Discrete Mathematics

Graphs-II

Arijit Mondal Dept of CSE arijit@iitp.ac.in

• A graph is Eulerian if it has a closed trail containing all edges. An Eulerian circuit or Eulerian trail in a graph is a circuit or trail containing all edges.

- A graph is Eulerian if it has a closed trail containing all edges. An Eulerian circuit or Eulerian trail in a graph is a circuit or trail containing all edges.
- If every vertex of a graph G has degree at least 2 then G contains a cycle

- A graph is Eulerian if it has a closed trail containing all edges. An Eulerian circuit or Eulerian trail in a graph is a circuit or trail containing all edges.
- If every vertex of a graph G has degree at least 2 then G contains a cycle
 - Let *P* be a maximal path in *G* and let *u* be an endpoint of *P*,

- A graph is Eulerian if it has a closed trail containing all edges. An Eulerian circuit or Eulerian trail in a graph is a circuit or trail containing all edges.
- If every vertex of a graph G has degree at least 2 then G contains a cycle
 - Let *P* be a maximal path in *G* and let *u* be an endpoint of *P*,
 - Since *P* cannot be extended, every neighbor of *u* must already be a vertex in *P*

- A graph is Eulerian if it has a closed trail containing all edges. An Eulerian circuit or Eulerian trail in a graph is a circuit or trail containing all edges.
- If every vertex of a graph G has degree at least 2 then G contains a cycle
 - Let *P* be a maximal path in *G* and let *u* be an endpoint of *P*,
 - Since *P* cannot be extended, every neighbor of *u* must already be a vertex in *P*
 - Since u has degree at least 2, it has a neighbor v in V(P) via an edge not in P

- A graph is Eulerian if it has a closed trail containing all edges. An Eulerian circuit or Eulerian trail in a graph is a circuit or trail containing all edges.
- If every vertex of a graph *G* has degree at least 2 then *G* contains a cycle
 - Let *P* be a maximal path in *G* and let *u* be an endpoint of *P*,
 - Since *P* cannot be extended, every neighbor of *u* must already be a vertex in *P*
 - Since u has degree at least 2, it has a neighbor v in V(P) via an edge not in P
 - The edge *uv* completes a cycle with portion of *P* from *v* to *u*

- A graph is Eulerian if it has a closed trail containing all edges. An Eulerian circuit or Eulerian trail in a graph is a circuit or trail containing all edges.
- If every vertex of a graph G has degree at least 2 then G contains a cycle
 - Let *P* be a maximal path in *G* and let *u* be an endpoint of *P*,
 - Since *P* cannot be extended, every neighbor of *u* must already be a vertex in *P*
 - Since u has degree at least 2, it has a neighbor v in V(P) via an edge not in P
 - The edge *uv* completes a cycle with portion of *P* from *v* to *u*
- A graph G is Eulerian if and only if it has at most one non-trivial component and its vertices all have even degree

Vertex degree

- The degree of a vertex in a graph G, written $d_G(v)$ or d(v), is the number of edges incident to v, except that each loop at v counts twice.
- The maximum degree is $\Delta(G)$, the minimum is $\delta(G)$ and G is regular if $\Delta(G) = \delta(G)$

• If G is graph, then $\sum_{v \in V(G)} d(v) = 2 \cdot e(G)$.

• If G is graph, then $\sum_{v \in V(G)} d(v) = 2 \cdot e(G)$.

• Summing the degrees counts each edge twice since each edge has two ends and contributes to the degree at each endpoint.

• If G is graph, then
$$\sum_{v \in V(G)} d(v) = 2 \cdot e(G)$$
.

- Summing the degrees counts each edge twice since each edge has two ends and contributes to the degree at each endpoint.
- In a graph G, the average vertex degree is $\frac{2e(G)}{n(G)}$, and hence

 $\delta(\mathbf{G}) \le \frac{2\mathbf{e}(\mathbf{G})}{\mathbf{n}(\mathbf{G})} \le \Delta(\mathbf{G})$

• If G is graph, then
$$\sum_{v \in V(G)} d(v) = 2 \cdot e(G)$$
.

