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Matrix representation
• Matrix is every where!!

• Data — A data can be represented as n × m matrix,
• A row represents an example
• Each column represent distinct feature / dimension

• Geometric point set — A n × m matrix can denote n points in m dimension space
• Systems of equations — Equation like y = c0 + c1x1 + cm−1xm−1 can be modeled as n × m

matrix
• Graphs & Networks — City network, chemical structure, etc.
• Rearrangements — Permutation of given set of elements
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Geometry & Vectors
• Vectors — A 1 × d dimension matrix. In geometry sense a ray from the origin through the

given point in d dimension
• Normalization — In many scenarios the vectors are normalized to have unit norm
• Dot Product —

• Useful to reduce vector to scalar
• Can be used to measure angle
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Matrix operations
• Addition: C = A + B, Cij = Aij + Bij

• Scalar multiplication: A′ = cA, A′
ij = c · Aij

• Linear combination: αA + (1− α)B
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Matrix Transpose
• Let M be a matrix and MT be the transpose of M, then Mij = M′

ij

• (AT)T = A
• Let C = A + AT hold, then Cij = Aij + Aji =

Cji
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Matrix multiplication
• It is an aggregated version of the vector dot or inner product

• x · y =
∑

i xiyi

• Matrix product XYT produces 1× 1 matrix which contains dot product X · Y
• C = AB, Cij =

∑
k

AikBkj

• It does not commute, usually AB ̸= BA
• It is associative, A(BC) = (AB)C
• Consider the following matrixes: A1×n,Bn×n,Cn×n,Dn×1.

Which of the following is better — (AB)(CD) or (A(BC))D?
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Covariance matrix
• Multiplication by transpose matrix is common ie. A · AT

• Both A · AT and AT · A are compatible for multiplications
• Let An×d be a feature matrix, each row represents an item and each column denotes a feature
• C = AAT is a n × n matrix dot products

• Cij is a measure how similar item i is to item j (in syncness)
• D = ATA is a d × d dot products in syncness among the features

• Dij represents the similarity between feature i and feature j

• Covariance formula: Cov(X,Y) =
n∑

i=1

(Xi − X̄)(Yi − Ȳ)
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Covariance matrix (contd)
• A, A · AT, AT · A
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Matrix multiplication & Paths
• Square matrix can be multiplied without transposition
• A matrix can represent the connectivity of nodes in a given network
• Let An×n can represent adjacency matrix

A2
ij =

n∑
k=1

AikAkj
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Matrix multiplication & Permutations
• Multiplication is often used to rearrange the oder of the elements in a particular matrix
• Multiplication with identity matrix (I) does not arrange anything new
• I contains exactly one non-zero element in each row and each column
• Matrix with this property is known as permutation matrix
• For example, multiplication with P(2431)

P(2431) =


0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

 , M =


11 12 13 14
21 22 23 24
31 32 33 34
41 42 43 44

 , PM =


31 32 33 34
11 12 13 14
41 42 43 44
21 22 23 24
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Permutations Example
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x1

x2

A =

[
1 3

2 1

]
x =

[
2

1

]

Ax =

[
1

2

]
× 2 +

[
3

1

]
× 1 =

[
5

5

]
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Linear transformation
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Rotating points in space
• Multiplying with the right matrix can rotate a set of points about the origin by angle θ

Rθ =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]

•
[

x′
y′

]
= Rθ

[
x
y

]
=

[
x cos(θ) −y sin(θ)
x sin(θ) y cos(θ)

]
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Identity matrix
• Identity plays a big role in algebraic structure

• 0 is the identity element for addition operation
• 1 is the identity element for multiplication operation

• Inverse operation is about taking an element x down to its identity
• For addition operation, inverse of x is −x
• For multiplication operation, inverse of x is 1

x
• For matrix, we say A−1 is multiplicative inverse if A · A−1 = I

• for 2× 2 matrix, A−1 =

[
a b
c d

]−1

=
1

ad − bc

∣∣∣∣ d −b
c a

∣∣∣∣
• Matrix that is not invertible is known as singular matrix
• Gaussian elimination can be used to find the inverse
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Inversion Example
• Inverse of Lincoln image and M · M−1
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Linear Systems, Matrix Rank
• Linear systems

