Discrete Mathematics

Graphs-II

Arijit Mondal
Dept of CSE
arijit@iitp.ac.in

Eulerian trail

- A graph is Eulerian if it has a closed trail containing all edges. An Eulerian circuit or Eulerian trail in a graph is a circuit or trail containing all edges.

Eulerian trail

- A graph is Eulerian if it has a closed trail containing all edges. An Eulerian circuit or Eulerian trail in a graph is a circuit or trail containing all edges.
- If every vertex of a graph G has degree at least 2 then G contains a cycle

Eulerian trail

- A graph is Eulerian if it has a closed trail containing all edges. An Eulerian circuit or Eulerian trail in a graph is a circuit or trail containing all edges.
- If every vertex of a graph G has degree at least 2 then G contains a cycle - Let P be a maximal path in G and let u be an endpoint of P,

Eulerian trail

- A graph is Eulerian if it has a closed trail containing all edges. An Eulerian circuit or Eulerian trail in a graph is a circuit or trail containing all edges.
- If every vertex of a graph G has degree at least 2 then G contains a cycle - Let P be a maximal path in G and let u be an endpoint of P,
- Since P cannot be extended, every neighbor of u must already be a vertex in P

Eulerian trail

- A graph is Eulerian if it has a closed trail containing all edges. An Eulerian circuit or Eulerian trail in a graph is a circuit or trail containing all edges.
- If every vertex of a graph G has degree at least 2 then G contains a cycle
- Let P be a maximal path in G and let u be an endpoint of P,
- Since P cannot be extended, every neighbor of u must already be a vertex in P
- Since u has degree at least 2 , it has a neighbor v in $V(P)$ via an edge not in P

Eulerian trail

- A graph is Eulerian if it has a closed trail containing all edges. An Eulerian circuit or Eulerian trail in a graph is a circuit or trail containing all edges.
- If every vertex of a graph G has degree at least 2 then G contains a cycle
- Let P be a maximal path in G and let u be an endpoint of P,
- Since P cannot be extended, every neighbor of u must already be a vertex in P
- Since u has degree at least 2 , it has a neighbor v in $V(P)$ via an edge not in P
- The edge $u v$ completes a cycle with portion of P from v to u

Eulerian trail

- A graph is Eulerian if it has a closed trail containing all edges. An Eulerian circuit or Eulerian trail in a graph is a circuit or trail containing all edges.
- If every vertex of a graph G has degree at least 2 then G contains a cycle
- Let P be a maximal path in G and let u be an endpoint of P,
- Since P cannot be extended, every neighbor of u must already be a vertex in P
- Since u has degree at least 2 , it has a neighbor v in $V(P)$ via an edge not in P
- The edge $u v$ completes a cycle with portion of P from v to u
- A graph G is Eulerian if and only if it has at most one non-trivial component and its vertices all have even degree

Vertex degree

- The degree of a vertex in a graph G, written $d_{G}(v)$ or $d(v)$, is the number of edges incident to v, except that each loop at v counts twice.
- The maximum degree is $\Delta(G)$, the minimum is $\delta(G)$ and G is regular if $\Delta(G)=\delta(G)$

Degree-Sum formula

- If G is graph, then $\sum_{v \in V(G)} d(v)=2 \cdot e(G)$.

Degree-Sum formula

- If G is graph, then $\sum_{v \in V(G)} d(v)=2 \cdot e(G)$.
- Summing the degrees counts each edge twice since each edge has two ends and contributes to the degree at each endpoint.

