Discrete Mathematics

Planar Graph

Arijit Mondal
Dept of CSE
arijit@iitp.ac.in

Example

- Three sworn enemies A, B, C live in houses in the woods. We must cut paths so that each has a path to each of the tree utilities - gas, water, electricity. In order to avoid confrontations, we do not want any of the paths to cross. Can this be done?

Example

- Three sworn enemies A, B, C live in houses in the woods. We must cut paths so that each has a path to each of the tree utilities - gas, water, electricity. In order to avoid confrontations, we do not want any of the paths to cross. Can this be done?
- Can $K_{3,3}$ be drawn in the plane without edge crossing?

Example

- Three sworn enemies A, B, C live in houses in the woods. We must cut paths so that each has a path to each of the tree utilities - gas, water, electricity. In order to avoid confrontations, we do not want any of the paths to cross. Can this be done?
- Can $K_{3,3}$ be drawn in the plane without edge crossing?
- Can K_{5} be drawn in the plane without edge crossing?

Example

- Three sworn enemies A, B, C live in houses in the woods. We must cut paths so that each has a path to each of the tree utilities - gas, water, electricity. In order to avoid confrontations, we do not want any of the paths to cross. Can this be done?
- Can $K_{3,3}$ be drawn in the plane without edge crossing?
- Can K_{5} be drawn in the plane without edge crossing?
- Answer is NO

Planar Graph

- A graph is planar if it has a drawing without crossings.

Planar Graph

- A graph is planar if it has a drawing without crossings.
- Such a drawing is a planar embedding of G

Planar Graph

- A graph is planar if it has a drawing without crossings.
- Such a drawing is a planar embedding of G
- A plane graph is a particular planar graph embedding of a planar graph

Planar Graph

- A graph is planar if it has a drawing without crossings.
- Such a drawing is a planar embedding of G
- A plane graph is a particular planar graph embedding of a planar graph
- A planar embedding of a graph cuts the plane into pieces.

Planar Graph

- A graph is planar if it has a drawing without crossings.
- Such a drawing is a planar embedding of G
- A plane graph is a particular planar graph embedding of a planar graph
- A planar embedding of a graph cuts the plane into pieces.
- The faces of a plane graph are the maximal regions of the plane that contain no point used in the embedding

Euler's formula

- If a connected plane graph G has exactly n vertices, e edges, and f faces, then $n-e+f=2$

Euler's formula

- If a connected plane graph G has exactly n vertices, e edges, and f faces, then $n-e+f=2$
- Proof: We use induction on n

Euler's formula

- If a connected plane graph G has exactly n vertices, e edges, and f faces, then $n-e+f=2$
- Proof: We use induction on n
- For $n=1$: If $e=0$ then $f=1$ and the formula holds.

Euler's formula

- If a connected plane graph G has exactly n vertices, e edges, and f faces, then $n-e+f=2$
- Proof: We use induction on n
- For $n=1$: If $e=0$ then $f=1$ and the formula holds.
- Each added loop passes through a face and cuts it into two faces. This augments the edge count and face count each by 1. Thus the formula holds when $n=1$ for any number of edges.
- Induction step, $n>1$: Since G is connected, we can find an edge that is not a loop. When we contract such and edge, we obtain a plane graph G^{\prime} with n^{\prime} vertices, e^{\prime} edges, and f^{\prime} faces.

Euler's formula

- If a connected plane graph G has exactly n vertices, e edges, and f faces, then $n-e+f=2$
- Proof: We use induction on n
- For $n=1$: If $e=0$ then $f=1$ and the formula holds.
- Each added loop passes through a face and cuts it into two faces. This augments the edge count and face count each by 1. Thus the formula holds when $n=1$ for any number of edges.
- Induction step, $n>1$: Since G is connected, we can find an edge that is not a loop. When we contract such and edge, we obtain a plane graph G^{\prime} with n^{\prime} vertices, e^{\prime} edges, and f^{\prime} faces.
- The contraction does not change the number of faces, but it reduces the the number of edges and vertices by 1.

Euler's formula

- If a connected plane graph G has exactly n vertices, e edges, and f faces, then $n-e+f=2$
- Proof: We use induction on n
- For $n=1$: If $e=0$ then $f=1$ and the formula holds.
- Each added loop passes through a face and cuts it into two faces. This augments the edge count and face count each by 1. Thus the formula holds when $n=1$ for any number of edges.
- Induction step, $n>1$: Since G is connected, we can find an edge that is not a loop. When we contract such and edge, we obtain a plane graph G^{\prime} with n^{\prime} vertices, e^{\prime} edges, and f^{\prime} faces.
- The contraction does not change the number of faces, but it reduces the the number of edges and vertices by 1.
- So, we have $n^{\prime}=n-1, e^{\prime}=e-1$ and $f^{\prime}=f$.

Euler's formula

- If a connected plane graph G has exactly n vertices, e edges, and f faces, then $n-e+f=2$
- Proof: We use induction on n
- For $n=1$: If $e=0$ then $f=1$ and the formula holds.
- Each added loop passes through a face and cuts it into two faces. This augments the edge count and face count each by 1. Thus the formula holds when $n=1$ for any number of edges.
- Induction step, $n>1$: Since G is connected, we can find an edge that is not a loop. When we contract such and edge, we obtain a plane graph G^{\prime} with n^{\prime} vertices, e^{\prime} edges, and f^{\prime} faces.
- The contraction does not change the number of faces, but it reduces the the number of edges and vertices by 1.
- So, we have $n^{\prime}=n-1, e^{\prime}=e-1$ and $f^{\prime}=f$.
- Hence, $n-e+f=n^{\prime}+1-\left(e^{\prime}+1\right)+f^{\prime}=n^{\prime}-e^{\prime}+f^{\prime}=2$

Example

- If G is a simple planar graph with at least three vertices, then $e(G) \leq 3 n(G)-6$. If also G is triangle-free, then $e(G) \leq 2 n(G)-4$.

Example

- If G is a simple planar graph with at least three vertices, then $e(G) \leq 3 n(G)-6$. If also G is triangle-free, then $e(G) \leq 2 n(G)-4$.
- Check K_{5} and $K_{3,3}$

Subdivision

- In a graph G, subdivision of an edge $u v$ is the operation of replacing $u v$ with a path u, w, v through a new vertex

Subdivision

- In a graph G, subdivision of an edge $u v$ is the operation of replacing $u v$ with a path u, w, v through a new vertex
- If a graph G has a subgraph that is a subdivision of K_{5} or $K_{3,3}$, then G is non-planar.

Subdivision

- In a graph G, subdivision of an edge $u v$ is the operation of replacing $u v$ with a path u, w, v through a new vertex
- If a graph G has a subgraph that is a subdivision of K_{5} or $K_{3,3}$, then G is non-planar.
- A graph is planar if and only if it does not contain a subdivision of K_{5} or $K_{3,3}$

Thanto youl

