Discrete Mathematics

Counting

Arijit Mondal
Dept of CSE
arijit@iitp.ac.in

Combinatorics

- It is the study of arrangements of objects

Combinatorics

- It is the study of arrangements of objects
- Counting the number of arrangements with particular property is one of the primary concerns here
- Analyzing complexity of algorithms, discrete probabilities, etc. require knowledge of number of arrangements

Product rule

- If a procedure can be broken into sequence of two tasks and the first task can be performed in n_{1} ways and the second in n_{2} ways, then there are $n_{1} \times n_{2}$ number of ways to complete the whole task

Product rule

- If a procedure can be broken into sequence of two tasks and the first task can be performed in n_{1} ways and the second in n_{2} ways, then there are $n_{1} \times n_{2}$ number of ways to complete the whole task
- Example:
- There are three towns A, B, and C. Six roads go from A to B and four roads go from B to C. In how many ways one can drive from A to C ?

Product rule

- If a procedure can be broken into sequence of two tasks and the first task can be performed in n_{1} ways and the second in n_{2} ways, then there are $n_{1} \times n_{2}$ number of ways to complete the whole task
- Example:
- There are three towns A, B, and C. Six roads go from A to B and four roads go from B to C. In how many ways one can drive from A to C ?
- We call a natural number 'odd-looking' if all the digits of the number are odd. How many four-digit odd-looking numbers are there?

Product rule

- If a procedure can be broken into sequence of two tasks and the first task can be performed in n_{1} ways and the second in n_{2} ways, then there are $n_{1} \times n_{2}$ number of ways to complete the whole task
- Example:
- There are three towns A, B, and C. Six roads go from A to B and four roads go from B to C. In how many ways one can drive from A to C ?
- We call a natural number 'odd-looking' if all the digits of the number are odd. How many four-digit odd-looking numbers are there?
- How many functions are there from a set with m elements to a set with n elements?

Sum rule

- If a task can be done either in one of n_{1} ways or in one of n_{2} ways, where none of the set of n_{1} ways is the same as any of the set of n_{2} ways, then there are $n_{1}+n_{2}$ ways to do the task.

Sum rule

- If a task can be done either in one of n_{1} ways or in one of n_{2} ways, where none of the set of n_{1} ways is the same as any of the set of n_{2} ways, then there are $n_{1}+n_{2}$ ways to do the task.
- Example:
- The alphabet of a given language consists of three symbols namely A, B, and C. A word in the given language can contain at most 4 letters. How many words are there in the given language?

Sum rule

- If a task can be done either in one of n_{1} ways or in one of n_{2} ways, where none of the set of n_{1} ways is the same as any of the set of n_{2} ways, then there are $n_{1}+n_{2}$ ways to do the task.
- Example:
- The alphabet of a given language consists of three symbols namely A, B, and C. A word in the given language can contain at most 4 letters. How many words are there in the given language?
- How many ways are there to put one white king and one black king on a chess-board such that they do not attack each other?

Principle of inclusion-exclusion

- If a task can be done in either n_{1} ways or n_{2} ways, then the number of ways to do the task is $n_{1}+n_{2}$ minus the number of ways to do the task that are common to the two different ways.

Principle of inclusion-exclusion

- If a task can be done in either n_{1} ways or n_{2} ways, then the number of ways to do the task is $n_{1}+n_{2}$ minus the number of ways to do the task that are common to the two different ways.
- Example:
- How many bit strings of length eight either start with a 1 bit or end with the two bits 00 ?

Principle of inclusion-exclusion

- If a task can be done in either n_{1} ways or n_{2} ways, then the number of ways to do the task is $n_{1}+n_{2}$ minus the number of ways to do the task that are common to the two different ways.
- Example:
- How many bit strings of length eight either start with a 1 bit or end with the two bits 00 ?
- There are six letters in a given language. A word is a sequence of six letters, some pair of which are the same. How many words are there in the given language?

Example: Euler's ϕ function

- For $n \in \mathrm{Z}^{+}, n>2$, let $\phi(n)$ be the number of positive integers m, where $1 \leq m<n$ and $\operatorname{gcd}(m, n)=1$, that is, m, n are relatively prime. Find $\phi(n)$

Example

- How many ways are there to put eight rooks on a chessboard so that they do not attack each other?

Example

- There are N boys and N girls in a dance class. How many ways are there to arrange them in pairs for a dance?

The Pigeonhole Principle

- If k is a positive integer and $k+1$ or more objects are placed into k boxes, then there is at least one box containing two or more of the objects.

