_{ij} + B_{ij}$
- Scalar multiplication: A' = cA, $A'_{ij} = c \cdot A_{ij}$
- Linear combination: $\alpha A + (1 \alpha) B$

Matrix Transpose

- Let M be a matrix and M^T be the transpose of M, then $M_{ij} = M_{ij}$
- $(A^T)^T = A$ • Let $C = A + A^T$ hold, then $C_{ij} = A_{ij} + A_{ji} = C_j$

Matrix Transpose

- Let M be a matrix and M^T be the transpose of M, then $M_{ij} = M'_{ij}$
- $(\mathsf{A}^T)^T = \mathsf{A}$
- Let $C = A + A^T$ hold, then $C_{ij} = A_{ij} + A_{ji} = C_{ji}$

Matrix Transpose

- Let M be a matrix and M^T be the transpose of M, then $M_{ij} = M'_{ij}$
- $(\mathsf{A}^T)^T = \mathsf{A}$
- Let $C = A + A^T$ hold, then $C_{ii} = A_{ii} + A_{ji} = C_{ji}$

5

Matrix multiplication

- It is an aggregated version of the vector dot or inner product
 - $\mathbf{x} \cdot \mathbf{y} = \sum_{i} x_i y_i \not$

(A(BC))D

INN

nxnxn ~

nxn

Ixnxna

Ixn

• Matrix product XY^T produces 1×1 matrix which contains dot product $X \cdot Y$

|xnxn

1 Xm

nxnx1

IXNXI

 $\eta_{+}^{2}\eta_{+}^{2}\eta_{-}$

- C = AB, $C_{ij} = \sum_{k} A_{ik} B_{kj}$ w
 - It does not commute, usually $AB \neq BA$
 - It is associative, A(BC) = (AB)C

m XI

• Consider the following matrixes: $A_{1 \times n}, B_{n \times n}, C_{n \times n}, D_{n \times 1}$. Which of the following is better — (AB)(CD) or (A(BC))D?

m3+n2+n)~

XNX

Matrix Chain Multiplication

> $\chi = Jxm$ y = IxmyT = mxI

XXT= Solar

S244

Covariance matrix

- Multiplication by transpose matrix is common ie. $\underline{A \cdot A^{T}}$
- Both $(A \cdot A^T)$ and $(A^T \cdot A)$ are compatible for multiplications
- Let $A_{n \times d}$ be a feature matrix, each row represents an item and each column denotes a feature
- $C = AA^T$ is a $n \times n$ matrix dot products
 - C_{ij} is a measure how similar item *i* is to item *j* (in syncness)
- $D = A^T A$ is a $d \times d$ dot products in syncness among the features
 - D_{ij} represents the similarity between feature *i* and feature *j*
- Covariance formula: $Cov(X, Y) = \sum (X_i \bar{X})(Y_i \bar{Y})$

Covariance matrix (contd)

• $A, \underline{A \cdot A}^T, \underline{A}^T \cdot A$

Matrix multiplication & Paths

A⁶, A

- Square matrix can be multiplied without transposition
- A matrix can represent the connectivity of nodes in a given network
- Let $A_{n \times n}$ can represent adjacency matrix

Matrix multiplication & Permutations

- Multiplication is often used to rearrange the oder of the elements in a particular matrix
- Multiplication with identity matrix (1) does not arrange anything new
- I contains exactly one non-zero element in each row and each column
- Matrix with this property is known as permutation matrix
- For example, multiplication with $P_{(2431)}$

$$P_{(2431)} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \quad M = \begin{bmatrix} 11 & 12 & 13 & 14 \\ 21 & 22 & 23 & 24 \\ 31 & 32 & 33 & 34 \\ 41 & 42 & 43 & 44 \end{bmatrix}, \quad PM = \begin{bmatrix} 31 & 32 & 33 & 34 \\ 11 & 12 & 13 & 14 \\ 41 & 42 & 43 & 44 \\ 21 & 22 & 23 & 24 \end{bmatrix}$$

