

1

#### **Arijit Mondal**

Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

## Introduction

- Extracting meaningful information from the past data is one of the major challenges now
- This requires to build efficient model which can be queried to get relevant information
- After developing the model, performance evaluation of the same is also very critical
- There are different methods/approaches for evaluation of a model. It also depends on the problem at hand

## **Mathematical model**

- The purpose is to encapsulate information into a tool
  - $\bullet\,$  The tool can be used to forecast, make prediction, etc  $\,\checkmark\,$
- Predictive model tries to forecast future behavior by observing past data/events  $\leftarrow$ 
  - Laws of physics are used to provide principled notions of causation
- Primary targets are
  - Design of a model  $\overrightarrow{\mathcal{V}}$
  - Verify the model
  - Evaluation of model  $\rightarrow$



#### **Best model**

- All models are wrong and some are useful. George Box 🛷
- There are many ways to fit a given data

#### **Best model**

- All models are wrong and some are useful. George Box
- There are many ways to fit a given data
- Things to consider while selecting a model
  - Occam's Razor
    - The simplest explanation is the best explanation
    - In other words, simplest model is the best model

### **Best model**

- All models are wrong and some are useful. George Box
- There are many ways to fit a given data
- Things to consider while selecting a model
  - Occam's Razor
    - The simplest explanation is the best explanation
    - In other words, simplest model is the best model
  - Bias-Variance tradeoff
    - Bias This error caused from the incorrect assumption of the model
    - Variance This error resulted from sensitivity to fluctuation in the training set



N

CS244

# Signal & Noise

- Think probabilistically
  - Example: India has 23% chance to win the test match 🛩
  - Example: India will loose the match 🖋
  - One can describe using a distribution also
- Change your forecast in response to new information
  - Live models are better than dead one
  - Maintaining live models is not trivial
  - Look for consensus
    - Multiple models should be build to predict the same thing
    - Compare with competing third party forecast
- Employ Bayesian reasoning
  - $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$

# **Types of models**

- Linear vs Non-linear
  - Linear combination of features (eg. Linear regression), easy to fit and explain
  - Higher order polynomial, logarithmic, exponential functions are often required
  - It is harder to fit non-linear model (eg. Deep Learning)
- Black-box vs Descriptive
  - Black-box works in unknown manner (eg. Deep Learning)
  - Descriptive methods provide some insights (eg. Linear regression, Decision Trees)
  - Descriptive models are primarily theory driven
  - ML models are less opaque
  - DL models are often very effective
  - DL model can be fooled also





# **Types of models (contd)**

- First principle vs Data driven1
  - First principle relies on law of physics, theoretical rules/laws
  - Data driven models are based on observed correlation between input and outcome variables
- Stochastic vs Deterministic
  - Stochastic is based on randomness
  - It uses probability
  - All rules of probabilities apply
  - Deterministic model yields only one answer and these are based on first principle usually
- Flat vs Hierarchical
  - Many problems exist on several different levels, each of which may require independent submodule (eg. general state of company, balance sheet performance)
  - Hierarchical structure improves a logical and transparent way to build the model object, color red ken, bost blue ball, green peneil color obj 111 111
  - Deep learning is a mixed model

CS244

#### **Baseline models**

- 'A broken clock is right twice a day' !! <-- 1
- First step is to built a base model simplest reasonable model that produce answers we can
- compare with
- More sophisticated models should perform better than base model



### **Evaluation of models**

• Error can results from many things like data normalization, preprocessing, post-processing, etc.

4

- Check with a few *positive* and *negative* examples
- Typically accuracy is the prime measure
- Performance needs to be measured on/unseen data

- Consider two class classification
- There are four possible scenarios (confusion matrix or contingency table)

Predict True al clern 1 NC. NC

- Consider two class classification
- There are four possible scenarios (confusion matrix or contingency table)
  - TP classifier labels a positive item as positive, win situation (True Positive)

- Consider two class classification
- There are four possible scenarios (confusion matrix or contingency table)
  - TP classifier labels a positive item as positive, win situation (True Positive) (<sup>C</sup>)
     TN classifier correctly labels a negative item as negative, win situation (True Negative)

- Consider two class classification
- There are four possible scenarios (confusion matrix or contingency table)
  - TP classifier labels a positive item as positive, win situation (True Positive)
  - TN classifier correctly labels a negative item as negative, win situation (True Negative)
  - FP classifier labels a negative item as positive, Type I error, (False Positive)

- Consider two class classification
- There are four possible scenarios (confusion matrix or contingency table)
  - TP classifier labels a positive item as positive, win situation (True Positive)
  - TN classifier correctly labels a negative item as negative, win situation (True Negative)
  - FP classifier labels a negative item as positive, Type I error, (False Positive)
  - FN classifier mistakenly declares labels a positive item as negative, Type II error, (False Negative)