The Pigeonhole Principle

- If k is a positive integer and $k+1$ or more objects are placed into k boxes, then there is at least one box containing two or more of the objects.
- Generalized pigeonhole principle: If N objects are placed into k boxes, then there is at least one box containing at least $\lceil N / k\rceil$ objects

The Pigeonhole Principle

- If k is a positive integer and $k+1$ or more objects are placed into k boxes, then there is at least one box containing two or more of the objects.
- Generalized pigeonhole principle: If N objects are placed into k boxes, then there is at least one box containing at least $\lceil N / k\rceil$ objects
- Example:
- In any group of 27 English words, there must be at least two that begin with the same letter, because there are 26 letters in the English alphabet.

The Pigeonhole Principle

- If k is a positive integer and $k+1$ or more objects are placed into k boxes, then there is at least one box containing two or more of the objects.
- Generalized pigeonhole principle: If N objects are placed into k boxes, then there is at least one box containing at least $\lceil N / k\rceil$ objects
- Example:
- In any group of 27 English words, there must be at least two that begin with the same letter, because there are 26 letters in the English alphabet.
- Show that for every integer n there is a multiple of n that has only 0 s and $1 s$ in its decimal expansion.

Exercise

- During a month with 30 days, a baseball team plays at least one game a day, but no more than 45 games. Show that there must be a period of some number of consecutive days during which the team must play exactly 14 games.

Exercise

- Show that an equilateral triangle cannot be covered completely by two smaller equilateral triangles.

Exercise

- Prove that there exists a power of three which ends with the digits 001 in decimal notation

Permutation

- In how many ways can we select three students from a group of five students to stand in line for a picture? In how many ways can we arrange all five of these students in a line for a picture?

Permutation

- In how many ways can we select three students from a group of five students to stand in line for a picture? In how many ways can we arrange all five of these students in a line for a picture?
- A permutation of a set of distinct objects is an ordered arrangement of the objects.
- An ordered permutation of r elements of a set is called a r-permutation.
- It is denoted as $P(n, r)$ or ${ }^{n} P_{r}$
- $P(n, r)=n \cdot(n-1) \cdots(n-r+1)=\frac{n!}{(n-r)!}$

Combination

- An unordered selection of objects

Combination

- An unordered selection of objects
- How many different committees of three students can be formed from a group of four students?

Combination

- An unordered selection of objects
- How many different committees of three students can be formed from a group of four students?
- An r-combination of elements of a set is an unordered selection of r elements from the set.

Combination

- An unordered selection of objects
- How many different committees of three students can be formed from a group of four students?
- An r-combination of elements of a set is an unordered selection of r elements from the set.
- It is denoted as $C(n, r)$ or ${ }^{n} C_{r}$ or $\binom{n}{r}$

Combination

- An unordered selection of objects
- How many different committees of three students can be formed from a group of four students?
- An r-combination of elements of a set is an unordered selection of r elements from the set.
- It is denoted as $C(n, r)$ or ${ }^{n} C_{r}$ or $\binom{n}{r}$
- $C(n, r)=\frac{n \cdot(n-1) \cdots(n-r+1)}{r!}=\frac{n!}{(n-r)!r!}$

Combination

- An unordered selection of objects
- How many different committees of three students can be formed from a group of four students?
- An r-combination of elements of a set is an unordered selection of r elements from the set.
- It is denoted as $C(n, r)$ or ${ }^{n} C_{r}$ or $\binom{n}{r}$
- $C(n, r)=\frac{n \cdot(n-1) \cdots(n-r+1)}{r!}=\frac{n!}{(n-r)!r!}$
- Also, $\binom{n}{r}=\binom{n}{n-r}$

Combination

- An unordered selection of objects
- How many different committees of three students can be formed from a group of four students?
- An r-combination of elements of a set is an unordered selection of r elements from the set.
- It is denoted as $C(n, r)$ or ${ }^{n} C_{r}$ or $\binom{n}{r}$
- $C(n, r)=\frac{n \cdot(n-1) \cdots(n-r+1)}{r!}=\frac{n!}{(n-r)!r!}$
- Also, $\binom{n}{r}=\binom{n}{n-r}$
- Other representations: $\binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r}=\frac{n}{r}\binom{n-1}{r-1}$

Generalized Permutation

- Repetition of elements are allowed

Generalized Permutation

- Repetition of elements are allowed
- The number of r-permutations of a set of n objects with repetition allowed is n^{r}

Generalized Combination

- There are $C(n+r-1, r)=C(n+r-1, n-1) r$-combinations from a set with n elements when repetition of elements is allowed.