Degree-Sum formula

- If G is graph, then $\sum_{v \in V(G)} d(v)=2 \cdot e(G)$.
- Summing the degrees counts each edge twice since each edge has two ends and contributes to the degree at each endpoint.
- In a graph G, the average vertex degree is $\frac{2 e(G)}{n(G)}$, and hence

$$
\delta(G) \leq \frac{2 e(G)}{n(G)} \leq \Delta(G)
$$

Degree-Sum formula

- If G is graph, then $\sum_{v \in V(G)} d(v)=2 \cdot e(G)$.
- Summing the degrees counts each edge twice since each edge has two ends and contributes to the degree at each endpoint.
- In a graph G, the average vertex degree is $\frac{2 e(G)}{n(G)}$, and hence

$$
\delta(G) \leq \frac{2 e(G)}{n(G)} \leq \Delta(G)
$$

- A k-regular graph with n vertices has $\frac{n k}{2}$ edges

Example

- For a simple graph G with vertices v_{1}, \ldots, v_{n} and $n \geq 3$,

$$
e(G)=\frac{\sum_{i} e\left(G-v_{i}\right)}{n-2} \text { and } d_{G}\left(v_{j}\right)=\frac{\sum_{i} e\left(G-v_{i}\right)}{n-2}-e\left(G-v_{j}\right)
$$

Example

- For a simple graph G with vertices v_{1}, \ldots, v_{n} and $n \geq 3$,

$$
e(G)=\frac{\sum_{i} e\left(G-v_{i}\right)}{n-2} \text { and } d_{G}\left(v_{j}\right)=\frac{\sum_{i} e\left(G-v_{i}\right)}{n-2}-e\left(G-v_{j}\right)
$$

- Summing the degrees counts each edge twice since each edge has two ends and contributes to the degree at each endpoint.

Graphic sequences

- The degree sequence of a graph is the list of vertex degrees, usually written in non-increasing order, as $d_{1} \geq d_{2} \geq \ldots \geq d_{n}$

Graphic sequences

- The degree sequence of a graph is the list of vertex degrees, usually written in non-increasing order, as $d_{1} \geq d_{2} \geq \ldots \geq d_{n}$
- The nonnegative integers $d_{1}, d_{2}, \ldots, d_{n}$ are vertex degrees of some graph if and only if $\sum_{i} d_{i}$ is even
- For $n>1$, an integer list d of size n is graphic if and only if d^{\prime} is graphic, where d^{\prime} is obtained from d by deleting its largest element Δ and subtracting 1 from its Δ next largest elements. The only 1-element graphic sequence is $d_{1}=0$.

Exercise

- In a league with two divisions of 13 teams each, determine whether it is possible to schedule a season with each team playing nine games against teams within its division and,four games against teams in the other division.

Exercise

- Use complete graphs and counting arguments (not algebra!) to prove
- $\binom{n}{2}=\binom{k}{2}+k(n-k)+\binom{n-k}{2}$ for $0 \leq k \leq n$

Exercise

- Use complete graphs and counting arguments (not algebra!) to prove
- $\binom{n}{2}=\binom{k}{2}+k(n-k)+\binom{n-k}{2}$ for $0 \leq k \leq n$
- If $\sum_{i} n_{i}=n$ then $\sum_{i}\binom{n_{i}}{2} \leq\binom{ n}{2}$

Exercise

- Prove that the number of simple even graphs with vertex set $[n]$ is $2^{\binom{n-1}{2}}$

Exercise

- Which of the following are graphic sequences? Provide a construction or a proof of impossibility for each.
- $5,5,4,3,2,2,2,1$
- $5,5,4,4,2,2,1,1$
- $5,5,5,3,2,2,1,1$
- $5,5,5,4,2,1,1,1$

Exercise

- Count the cycles of length n in K_{n} and the cycles of length $2 n$ in $K_{n, n}$.

Exercise

- Determine which pairs of graphs below are isomorphic.

Exercise

- Let G be the graph with vertex set $\{1, \ldots, 15\}$ in which i and j are adjacent if and only if their greatest common factor exceeds 1 . Count the components of G and determine the maximum length of a path in G.

Exercise

- Determine the values of m and n such that $K_{m, n}$ is Eulerian.

Exercise

- Let G be an n-vertex simple graph, where $n>2$. Determine the maximum possible number of edges in G under each of the following conditions.
- G has an independent set of size a.
- G has exactly k components.
- G is disconnected.

Exercise

- Let G_{n} be the graph whose vertices are the permutations of $\{1, \ldots, n\}$, with two permutations a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n} adjacent if they differ by interchanging a pair of adjacent entries (G_{3} shown below). Is G_{n} connected?

Thante youl

