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Introduction
• Extracting meaningful information from the past data is one of the major challenges now
• This requires to build efficient model which can be queried to get relevant information
• After developing the model, performance evaluation of the same is also very critical
• There are different methods/approaches for evaluation of a model. It also depends on the

problem at hand
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Mathematical model
• The purpose is to encapsulate information into a tool

• The tool can be used to forecast, make prediction, etc
• Predictive model tries to forecast future behavior by observing past data/events

• Laws of physics are used to provide principled notions of causation
• Primary targets are

• Design of a model
• Verify the model
• Evaluation of model
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Best model
• All models are wrong and some are useful. — George Box
• There are many ways to fit a given data

• Things to consider while selecting a model
• Occam’s Razor

• The simplest explanation is the best explanation
• In other words, simplest model is the best model

• Bias-Variance tradeoff
• Bias — This error caused from the incorrect assumption of the model
• Variance — This error resulted from sensitivity to fluctuation in the training set
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Signal & Noise
• Think probabilistically

• Example: India has 23% chance to win the test match
• Example: India will loose the match
• One can describe using a distribution also

• Change your forecast in response to new information
• Live models are better than dead one
• Maintaining live models is not trivial

• Look for consensus
• Multiple models should be build to predict the same thing
• Compare with competing third party forecast

• Employ Bayesian reasoning
• P(A|B) = P(B|A)P(A)

P(B)
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Types of models
• Linear vs Non-linear

• Linear combination of features (eg. Linear regression), easy to fit and explain
• Higher order polynomial, logarithmic, exponential functions are often required
• It is harder to fit non-linear model (eg. Deep Learning)

• Black-box vs Descriptive
• Black-box works in unknown manner (eg. Deep Learning)
• Descriptive methods provide some insights (eg. Linear regression, Decision Trees)
• Descriptive models are primarily theory driven
• ML models are less opaque
• DL models are often very effective
• DL model can be fooled also

image source: Data Science Design Manual
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Types of models (contd)
• First principle vs Data driven

• First principle relies on law of physics, theoretical rules/laws
• Data driven models are based on observed correlation between input and outcome variables

• Stochastic vs Deterministic
• Stochastic is based on randomness
• It uses probability
• All rules of probabilities apply
• Deterministic model yields only one answer and these are based on first principle usually

• Flat vs Hierarchical
• Many problems exist on several different levels, each of which may require independent

submodule (eg. general state of company, balance sheet performance)
• Hierarchical structure improves a logical and transparent way to build the model
• Deep learning is a mixed model
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Baseline models
• ’A broken clock is right twice a day’ !!
• First step is to built a base model - simplest reasonable model that produce answers we can

compare with
• More sophisticated models should perform better than base model
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Evaluation of models
• Error can results from many things like data normalization, preprocessing, post-processing,

etc.
• Check with a few positive and negative examples
• Typically accuracy is the prime measure
• Performance needs to be measured on unseen data
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Evaluation of classifier
• Consider two class classification
• There are four possible scenarios (confusion matrix or contingency table)

• TP — classifier labels a positive item as positive, win situation (True Positive)
• TN — classifier correctly labels a negative item as negative, win situation (True Negative)
• FP — classifier labels a negative item as positive, Type I error, (False Positive)
• FN — classifier mistakenly declares labels a positive item as negative, Type II error, (False

Negative)
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Accuracy, Precision
• Accuracy = TP + TN

TP + TN + FP + FN

• Accuracy measure has some issue
• Let us assume that 5% of the particular test takers really had the disease (positive class).

One can predict all examples to be negative
• This can lead to accuracy 95%

• To overcome this ie., more sensitive to getting to positive class right we use

Precision = TP
TP + FP

• If there are less positive samples, so classifier achieves low TP
• In medical diagnosis case, one may tolerate FP but not FN
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Recall, F-score
• We use recall - how often one is right on all positive examples -

Recall = TP
TP + FN

• To have a single measure, we use F-score, it is defined as

F-score = 2 · Precision · Recall
Precision + Recall

• Harmonic mean is less than arithmetic mean
• Lower number has a disproportionate large effect

Arijit

Arijit

Arijit



CS
24

4

12

Recall, F-score
• We use recall - how often one is right on all positive examples -

Recall = TP
TP + FN

• To have a single measure, we use F-score, it is defined as

F-score = 2 · Precision · Recall
Precision + Recall

• Harmonic mean is less than arithmetic mean
• Lower number has a disproportionate large effect