11

Permutations Example

11 image source: Data Science Design Manual

Rotating points in space

• Multiplying with the right matrix can rotate a set of points about the origin by angle θ

$$R_{\theta} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \checkmark$$
$$\bullet \begin{bmatrix} x' \\ y' \end{bmatrix} = R_{\theta} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x\cos(\theta) & -y\sin(\theta) \\ x\sin(\theta) & y\cos(\theta) \end{bmatrix} \checkmark$$

• Identity plays a big role in algebraic structure

Addition -> 0 Multiplication - 1

- Identity plays a big role in algebraic structure
 - $\bullet \ 0$ is the identity element for addition operation

- Identity plays a big role in algebraic structure
 - $\bullet \ 0$ is the identity element for addition operation
 - 1 is the identity element for multiplication operation

- Identity plays a big role in algebraic structure
 - 0 is the identity element for addition operation
 - $\bullet \ 1$ is the identity element for multiplication operation
- Inverse operation is about taking an element x down to its identity
 - For addition operation, inverse of x is -x

- Identity plays a big role in algebraic structure
 - $\bullet \ 0$ is the identity element for addition operation
 - $\bullet \ 1$ is the identity element for multiplication operation
- Inverse operation is about taking an element x down to its identity
 - For addition operation, inverse of x is -x
 - For multiplication operation, inverse of x is $\frac{1}{x}$

- Identity plays a big role in algebraic structure
 - 0 is the identity element for addition operation
 - 1 is the identity element for multiplication operation
- Inverse operation is about taking an element x down to its identity
 - For addition operation, inverse of x is -x
 - For multiplication operation, inverse of x is $\frac{1}{x}$
- For matrix, we say A^{-1} is multiplicative inverse if $A \stackrel{\frown}{(A^{-1})} = 1$ for 2×2 matrix, $A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad bc} \begin{vmatrix} d & -b \\ c & a \end{vmatrix}$

• for
$$2 \times 2$$
 matrix, $A^{-1} = \begin{bmatrix} a \\ c \end{bmatrix}$

S244

- Identity plays a big role in algebraic structure
 - $\bullet \ 0$ is the identity element for addition operation
 - $\bullet \ 1$ is the identity element for multiplication operation
- Inverse operation is about taking an element x down to its identity
 - For addition operation, inverse of x is -x
 - For multiplication operation, inverse of x is $\frac{1}{x}$
- For matrix, we say A^{-1} is multiplicative inverse if $A \cdot A^{-1} = I$
- for 2×2 matrix, $A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad bc} \begin{vmatrix} d & -b \\ c & a \end{vmatrix}$
- Matrix that is not invertible is known as singular matrix
- Gaussian elimination can be used to find the inverse

Inversion Example

Linear Systems, Matrix Rank

- Linear systems
 - Consider the following linear equation: $y = c_0 + c_1 x_1 + \cdots + c_{m-1} x_{m-1}$
 - Thus the coefficient of *n* such linear equations can be represented as a matrix *C* of size $n \times m$
 - $CX = Y \Rightarrow X = C^{-1}Y$
 - What will happen if inverse does not exist?
 - Matrix Rank
 - A rank of a matrix measures the number of linearly independent rows
 - Rank can be determined using Gaussian elimination

Factoring matrices

- Factoring matrix \underline{A} into matrices in \underline{B} and \underline{C} represents particular aspect of division
 - Non-singular matrix has an inverse $I = M \cdot M^{-1}$
- Matrix factorization is an important abstraction in data science, leading to feature representation in a compact way
- Suppose matrix A can be factored as $A \approx BC$ where the size of A is $n \times m$, $B n \times k$, C - $k \times m$ where $k < \min(n, m)$

Eigenvalues & Eigenvectors

• Multiplying a vector U by a matrix A can have the same effect as multiplying it by scalar λ

$$\begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \bigoplus_{i=1}^{\infty} \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix} = -1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

