# Introduction to Data Science

# **Model Evaluation**



#### **Arijit Mondal**

Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

# Introduction

- Extracting meaningful information from the past data is one of the major challenges now
- This requires to build efficient model which can be queried to get relevant information
- After developing the model, performance evaluation of the same is also very critical
- There are different methods/approaches for evaluation of a model. It also depends on the problem at hand

# **Mathematical model**

- The purpose is to encapsulate information into a tool
  - The tool can be used to forecast, make prediction, etc
- Predictive model tries to forecast future behavior by observing past data/events
  - Laws of physics are used to provide principled notions of causation
- Primary targets are
  - Design of a model
  - Verify the model
  - Evaluation of model

#### **Best model**

- All models are wrong and some are useful. George Box
- There are many ways to fit a given data

#### **Best model**

- All models are wrong and some are useful. George Box
- There are many ways to fit a given data
- Things to consider while selecting a model
  - Occam's Razor
    - The simplest explanation is the best explanation
    - In other words, simplest model is the best model

### **Best model**

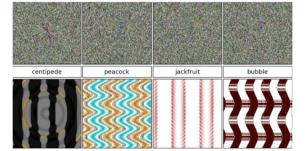
- All models are wrong and some are useful. George Box
- There are many ways to fit a given data
- Things to consider while selecting a model
  - Occam's Razor
    - The simplest explanation is the best explanation
    - In other words, simplest model is the best model
  - Bias-Variance tradeoff
    - Bias This error caused from the incorrect assumption of the model
    - Variance This error resulted from sensitivity to fluctuation in the training set

# Signal & Noise

- Think probabilistically
  - Example: India has 23% chance to win the test match
  - Example: India will loose the match
  - One can describe using a distribution also
- Change your forecast in response to new information
  - Live models are better than dead one
  - Maintaining live models is not trivial
  - Look for consensus
    - Multiple models should be build to predict the same thing
    - Compare with competing third party forecast
- Employ Bayesian reasoning
  - $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$

# **Types of models**

- Linear vs Non-linear
  - Linear combination of features (eg. Linear regression), easy to fit and explain
  - Higher order polynomial, logarithmic, exponential functions are often required
  - It is harder to fit non-linear model (eg. Deep Learning)
- Black-box vs Descriptive
  - Black-box works in unknown manner (eg. Deep Learning)
  - Descriptive methods provide some insights (eg. Linear regression, Decision Trees)
  - Descriptive models are primarily theory driven
  - ML models are less opaque
  - DL models are often very effective
  - DL model can be fooled also



# **Types of models (contd)**

- First principle vs Data driven
  - First principle relies on law of physics, theoretical rules/laws
  - Data driven models are based on observed correlation between input and outcome variables
- Stochastic vs Deterministic
  - Stochastic is based on randomness
  - It uses probability
  - All rules of probabilities apply
  - Deterministic model yields only one answer and these are based on first principle usually
- Flat vs Hierarchical
  - Many problems exist on several different levels, each of which may require independent submodule (eg. general state of company, balance sheet performance)
  - Hierarchical structure improves a logical and transparent way to build the model
  - Deep learning is a mixed model

## **Baseline models**

- 'A broken clock is right twice a day' !!
- First step is to built a base model simplest reasonable model that produce answers we can compare with
- More sophisticated models should perform better than base model

### **Evaluation of models**

- Error can results from many things like data normalization, preprocessing, post-processing, etc.
- Check with a few positive and negative examples
- Typically accuracy is the prime measure
- Performance needs to be measured on unseen data

- Consider two class classification
- There are four possible scenarios (confusion matrix or contingency table)

- Consider two class classification
- There are four possible scenarios (confusion matrix or contingency table)
  - TP classifier labels a positive item as positive, win situation (True Positive)

- Consider two class classification
- There are four possible scenarios (confusion matrix or contingency table)
  - TP classifier labels a positive item as positive, win situation (True Positive)
  - TN classifier correctly labels a negative item as negative, win situation (True Negative)

- Consider two class classification
- There are four possible scenarios (confusion matrix or contingency table)
  - TP classifier labels a positive item as positive, win situation (True Positive)
  - TN classifier correctly labels a negative item as negative, win situation (True Negative)
  - FP classifier labels a negative item as positive, Type I error, (False Positive)

- Consider two class classification
- There are four possible scenarios (confusion matrix or contingency table)
  - TP classifier labels a positive item as positive, win situation (True Positive)
  - TN classifier correctly labels a negative item as negative, win situation (True Negative)
  - FP classifier labels a negative item as positive, Type I error, (False Positive)
  - FN classifier mistakenly declares labels a positive item as negative, Type II error, (False Negative)

• Accuracy =  $\frac{TP + TN}{TP + TN + FP + FN}$ 

- Accuracy =  $\frac{TP + TN}{TP + TN + FP + FN}$ 
  - Accuracy measure has some issue

- $\frac{TP + TN}{TP + TN + FP + FN}$ • Accuracy =
  - Accuracy measure has some issue
  - Let us assume that 5% of the particular test takers really had the disease (positive class). One can predict all examples to be negative