Arijit

Arijit



CS
24

4

12

Recall, F-score
• We use recall - how often one is right on all positive examples -

Recall = TP
TP + FN

• To have a single measure, we use F-score, it is defined as

F-score = 2 · Precision · Recall
Precision + Recall

• Harmonic mean is less than arithmetic mean
• Lower number has a disproportionate large effect

Arijit



CS
24

4

13

Balanced classifier
• A classifier that performs equally good in both positive and negative examples
• Consider a set of n items of which p · n are of positive examples and (1− p) · n negative
• Consider a random classifier that predicts positive class correctly with probability q
• Also, the expected performance of a balanced classifier, which somehow correctly classifies

members of each class with probability q

Random Classifier Balanced Classifier
Predicted class Predicted class

yes no yes no
yes (pn)q (pn)(1− q) (pn)q (pn)(1− q)
no ((1− p)n)q ((1− p)n)(1− q) ((1− p)n)(1− q) ((1− p)n)q
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Example
• Fill the following table for the following scenario (disease detection)
• The people who have undergone a test diagnosed with no-disease 95% cases and disease

with 5% scenarios
• A ’sharp’ classifier always says a fixed outcome

Random Sharp Balanced
q 0.05 0.5 0.0 1.0 0.5 0.9 1.0

accuracy 0.905 0.5 0.95 0.05 0.5 0.9 1.0
precision 0.05 0.05 — 0.05 0.05 0.321 1.0

recall 0.05 0.5 0 1.0 0.5 0.9 1.0
F-score 0.05 0.091 — 0.095 0.091 0.474 1.0
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Observations
• Accuracy is a misleading when the class sizes are substantially different
• Recall equals accuracy if and only if the classifiers are balanced
• High precision is very hard to achieve in unbalanced class sizes
• F-score does the best job of any single statistics but all four work together to describe the

performance of a classifier
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ROC curve
• Receiver-Operator Characteristic (ROC) curve

image source: Data Science Design Manual
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Evaluating multiclass systems
• Consider a news classification model that categorizes news into d classes
• Expected accuracy for a random classifier is 1/d
• Accuracy drops rapidly with increased class complexity
• A better measure is the top-k success rate
• Precision and recall are defined as follows

precisioni = Cii/
d∑

j=1

Cji

recalli = Cii/
d∑

j=1

Cij

where Cij denotes how many
items of class i labeled as j

image source: Data Science Design Manual
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Evaluating value prediction models
• It can also be thought of classification however there are infinite class
• Error statistics

• Error is a function of the difference between forecast and actual result
• Measuring the performance of a value prediction system involves the following

• Fixing the specific individual error function
• Selecting that statistics to best represent the full error distribution

• Choices for error function (predicted - y ′, actual - y)
• Absolute error: ∥y− y ′∥. It is the difference between actual and predicted values. No sign

is considered.
• Relative error: y − y ′

y
• Squared error: (y ′ − y)2

• Histogram of the absolute error distribution may be looked into
• The distribution should be symmetric and centered around 0, also, it should be bell shaped
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Error Histogram example

image source: Data Science Design Manual
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Summary statistics
• Error distribution needs to be reduced to a single number in order to compare the performance

of different value prediction models
• Commonly used metric is mean squared error (MSE)

MSE(Y,Y ′) =
1

n

n∑
i=1

(y ′
i − yi)

2

• Other choice is root mean squared - RMSD =
√

MSE(Y,Y ′)
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Model evaluation environment

Evaluation
Environment

Model

Validation Data

Performance statistics

Error distributions

Confusion matrices
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Data hygiene for evaluation
• Training data — Used for building the model
• Validation data — Used for learning hyper-parameters
• Test data — Used for testing of the model
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Amplifying small data sets
• Cross validation — Typically used when the dataset is limited

• Partition the data into k equal-sized chunks, then trains k models
• Model i is trained on the union of all blocks x ̸= i, totaling (k − 1)/kth of the data
• Model is tested on the held out ith block
• Average performance of these k classifiers is considered as full model

• Perturb real examples to create similar but synthetic ones
• Add noise, Data augmentation

• Give partial credit
• Transcription
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Summary
• Good performance on data you trained models on is very suspect, because models can easily

be overfit
• Model should perform well on unseen data
• Appropriate metric needs to be chosen
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