Discrete Mathematics

Arijit Mondal

Dept of CSE

arijit@iitp.ac.in

• A graph with no cycle is acyclic

- A graph with no cycle is acyclic
- A forest is an acyclic graph

- A graph with no cycle is acyclic
- A forest is an acyclic graph
- A tree is a connected acyclic graph

- A graph with no cycle is acyclic
- A forest is an acyclic graph
- A tree is a connected acyclic graph
- A leaf is a vertex of degree 1

- A graph with no cycle is acyclic
- A forest is an acyclic graph
- A tree is a connected acyclic graph
- A leaf is a vertex of degree 1
- A spanning subgraph of G is a subgraph with vertex set V(G)

- A graph with no cycle is acyclic
- A forest is an acyclic graph
- A tree is a connected acyclic graph
- A leaf is a vertex of degree 1
- A spanning subgraph of G is a subgraph with vertex set V(G)
- A spanning tree is a spanning subgraph that is a tree

• Paths are trees. A tree is a path if and only if its maximum degree is 2.

- Paths are trees. A tree is a path if and only if its maximum degree is 2.
- A star is a tree consisting of one vertex adjacent to all the other. The *n*-vertex star is the biclique $K_{1,n-1}$

- Paths are trees. A tree is a path if and only if its maximum degree is 2.
- A star is a tree consisting of one vertex adjacent to all the other. The *n*-vertex star is the biclique $K_{1,n-1}$
- A graph that is a tree has exactly one spanning tree, the full graph itself.

- Paths are trees. A tree is a path if and only if its maximum degree is 2.
- A star is a tree consisting of one vertex adjacent to all the other. The *n*-vertex star is the biclique $K_{1,n-1}$
- A graph that is a tree has exactly one spanning tree, the full graph itself.
- A spanning subgraph of G need not be connected, and a connected subgraph of G need not be a spanning subgraph.

• Every tree with at least two vertices has at least two leaves. Deleting a leaf from an *n*-vertex tree produces a tree with n - 1 vertices.

- Every tree with at least two vertices has at least two leaves. Deleting a leaf from an *n*-vertex tree produces a tree with n 1 vertices.
- Proof:
 - A connected graph with at least two vertices has an edge. In an acyclic graph, an endpoint of a maximal nontrivial path has no neighbor other than its neighbor on the path. Hence the endpoints of such a path are leaves.

- Every tree with at least two vertices has at least two leaves. Deleting a leaf from an *n*-vertex tree produces a tree with n 1 vertices.
- Proof:
 - A connected graph with at least two vertices has an edge. In an acyclic graph, an endpoint of a maximal nontrivial path has no neighbor other than its neighbor on the path. Hence the endpoints of such a path are leaves.
 - Let v be a leaf of a tree G, and let G' = G v.

- Every tree with at least two vertices has at least two leaves. Deleting a leaf from an *n*-vertex tree produces a tree with n 1 vertices.
- Proof:
 - A connected graph with at least two vertices has an edge. In an acyclic graph, an endpoint of a maximal nontrivial path has no neighbor other than its neighbor on the path. Hence the endpoints of such a path are leaves.
 - Let v be a leaf of a tree G, and let G' = G v.
 - A vertex of degree 1 belongs to no path connecting two other vertices.

- Every tree with at least two vertices has at least two leaves. Deleting a leaf from an *n*-vertex tree produces a tree with n 1 vertices.
- Proof:
 - A connected graph with at least two vertices has an edge. In an acyclic graph, an endpoint of a maximal nontrivial path has no neighbor other than its neighbor on the path. Hence the endpoints of such a path are leaves.
 - Let v be a leaf of a tree G, and let G' = G v.
 - A vertex of degree 1 belongs to no path connecting two other vertices.
 - Therefore, for $u, w \in V(G)$, every u, w-path in G also in G'.

- Every tree with at least two vertices has at least two leaves. Deleting a leaf from an *n*-vertex tree produces a tree with n 1 vertices.
- Proof:
 - A connected graph with at least two vertices has an edge. In an acyclic graph, an endpoint of a maximal nontrivial path has no neighbor other than its neighbor on the path. Hence the endpoints of such a path are leaves.
 - Let v be a leaf of a tree G, and let G' = G v.
 - A vertex of degree 1 belongs to no path connecting two other vertices.
 - Therefore, for $u, w \in V(G)$, every u, w-path in G also in G'.
 - Hence *G'* is connected.