- Summing the degrees counts each edge twice since each edge has two ends and contributes to the degree at each endpoint.
- In a graph *G*, the average vertex degree is $\frac{2e(G)}{n(G)}$, and hence $\delta(G) \leq \frac{2e(G)}{n(G)} \leq \Delta(G)$
- A k-regular graph with n vertices has $\frac{nk}{2}$ edges

Example

• For a simple graph *G* with vertices v_1, \ldots, v_n and $n \ge 3$,

$$e(G) = \frac{\sum_{i} e(G - v_i)}{n - 2} \text{ and } d_G(v_j) = \frac{\sum_{i} e(G - v_i)}{n - 2} - e(G - v_j)$$

Example

• For a simple graph *G* with vertices v_1, \ldots, v_n and $n \ge 3$,

$$e(G) = rac{\sum_i e(G - v_i)}{n-2}$$
 and $d_G(v_j) = rac{\sum_i e(G - v_i)}{n-2} - e(G - v_j)$

• Summing the degrees counts each edge twice since each edge has two ends and contributes to the degree at each endpoint.

Graphic sequences

The degree sequence of a graph is the list of vertex degrees, usually written in non-increasing order, as d₁ ≥ d₂ ≥ ... ≥ d_n

Graphic sequences

- The degree sequence of a graph is the list of vertex degrees, usually written in non-increasing order, as d₁ ≥ d₂ ≥ ... ≥ dn
- The nonnegative integers d_1, d_2, \ldots, d_n are vertex degrees of some graph if and only if $\sum_i d_i$ is even
- For n > 1, an integer list d of size n is graphic if and only if d' is graphic, where d' is obtained from d by deleting its largest element Δ and subtracting 1 from its Δ next largest elements. The only 1-element graphic sequence is $d_1 = 0$.

• In a league with two divisions of 13 teams each, determine whether it is possible to schedule a season with each team playing nine games against teams within its division and, four games against teams in the other division.

- Use complete graphs and counting arguments (not algebra!) to prove
 - $\binom{n}{2} = \binom{k}{2} + k(n-k) + \binom{n-k}{2}$ for $0 \le k \le n$

• Use complete graphs and counting arguments (not algebra!) to prove

•
$$\binom{n}{2} = \binom{k}{2} + k(n-k) + \binom{n-k}{2}$$
 for $0 \le k \le n$
• If $\sum_{i} n_i = n$ then $\sum_{i} \binom{n_i}{2} \le \binom{n}{2}$

• Prove that the number of simple even graphs with vertex set [n] is $2^{\binom{n-1}{2}}$

- Which of the following are graphic sequences? Provide a construction or a proof of impossibility for each.
 - 5, 5, 4, 3, 2, 2, 2, 1
 - 5, 5, 4, 4, 2, 2, 1, 1
 - 5, 5, 5, 3, 2, 2, 1, 1
 - 5, 5, 5, 4, 2, 1, 1, 1

• Count the cycles of length n in K_n and the cycles of length 2n in $K_{n,n}$.

• Determine which pairs of graphs below are isomorphic.

• Let G be the graph with vertex set $\{1, \ldots, 15\}$ in which *i* and *j* are adjacent if and only if their greatest common factor exceeds 1. Count the components of G and determine the maximum length of a path in G.

• Determine the values of m and n such that $K_{m,n}$ is Eulerian.

- Let G be an *n*-vertex simple graph, where n > 2. Determine the maximum possible number of edges in G under each of the following conditions.
 - G has an independent set of size a.
 - G has exactly k components.
 - G is disconnected.

• Let G_n be the graph whose vertices are the permutations of $\{1, \ldots, n\}$, with two permutations a_1, \ldots, a_n and b_1, \ldots, b_n adjacent if they differ by interchanging a pair of adjacent entries (G_3 shown below). Is G_n connected?

Thank you!