- Accuracy =  $\frac{TP + TN}{TP + TN + FP + FN}$ 
  - Accuracy measure has some issue
  - Let us assume that 5% of the particular test takers really had the disease (positive class). One can predict all examples to be negative
  - This can lead to accuracy 95%
- To overcome this ie., more sensitive to getting to positive class right we use

 $Precision = \frac{TP}{TP + FP}$ 

- Accuracy =  $\frac{TP + TN}{TP + TN + FP + FN}$ 
  - Accuracy measure has some issue
  - Let us assume that 5% of the particular test takers really had the disease (positive class). One can predict all examples to be negative
  - This can lead to accuracy 95%
- To overcome this ie., more sensitive to getting to positive class right we use  $\mathsf{Precision} = \frac{TP}{TP + FP}$ 
  - If there are less positive samples, so classifier achieves low TP
  - In medical diagnosis case, one may tolerate FP but not FN

#### **Recall**, **F-score**

• We use recall - how often one is right on all positive examples -

 $\mathsf{Recall} = \frac{TP}{TP + FN}$ 

#### **Recall**, F-score

We use recall - how often one is right on all positive examples -Recall = TP/TP + FN
To have a single measure, we use F-score, it is defined as F-score = 2 · Precision · Recall Precision + Recall

#### **Recall**, F-score

- We use recall how often one is right on all positive examples -Recall =  $\frac{TP}{TP + FN}$
- To have a single measure, we use F-score, it is defined as

 $\mathsf{F}\text{-}\mathsf{score} = 2 \cdot \frac{\textit{Precision} \cdot \textit{Recall}}{\textit{Precision} + \textit{Recall}}$ 

- Harmonic mean is less than arithmetic mean
- Lower number has a disproportionate large effect

### **Balanced classifier**

- A classifier that performs equally good in both positive and negative examples
- Consider a set of *n* items of which  $p \cdot n$  are of positive examples and  $(1 p) \cdot n$  negative
- Consider a random classifier that predicts positive class correctly with probability q
- Also, the expected performance of a balanced classifier, which somehow correctly classifies members of each class with probability q

#### **Balanced classifier**

- A classifier that performs equally good in both positive and negative examples
- Consider a set of *n* items of which  $p \cdot n$  are of positive examples and  $(1 p) \cdot n$  negative
- Consider a random classifier that predicts positive class correctly with probability q
- Also, the expected performance of a balanced classifier, which somehow correctly classifies members of each class with probability q

|     | Rando                  | om Classifier     | Balanced Cla           | assifier    |
|-----|------------------------|-------------------|------------------------|-------------|
|     | Pred                   | licted class      | Predicted              | class       |
|     | yes                    | no                | yes                    | no          |
| yes | ( <i>pn</i> ) <i>q</i> | (pn)(1 - q)       | ( <i>pn</i> ) <i>q</i> | (pn)(1 - q) |
| no  | ((1-p)n)q              | ((1 - p)n)(1 - q) | ((1-p)n)(1-q)          | ((1 - p)n)q |

## Example

- Fill the following table for the following scenario (disease detection)
- The people who have undergone a test diagnosed with no-disease 95% cases and disease with 5% scenarios
- A 'sharp' classifier always says a fixed outcome

|   | Ran  | dom | Sh  | arp | Balanced |     |     |  |
|---|------|-----|-----|-----|----------|-----|-----|--|
| q | 0.05 | 0.5 | 0.0 | 1.0 | 0.5      | 0.9 | 1.0 |  |

## **Example**

- Fill the following table for the following scenario (disease detection)
- The people who have undergone a test diagnosed with no-disease 95% cases and disease with 5% scenarios
- A 'sharp' classifier always says a fixed outcome

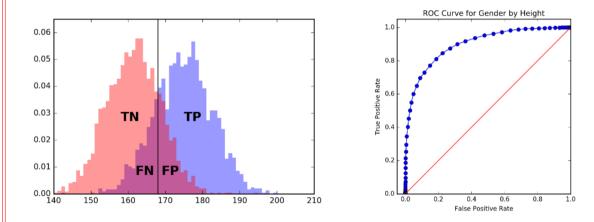
|           | Random |       | Sh   | iarp  | Balanced |       |     |  |
|-----------|--------|-------|------|-------|----------|-------|-----|--|
| q         | 0.05   | 0.5   | 0.0  | 1.0   | 0.5      | 0.9   | 1.0 |  |
| accuracy  | 0.905  | 0.5   | 0.95 | 0.05  | 0.5      | 0.9   | 1.0 |  |
| precision | 0.05   | 0.05  |      | 0.05  | 0.05     | 0.321 | 1.0 |  |
| recall    | 0.05   | 0.5   | 0    | 1.0   | 0.5      | 0.9   | 1.0 |  |
| F-score   | 0.05   | 0.091 |      | 0.095 | 0.091    | 0.474 | 1.0 |  |