• Accuracy =  $\frac{TP + TN}{TP + TN + FP + FN}$ 



- Accuracy =  $\frac{TP + TN}{TP + TN + FP + FN}$ 
  - Accuracy measure has some issue

- $\frac{TP + TN}{TP + TN + FP + FN}$ • Accuracy =
  - Accuracy measure has some issue
  - Let us assume that 5% of the particular test takers really had the disease (positive class) One can predict all examples to be negative

- $\frac{TP + TN}{TP + TN + FP + FN}$ • Accuracy =
  - Accuracy measure has some issue
  - Let us assume that 5% of the particular test takers really had the disease (positive class). One can predict all examples to be negative
  - This can lead to accuracy 95%
- To overcome this ie., more sensitive to getting to positive class right we use

Precision =

- Accuracy =  $\frac{TP + TN}{TP + TN + FP + FN}$ 
  - Accuracy measure has some issue
  - Let us assume that 5% of the particular test takers really had the disease (positive class). One can predict all examples to be negative
  - This can lead to accuracy 95%
- To overcome this ie., more sensitive to getting to positive class right we use  $\mathsf{Precision} = \frac{TP}{TP + FP}$ 
  - If there are less positive samples, so classifier achieves low TP
  - In medical diagnosis case, one may tolerate FP but not FN

#### **Recall**, **F-score**

- We use recall how often one is right on all positive examples -
  - $\operatorname{Recall} = \frac{\overline{TP}}{\overline{TP} + \overline{FN}}$

#### **Recall**, F-score

We use recall - how often one is right on all positive examples -Recall = TP TP + FN
To have a single measure, we use F-score, it is defined as

F-score =  $2 \cdot \frac{Precision \cdot Recall}{Precision + Recall}$  | Harmonic

#### **Recall**, F-score

- We use recall how often one is right on all positive examples -Recall =  $\frac{TP}{TP + FN}$
- To have a single measure, we use F-score, it is defined as

 $\mathsf{F}\text{-}\mathsf{score} = 2 \cdot \frac{\textit{Precision} \cdot \textit{Recall}}{\textit{Precision} + \textit{Recall}}$ 

- Harmonic mean is less than arithmetic mean
- Lower number has a disproportionate large effect

## Balanced classifier

- A classifier that performs equally good in both positive and negative examples
- Consider a set of n items of which  $p \cdot n$  are of positive examples and  $(1 p) \cdot n$  negative
- Consider a random classifier that predicts positive class correctly with probability q (
- Also, the expected performance of a balanced classifier, which somehow correctly classifies members of each class with probability q





#### **Balanced classifier**

- A classifier that performs equally good in both positive and negative examples
- Consider a set of *n* items of which  $p \cdot n$  are of positive examples and  $(1 p) \cdot n$  negative
- Consider a random classifier that predicts positive class correctly with probability (q)
- Also, the expected performance of a balanced classifier, which somehow correctly classifies members of each class with probability q

|     | Rando       | om Classifier     | Balanced Classifier |             |  |  |  |
|-----|-------------|-------------------|---------------------|-------------|--|--|--|
|     | Pred        | icted class       | Predicted class     |             |  |  |  |
|     | yes         | no                | yes                 | no          |  |  |  |
| yes | (pn)q 🗸     | (pn)(1 - q)       | (pn)q 🗸             | (pn)(1-q) . |  |  |  |
| no  | ((1 - p)n)q | ((1 - p)n)(1 - q) | ((1-p)n)(1-q)       | ((1-p)n)q   |  |  |  |
|     |             |                   | 1                   |             |  |  |  |

## Example

- Fill the following table for the following scenario (disease detection)
- The people who have undergone a test diagnosed with no-disease 95% cases and disease with 5% scenarios
- A 'sharp' classifier always says a fixed outcome



## **Example**

- Fill the following table for the following scenario (disease detection)
- The people who have undergone a test diagnosed with no-disease 95% cases and disease with 5% scenarios
- A 'sharp' classifier always says a fixed outcome

|           | Random             |       | Sharp |       | Balanced |       |     |
|-----------|--------------------|-------|-------|-------|----------|-------|-----|
| q         | 0.05               | 0.5   | 0.0   | 1.0   | 0.5      | 0.9   | 1.0 |
| accuracy  | 0.905 <sub>)</sub> | 0.5   | 0.95  | 0.05  | 0.5      | 0.9   | 1.0 |
| precision | 0.05               | 0.05  |       | 0.05  | 0.05     | 0.321 | 1.0 |
| recall    | 0.05               | 0.5   | 0     | 1.0   | 0.5      | 0.9   | 1.0 |
| F-score   | 0.05/              | 0.091 |       | 0.095 | 0.091    | 0.474 | 1.0 |

#### **Observations**

- Accuracy is a misleading when the class sizes are substantially different
- Recall equals accuracy if and only if the classifiers are balanced
- High precision is very hard to achieve in unbalanced class sizes
- F-score does the best job of any single statistics but all four work together to describe the performance of a classifier