- Together, the eigenvector and eigenvalue must encode a lot of information about the matrix Α · Jur (dij = dij
- Properties

cs244

18

- Each eigenvalue has an associated eigenvector
- There are in general *n* eigenvector-eigenvalue pairs for every full rank $n \times n$ matrix
- Every pair of eigenvectors of symmetric matrix are mutually orthogonal
 - Two vectors are orthogonal if the dot product is 0
- The eigenvectors can play the role of dimensions or bases in some *n* dimensional space

 $\frac{1}{2} \qquad \begin{array}{c} A x = \chi' = \chi \chi \\ A m. \end{array}$

(A-71)=0 "

CS244

CS244

$$A = \begin{bmatrix} 1.25 & 0.75 \\ 0.75 & 1.25 \end{bmatrix}$$
$$\mathbf{v}_{1} = \begin{bmatrix} 0.707 \\ 0.707 \end{bmatrix}, \lambda_{1} = 2.0$$
$$\mathbf{v}_{2} = \begin{bmatrix} -0.707 \\ 0.707 \end{bmatrix}, \lambda_{2} = 0.5$$

Given
$$\|\mathbf{x}\| = 1$$
, find $\mathbf{A}\mathbf{x}$

$$A = \begin{bmatrix} 1.25 & 0.75 \\ 0.75 & 1.25 \end{bmatrix}$$
$$v_1 = \begin{bmatrix} 0.707 \\ 0.707 \end{bmatrix}, \lambda_1 = 2.0$$
$$v_2 = \begin{bmatrix} -0.707 \\ 0.707 \end{bmatrix}, \lambda_2 = 0.5$$

$$A = \begin{bmatrix} 1.25 & 0.75 \\ 0.75 & 1.25 \end{bmatrix}$$
$$v_1 = \begin{bmatrix} 0.707 \\ 0.707 \end{bmatrix}, \lambda_1 = 2.0$$
$$v_2 = \begin{bmatrix} -0.707 \\ 0.707 \end{bmatrix}, \lambda_2 = 0.5$$

$$A = \begin{bmatrix} 1.25 & 0.75 \\ 0.75 & 1.25 \end{bmatrix}$$
$$v_1 = \begin{bmatrix} 0.707 \\ 0.707 \end{bmatrix}, \lambda_1 = 2.0$$
$$v_2 = \begin{bmatrix} -0.707 \\ 0.707 \end{bmatrix}, \lambda_2 = 0.5$$

$$A = \begin{bmatrix} 1.25 & 0.75 \\ 0.75 & 1.25 \end{bmatrix}$$
$$v_1 = \begin{bmatrix} 0.707 \\ 0.707 \end{bmatrix}, \lambda_1 = 2.0$$
$$v_2 = \begin{bmatrix} -0.707 \\ 0.707 \end{bmatrix}, \lambda_2 = 0.5$$

$$A = \begin{bmatrix} 1.25 & 0.75 \\ 0.75 & 1.25 \end{bmatrix}$$
$$v_1 = \begin{bmatrix} 0.707 \\ 0.707 \end{bmatrix}, \lambda_1 = 2.0$$
$$v_2 = \begin{bmatrix} -0.707 \\ 0.707 \end{bmatrix}, \lambda_2 = 0.5$$

$$A = \begin{bmatrix} 1.25 & 0.75 \\ 0.75 & 1.25 \end{bmatrix}$$
$$v_1 = \begin{bmatrix} 0.707 \\ 0.707 \end{bmatrix}, \lambda_1 = 2.0$$
$$v_2 = \begin{bmatrix} -0.707 \\ 0.707 \end{bmatrix}, \lambda_2 = 0.5$$

$$A = \begin{bmatrix} 1.25 & 0.75 \\ 0.75 & 1.25 \end{bmatrix}$$
$$v_1 = \begin{bmatrix} 0.707 \\ 0.707 \end{bmatrix}, \lambda_1 = 2.0$$
$$v_2 = \begin{bmatrix} -0.707 \\ 0.707 \end{bmatrix}, \lambda_2 = 0.5$$