Generalized Combination

- There are $C(n+r-1, r)=C(n+r-1, n-1) r$-combinations from a set with n elements when repetition of elements is allowed.
- Consider the situation when when we have $(n-1)$ bars and r^{*}. Now, we need to permute $n-1$ bars and r stars.
$* * * \| * \mid *$

Generalized Combination

- There are $C(n+r-1, r)=C(n+r-1, n-1) r$-combinations from a set with n elements when repetition of elements is allowed.
- Consider the situation when when we have $(n-1)$ bars and r^{*}. Now, we need to permute $n-1$ bars and r stars.
$* * * \| * \mid *$
- Example:
- Suppose that a cookie shop has four different kinds of cookies. How many different ways can six cookies be chosen?

Permutation with indistinguishable objects

- The number of different permutations of n objects, where there are n_{1} indistinguishable objects of type $1, n_{2}$ indistinguishable objects of type $2, \ldots$, and n_{k} indistinguishable objects of type k, is

Permutation with indistinguishable objects

- The number of different permutations of n objects, where there are n_{1} indistinguishable objects of type $1, n_{2}$ indistinguishable objects of type $2, \ldots$, and n_{k} indistinguishable objects of type k, is
$\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!}$

Distributing objects into boxes

- Distinguishable objects and distinguishable boxes
- The number of ways to distribute n distinguishable objects into k distinguishable boxes so that n_{i} objects are placed into box $i, i=1,2, \ldots, k$, equals

Distributing objects into boxes

- Distinguishable objects and distinguishable boxes
- The number of ways to distribute n distinguishable objects into k distinguishable boxes so that n_{i} objects are placed into box $i, i=1,2, \ldots, k$, equals n !

$$
\overline{n_{1}!n_{2}!\cdots n_{k}!}
$$

Distributing objects into boxes

- Distinguishable objects and distinguishable boxes
- The number of ways to distribute n distinguishable objects into k distinguishable boxes so that n_{i} objects are placed into box $i, i=1,2, \ldots, k$, equals $n!$

$$
\overline{n_{1}!n_{2}!\cdots n_{k}!}
$$

- Indistinguishable objects and distinguishable boxes

Distributing objects into boxes

- Distinguishable objects and distinguishable boxes
- The number of ways to distribute n distinguishable objects into k distinguishable boxes so that n_{i} objects are placed into box $i, i=1,2, \ldots, k$, equals n !

$$
\overline{n_{1}!n_{2}!\cdots n_{k}!}
$$

- Indistinguishable objects and distinguishable boxes
- Same as counting the number of n-combinations for a set with k elements when repetitions are allowed

Distributing objects into boxes

- Distinguishable objects and distinguishable boxes
- The number of ways to distribute n distinguishable objects into k distinguishable boxes so that n_{i} objects are placed into box $i, i=1,2, \ldots, k$, equals

$$
\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!}
$$

- Indistinguishable objects and distinguishable boxes
- Same as counting the number of n-combinations for a set with k elements when repetitions are allowed
- Distinguishable objects and indistinguishable boxes
- Let $S(n, j)$ be the number of ways to allocate n distinguishable objects in j indistinguishable boxes such that no box is empty

$$
S(n, j)=\frac{1}{j!} \sum_{i=0}^{j-1}(-1)^{i}\binom{j}{i}(j-i)^{n}
$$

- Stirling number of the second type

Exercise

- A group of n fans of the winning IPL team throw their hats high into the air. The hats come back randomly, one hat to each of the n fans. How many ways $h(n, k)$ are there for exactly k fans to their own hats back?

Exercise

- $2 n$ players are participating in a chess tournament. Find the number P_{n} of pairings for the first round.

Exercise

- Find a closed formula for $S_{n}=\sum_{k=1}^{n}\binom{n}{k} k^{2}$

Exercise

- Consider all $2^{n}-1$ non-empty subsets of the set $\{1,2, \ldots, n\}$. For every such subset, we find the product of the reciprocals of each of its elements. Find the sum of all these products.

Exercise

- Find the number of integers from 0 through 999999 that have no two equal neighboring digits in their decimal representation.

Exercise

- A rook stands on the leftmost box of a 1×30 strip of squares and can shift any number of boxes to the right in one move.
i) How many ways are there for the rook to reach the rightmost box?
ii) How many ways are there to reach the rightmost box in exactly 7 moves?

Exercise

- Within a table of m rows and n columns a box is marked at the intersection of the p th row and the q th column. How many of the rectangles formed by the boxes of the table contain the marked box?

Thante youl