#### **Observations**

- Accuracy is a misleading when the class sizes are substantially different
- Recall equals accuracy if and only if the classifiers are balanced
- High precision is very hard to achieve in unbalanced class sizes
- F-score does the best job of any single statistics but all four work together to describe the performance of a classifier

#### **ROC curve**

• Receiver-Operator Characteristic (ROC) curve



### **Evaluating multiclass systems**

- Consider a news classification model that categorizes news into d classes
- Expected accuracy for a random classifier is 1/d
- Accuracy drops rapidly with increased class complexity
- A better measure is the *top-k success rate*
- Precision and recall are defined as follows

 $precision_{i} = C_{ii} / \sum_{j=1}^{d} C_{ji}$  $recall_{i} = C_{ii} / \sum_{j=1}^{d} C_{ij}$ where  $C_{ij}$  denotes how many items of class *i* labeled as *j* 

| 1800                                                                            | 0.11 | 0.32 | 0.37 | 0.11 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|---------------------------------------------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|
| 1840 1820                                                                       | 0.17 | 0.42 | 0.33 | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|                                                                                 | 0.04 | 0.52 | 0.34 | 0.09 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 1860<br>1860                                                                    | 0.02 | 0.31 | 0.32 | 0.16 | 0.10 | 0.01 | 0.01 | 0.01 | 0.04 | 0.00 | 0.02 |
| Period<br>1880 18                                                               | 0.01 | 0.08 |      | 0.28 |      | 0.05 | 0.06 | 0.01 | 0.02 | 0.03 | 0.03 |
| Time<br>1900                                                                    | 0.01 | 0.07 | 0.12 | 0.16 |      | 0.15 | 0.08 | 0.04 | 0.03 | 0.04 | 0.06 |
| Actual Time                                                                     | 0.00 | 0.00 | 0.01 | 0.06 | 0.07 | 0.16 |      | 0.13 | 0.09 | 0.10 | 0.13 |
| A(<br>1940                                                                      | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.03 | 0.14 |      | 0.16 | 0.18 |      |
| 1960                                                                            | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.05 | 0.00 | 0.45 |      |      |
| 1980                                                                            | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.08 | 0.06 |      | 0.57 |
| 2000                                                                            | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.07 | 0.35 | 0.52 |
| 1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000<br>Predicted Time Period |      |      |      |      |      |      |      |      |      |      |      |

0.5

0.4

0.3

0.2

0.1

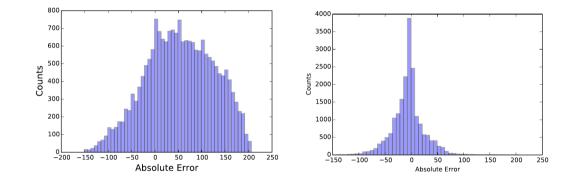
0.0

# **Evaluating value prediction models**

- It can also be thought of classification however there are infinite class
- Error statistics
  - Error is a function of the difference between forecast and actual result
  - Measuring the performance of a value prediction system involves the following
    - Fixing the specific individual error function
    - Selecting that statistics to best represent the full error distribution
- Choices for error function (predicted y', actual y)
  - Absolute error: ||y y'||. It is the difference between actual and predicted values. No sign is considered.

  - Relative error:  $\frac{y y'}{y}$  Squared error:  $(y' y)^2$
- Histogram of the absolute error distribution may be looked into
- The distribution should be symmetric and centered around 0, also, it should be bell shaped

#### **Error Histogram example**



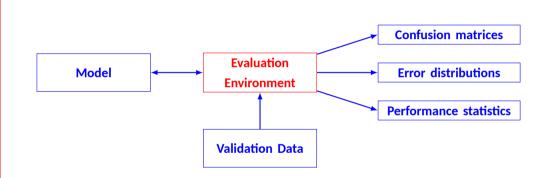
#### **Summary statistics**

- Error distribution needs to be reduced to a single number in order to compare the performance of different value prediction models
- Commonly used metric is *mean squared error* (MSE)

$$MSE(Y, Y') = \frac{1}{n} \sum_{i=1}^{n} (y'_i - y_i)^2$$

• Other choice is root mean squared -  $RMSD = \sqrt{MSE(Y, Y')}$ 

#### **Model evaluation environment**



# Data hygiene for evaluation

- Training data Used for building the model
- Validation data Used for learning hyper-parameters
- Test data Used for testing of the model

# Amplifying small data sets

- Cross validation Typically used when the dataset is limited
  - Partition the data into k equal-sized chunks, then trains k models
  - Model *i* is trained on the union of all blocks  $x \neq i$ , totaling (k-1)/kth of the data
  - Model is tested on the held out *i*th block
  - Average performance of these k classifiers is considered as full model
- Perturb real examples to create similar but synthetic ones
  - Add noise, Data augmentation
- Give partial credit
  - Transcription

#### **Summary**

- Good performance on data you trained models on is very suspect, because models can easily be overfit
- Model should perform well on unseen data
- Appropriate metric needs to be chosen