#### **ROC curve**

Receiver-Operator Characteristic (ROC) curve



image source: Data Science Design Manual

**S244** 

16

## **Evaluating multiclass systems**

- Consider a news classification model that categorizes news into d classes
- Expected accuracy for a random classifier is 1/d
- Accuracy drops rapidly with increased class complexity
- A better measure is the *top-k success rate*
- Precision and recall are defined as follows

$$precision_{i} = C_{ii} \sum_{j=1}^{d} C_{ji}$$

$$recall_{i} = C_{ii} \sum_{j=1}^{d} C_{ij}$$

where  $C_{ij}$  denotes how many items of class *i* labeled as *j* 

|               |      |      |      |            | · /            |               |                |            |      |      |      |
|---------------|------|------|------|------------|----------------|---------------|----------------|------------|------|------|------|
| 1800          | 0.11 | 0.32 | 0.37 | 0.11       | 0.11           | 0.00          | 0.00           | 0.00       | 0.00 | 0.00 | 0.00 |
| 1820          | 0.17 | 0.42 | 0.33 | 0.00       | 0.00           | 0.08          | 0.00           | 0.00       | 0.00 | 0.00 | 0.00 |
| 1840          | 0.04 | 0.52 | 0.34 | 0.09       | 0.01           | 0.00          | 0.00           | 0.00       | 0.00 | 0.00 | 0.00 |
| 1860<br>1860  | 0.02 | 0.31 | 0.32 | 0.16       | 0.10           | 0.01          | 0.01           | 0.01       | 0.04 | 0.00 | 0.02 |
| Peric<br>1880 | 0.01 | 0.08 |      | 0.28       | 0.21           | 0.05          | 0.06           | 0.01       | 0.02 | 0.03 | 0.03 |
| Time<br>1900  | 0.01 | 0.07 | 0.12 | 0.16       |                | 0.15          | 0.08           | 0.04       | 0.03 | 0.04 | 0.06 |
| ctual         | 0.00 | 0.00 | 0.01 | 0.06       | 0.07           | 0.16          |                | 0.13       | 0.09 | 0.10 | 0.13 |
| A(<br>1940    | 0.00 | 0.00 | 0.00 | 0.01       | 0.01           | 0.03          | 0.14           |            | 0.16 | 0.18 |      |
| 1960          | 0.00 | 0.00 | 0.00 | 0.00       | 0.00           | 0.05          | 0.05           | 0.00       | 0.45 |      |      |
| 1980          | 0.00 | 0.00 | 0.00 | 0.00       | 0.00           | 0.00          | 0.04           | 0.08       | 0.06 |      | 0.57 |
| 2000          | 0.00 | 0.00 | 0.00 | 0.00       | 0.00           | 0.00          | 0.01           | 0.03       | 0.07 | 0.35 | 0.52 |
|               | 1800 | 1820 | 1840 | 1860<br>Pr | 1880<br>edicte | 1900<br>d Tim | 1920<br>e Peri | 1940<br>od | 1960 | 1980 | 2000 |

0.4

0.3

0.2

0.1

## **Evaluating value prediction models**

- It can also be thought of classification however there are infinite class
- Error statistics 🖉
  - Error is a function of the difference between forecast and actual result
  - Measuring the performance of a value prediction system involves the following
    - Fixing the specific individual error function |  $\leftarrow$
    - Selecting that statistics to best represent the full error distribution
- Choices for error function (predicted y', actual y)
  - Absolute error:  $||y y'||^{\frac{1}{2}}$  It is the difference between actual and predicted values. No sign is considered.
  - Relative error:  $\frac{y-y'}{y} \sim 1$
  - Squared error:  $(y' y)^2$
- Histogram of the absolute error distribution may be looked into
- The distribution should be symmetric and centered around 0, also, it should be bell shaped

#### **Error Histogram example**



#### **Summary statistics**

- Error distribution needs to be reduced to a single number in order to compare the performance of different value prediction models
- Commonly used metric is *mean squared error* (MSE)

$$\underbrace{MSE(Y,Y')}_{n} = \frac{1}{n} \sum_{i=1}^{n} (y'_i - y_i)^2 \Big|$$

• Other choice is root mean squared -  $RMSD = \sqrt{MSE(Y, Y')}$ 

#### Model evaluation environment



## Data hygiene for evaluation



## Amplifying small data sets

- Cross validation Typically used when the dataset is limited 1
  - Partition the data into k equal-sized chunks, then trains k models
  - Model *i* is trained on the union of all blocks  $x \neq i$ , totaling (k-1)/kth of the data

k - models

- Model is tested on the held out *i*th block
- Average performance of these k classifiers is considered as full model
- Perturb real examples to create similar but synthetic ones



#### **Summary**

• Good performance on data you trained models on is very suspect, because models can easily be overfit 1

0 6

С

y=mr.+C y= arx3+ br2+c x+ d

- Model should perform well on unseen data
- Appropriate metric needs to be chosen |