- Every tree with at least two vertices has at least two leaves. Deleting a leaf from an *n*-vertex tree produces a tree with n 1 vertices.
- Proof:
 - A connected graph with at least two vertices has an edge. In an acyclic graph, an endpoint of a maximal nontrivial path has no neighbor other than its neighbor on the path. Hence the endpoints of such a path are leaves.
 - Let v be a leaf of a tree G, and let G' = G v.
 - A vertex of degree 1 belongs to no path connecting two other vertices.
 - Therefore, for $u, w \in V(G)$, every u, w-path in G also in G'.
 - Hence *G'* is connected.
 - Since deleting a vertex cannot create a cycle, G' also acyclic.

- Every tree with at least two vertices has at least two leaves. Deleting a leaf from an *n*-vertex tree produces a tree with n 1 vertices.
- Proof:
 - A connected graph with at least two vertices has an edge. In an acyclic graph, an endpoint of a maximal nontrivial path has no neighbor other than its neighbor on the path. Hence the endpoints of such a path are leaves.
 - Let v be a leaf of a tree G, and let G = G v.
 - A vertex of degree 1 belongs to no path connecting two other vertices.
 - Therefore, for $u, w \in V(G)$, every u, w-path in G also in G'.
 - Hence G' is connected.
 - Since deleting a vertex cannot create a cycle, G' also acyclic.
 - Thus G' is a tree with n-1 vertices.

- For an *n*-vertex graph *G* (with $n \ge 1$), the following are equivalent (and characterize the trees with *n* vertices)
 - G is connected and has no cycles
 - G is connected and has n-1 edges
 - G has n-1 edges and no cycles
 - For $u, v \in V(G)$, G has exactly one u, v-path

• Every edge of a tree is a cut-edge

- Every edge of a tree is a cut-edge
- Adding one edge to a tree forms exactly one cycle

- Every edge of a tree is a cut-edge
- Adding one edge to a tree forms exactly one cycle
- Every connected graph contains a spanning tree

• If T, T' are spanning trees of a connected graph G and $e \in E(T) - E(T')$, then there is an edge $e' \in E(T') - E(T)$ such that T - e + e' is a spanning tree of G.

Distance

- If G has a u, v-path, then the distance from u to v, written d(u, v) is the least length of a u, v-path.
 - If G has no such path, then $d(u, v) = \infty$.
- The diameter is $\max_{u,v \in V(G)} d(u, v)$

• There are $2^{\binom{n}{2}}$ simple graphs with vertex set $[n] = \{1, \ldots, n\}$. How many of these are trees?

- There are $2^{\binom{n}{2}}$ simple graphs with vertex set $[n] = \{1, \ldots, n\}$. How many of these are trees?
- There are n^{n-2} number of trees with vertex set [n] (Cayley's formula)

- There are $2^{\binom{n}{2}}$ simple graphs with vertex set $[n] = \{1, \ldots, n\}$. How many of these are trees?
- There are n^{n-2} number of trees with vertex set [n] (Cayley's formula)
- Prufer code:
 - Input: A tree *T* with vertex set [*n*]
 - **Output:** $f(T) = (a_1, a_2, \dots, a_{n-2})$
 - Iteration: At the *i*th step, delete the least remaining leaf, and let *a_i* be the neighbor of this leaf. Note *a_i*

- There are $2^{\binom{n}{2}}$ simple graphs with vertex set $[n] = \{1, \ldots, n\}$. How many of these are trees?
- There are n^{n-2} number of trees with vertex set [n] (Cayley's formula)
- Prufer code:
 - Input: A tree *T* with vertex set [*n*]
 - Output: $f(T) = (a_1, a_2, \dots, a_{n-2})$
 - Iteration: At the *i*th step, delete the least remaining leaf, and let *a_i* be the neighbor of this leaf. Note *a_i*

Exercise

• Given positive integers d_1, \ldots, d_n summing 2n - 2, where d_i is the degree of of *i*th vertex of the tree with vertex set [n], how many trees are possible?

Exercise

• Given positive integers d_1, \ldots, d_n summing 2n - 2, where d_i is the degree of of *i*th vertex of the tree with vertex set [n], how many trees are possible?

Thank you!