• Consider the following linear equation: y = c0 + c1x1 + · · ·+ cm−1xm−1

• Thus the coefficient of n such linear equations can be represented as a matrix C of size
n × m
CX = Y ⇒ X = C−1Y

• What will happen if inverse does not exist?
• Matrix Rank

• A rank of a matrix measures the number of linearly independent rows
• Rank can be determined using Gaussian elimination
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Factoring matrices
• Factoring matrix A into matrices in B and C represents particular aspect of division

• Non-singular matrix has an inverse I = M · M−1

• Matrix factorization is an important abstraction in data science, leading to feature represen-
tation in a compact way

• Suppose matrix A can be factored as A ≈ BC where the size of A is n × m, B — n × k, C
— k × m where k < min(n,m)
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Eigenvalues & Eigenvectors
• Multiplying a vector U by a matrix A can have the same effect as multiplying it by scalar λ[

−5 2
2 −2

]
·
[

2
−1

]
= −6

[
2
−1

]
,
[
−5 2
2 −2

]
·
[
1
2

]
= −1

[
1
2

]
• λ is eigenvalue, U is eigen vector
• Together, the eigenvector and eigenvalue must encode a lot of information about the matrix

A
• Properties

• Each eigenvalue has an associated eigenvector
• There are in general n eigenvector-eigenvalue pairs for every full rank n × n matrix
• Every pair of eigenvectors of symmetric matrix are mutually orthogonal

• Two vectors are orthogonal if the dot product is 0

• The eigenvectors can play the role of dimensions or bases in some n dimensional space
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x

y
A =

[
1.25 0.75

0.75 1.25

]

v1 =
[

0.707

0.707

]
, λ1 = 2.0

v2 =
[

−0.707

0.707

]
, λ2 = 0.5

Av1 =
[

1.414

1.414

]
Av2 =

[
−0.354

0.354

]
Given ∥x∥ = 1, find Ax
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Eigenvalue decomposition
• Any n×n symmetric matrix M can be decomposed into the sum of its n eigenvector products
• Let (λi,Ui) be the eigen pairs i = 1, . . . , n and assume λi ≥ λi+1

• Each eigenvector Ui is an n× 1 matrix, multiplying it by its transpose yields an n× n matrix,
product UiUT

i same dimension as M
• Linear combination of these matrices weighted by its corresponding eigenvalue gives the

original matrix M =

n∑
i=1

λiUiUT
i

• It holds for symmetric matrices
• Can be applied on covariance matrix

• Using only the vector associated with the largest eigenvalues, a good approximation of the
matrix can be made
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Example
• Covariance of Lincoln & M − U1UT

1

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit



image source: Data Science Design Manual

CS
24

4

22

Error plot
• Reconstructing the Lincoln memorial from the one, five, fifty eigenvectors
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Singular Value Decomposition
• Eigen value decomposition is good but works for symmetric matrix
• Singular value decomposition is more general matrix factorization approach
• SVD of an n × m matrix M factors into three matrices Un×n,Dn×m,Vm×m ie. M = UDVT,

D is a diagonal matrix
• The product U · D has the effect of multiplying Uij by Dij

• Relative importance of each column of U is provided by D
• DVT provides relative importance of each row of VT

• The weight of D are known as singular values of M
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Singular Value Decomposition
• Let X and Y be vectors of size n × 1 and 1 × m, then matrix outer product P = X ⊗ Y is

n × m matrix, Pjk = XjYK

• Traditional matrix multiplication can be expressed as C = A · B =
∑

k
Ak ⊗ BT

k

• Ak — kth column of A, BT
k — kth row of B

• M can be expressed as the sum of outer product of vectors resulting from SVD namely (UD)k,
VT

k
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Example
• Vectors associated with first 50 singular values, MSE of reconstruction
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Example
• Reconstruction with k = 5, 50, and error for k = 50
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