$$A = \begin{bmatrix} 1.25 & 0.75 \\ 0.75 & 1.25 \end{bmatrix}$$
$$v_1 = \begin{bmatrix} 0.707 \\ 0.707 \end{bmatrix}, \lambda_1 = 2.0$$
$$v_2 = \begin{bmatrix} -0.707 \\ 0.707 \end{bmatrix}, \lambda_2 = 0.5$$

$$A = \begin{bmatrix} 1.25 & 0.75 \\ 0.75 & 1.25 \end{bmatrix}$$
$$v_1 = \begin{bmatrix} 0.707 \\ 0.707 \end{bmatrix}, \lambda_1 = 2.0$$
$$v_2 = \begin{bmatrix} -0.707 \\ 0.707 \end{bmatrix}, \lambda_2 = 0.5$$

$$A = \begin{bmatrix} 1.25 & 0.75 \\ 0.75 & 1.25 \end{bmatrix}$$
$$v_1 = \begin{bmatrix} 0.707 \\ 0.707 \end{bmatrix}, \lambda_1 = 2.0$$
$$v_2 = \begin{bmatrix} -0.707 \\ 0.707 \end{bmatrix}, \lambda_2 = 0.5$$

$$A = \begin{bmatrix} 1.25 & 0.75 \\ 0.75 & 1.25 \end{bmatrix}$$
$$v_1 = \begin{bmatrix} 0.707 \\ 0.707 \end{bmatrix}, \lambda_1 = 2.0$$
$$v_2 = \begin{bmatrix} -0.707 \\ 0.707 \end{bmatrix}, \lambda_2 = 0.5$$

$$A = \begin{bmatrix} 1.25 & 0.75 \\ 0.75 & 1.25 \end{bmatrix}$$
$$v_1 = \begin{bmatrix} 0.707 \\ 0.707 \end{bmatrix}, \lambda_1 = 2.0$$
$$v_2 = \begin{bmatrix} -0.707 \\ 0.707 \end{bmatrix}, \lambda_2 = 0.5$$

Eigenvalue decomposition

- Any $\underline{n \times n}$ symmetric matrix M can be decomposed into the sum of its n eigenvector products
- Let (λ_i, U_i) be the eigen pairs i = 1, ..., n and assume $\lambda_i \ge \lambda_{i+1}$
- Each eigenvector (U_i) is an $n \times 1$ matrix, multiplying it by its transpose yields an $n \times n$ matrix, product $U_i (U_i)$ same dimension as (M)
- Linear combination of these matrices weighted by its corresponding eigenvalue gives the original matrix $M = \sum_{i=1}^{n} \lambda_i U_i U_i^T$
 - It holds for symmetric matrices
 - Can be applied on covariance matrix

Jn_

• Using only the vector associated with the largest eigenvalues, a good approximation of the matrix can be made

U:= 1xm

CS244

• Covariance of Lincoln & $M \rightarrow U_1 U_1^T$

Error plot

• Reconstructing the Lincoln memorial from the one, five, fifty eigenvectors

Singular Value Decomposition

- Eigen value decomposition is good but works for symmetric matrix
- Singular value decomposition is more general matrix factorization approach
- SVD of an $n \times m$ matrix M factors into three matrices $U_{n \times n}, D_{n \times m}, V_{m \times m}$ ie. $M = UDV^T$, D is a diagonal matrix
- The product $U \cdot D$ has the effect of multiplying (U_{ij}) by $B_{ij} \cup U_{j1}$
 - Relative importance of each column of U is provided by D
- DV^{T} provides relative importance of each row of V^{T}
- The weight of D are known as singular values of M

Singular Value Decomposition

- Let X and Y be vectors of size $n \times 1$ and $1 \times m$, then matrix outer product $P = X \otimes Y$ is $n \times m$ matrix, $P_{jk} = X_j Y_k$
- Traditional matrix multiplication can be expressed as $C = A \cdot B = \sum A_k \otimes B_k^T$
 - A_k *k*th column of A, B_k^T *k*th row of B
- *M* can be expressed as the sum of outer product of vectors resulting from SVD namely $(UD)_k$, V_k^T

image source: Data Science Design Manual

S244

• Reconstruction with k = 5, 50, and error for k = 50

