Discrete Mathematics

Mathematical Induction

Arijit Mondal

Dept of CSE

arijit@iitp.ac.in

• Integers - Z, Rationals - Q, Reals - R

- Integers Z, Rationals Q, Reals R
- Given any two distinct integers *x* and *y*, we can have either *x* < *y* or *x* > *y*

- Integers Z, Rationals Q, Reals R
- Given any two distinct integers *x* and *y*, we can have either *x* < *y* or *x* > *y*
- Suppose we want to express Z⁺

 $\mathsf{Z}^+ = \{ x \in \mathsf{Z} | x > 0 \} = \{ x \in \mathsf{Z} | x \ge 1 \}$

- Integers Z, Rationals Q, Reals R
- Given any two distinct integers *x* and *y*, we can have either *x* < *y* or *x* > *y*
- Suppose we want to express Z⁺

 $\mathsf{Z}^+ = \{ x \in \mathsf{Z} | x > 0 \} = \{ x \in \mathsf{Z} | x \ge 1 \}$

• How about Q⁺ and R⁺?

- Integers Z, Rationals Q, Reals R
- Given any two distinct integers *x* and *y*, we can have either *x* < *y* or *x* > *y*
- Suppose we want to express Z⁺

 $\mathsf{Z}^+ = \{ x \in \mathsf{Z} | x > 0 \} = \{ x \in \mathsf{Z} | x \ge 1 \}$

• How about Q⁺ and R⁺?

 $Q^+ = \{x \in Q | x > 0\}$ and $R^+ = \{x \in R | x > 0\}$

- Integers Z, Rationals Q, Reals R
- Given any two distinct integers *x* and *y*, we can have either *x* < *y* or *x* > *y*
- Suppose we want to express Z⁺

 $\mathsf{Z}^+ = \{ x \in \mathsf{Z} | x > 0 \} = \{ x \in \mathsf{Z} | x \ge 1 \}$

• How about Q⁺ and R⁺?

 $\mathsf{Q}^+ = \{x \in \mathsf{Q} | x > 0\}$ and $\mathsf{R}^+ = \{x \in \mathsf{R} | x > 0\}$

• Every non-empty subset of Z⁺ contains a least / smallest element. This is not true for Q⁺, R⁺

- Let S(n) denote an open mathematical statement that involves one or more occurrences of the variable n, which represents a positive integer
 - a) If S(1) is true; and
 - b) If whenever $\mathcal{S}(k)$ is true then $\mathcal{S}(k+1)$ is true (arbitrary $k\in\mathsf{Z}^+$)
 - Then S(n) is true for all $n \in Z^+$

• Let S(n) denote an open mathematical statement that involves one or more occurrences of the variable n, which represents a positive integer

a) If S(1) is true; and

b) If whenever S(k) is true then S(k+1) is true (arbitrary $k \in Z^+$) Then S(n) is true for all $n \in Z^+$

• Proof:

• Let S(n) be an open statement satisfying (a) and (b). Let $F = \{t \in Z^+ | S(t) \text{ is false}\}$

• Let S(n) denote an open mathematical statement that involves one or more occurrences of the variable n, which represents a positive integer

a) If S(1) is true; and

b) If whenever S(k) is true then S(k+1) is true (arbitrary $k\in Z^+$) Then S(n) is true for all $n\in Z^+$

- Let S(n) be an open statement satisfying (a) and (b). Let $F = \{t \in Z^+ | S(t) \text{ is false}\}$
- We wish to prove that $F = \emptyset$, so to obtain a contradiction we assume $F \neq \emptyset$

• Let S(n) denote an open mathematical statement that involves one or more occurrences of the variable n, which represents a positive integer

a) If S(1) is true; and

b) If whenever S(k) is true then S(k+1) is true (arbitrary $k\in Z^+$) Then S(n) is true for all $n\in Z^+$

- Let S(n) be an open statement satisfying (a) and (b). Let $F = \{t \in Z^+ | S(t) \text{ is false}\}$
- We wish to prove that $F = \emptyset$, so to obtain a contradiction we assume $F \neq \emptyset$
- By well-ordering principle, *F* has a least element *m*.

• Let S(n) denote an open mathematical statement that involves one or more occurrences of the variable n, which represents a positive integer

a) If S(1) is true; and

b) If whenever S(k) is true then S(k+1) is true (arbitrary $k\in Z^+$) Then S(n) is true for all $n\in Z^+$

- Let S(n) be an open statement satisfying (a) and (b). Let $F = \{t \in Z^+ | S(t) \text{ is false}\}$
- We wish to prove that $F = \emptyset$, so to obtain a contradiction we assume $F \neq \emptyset$
- By well-ordering principle, *F* has a least element *m*.
- Since S(1) is true, hence, $m \neq 1$, so, m > 1. Consequently $m 1 \in \mathsf{Z}^+$

• Let S(n) denote an open mathematical statement that involves one or more occurrences of the variable n, which represents a positive integer

a) If S(1) is true; and

b) If whenever S(k) is true then S(k+1) is true (arbitrary $k\in Z^+$) Then S(n) is true for all $n\in Z^+$

- Let S(n) be an open statement satisfying (a) and (b). Let $F = \{t \in Z^+ | S(t) \text{ is false}\}$
- We wish to prove that $F = \emptyset$, so to obtain a contradiction we assume $F \neq \emptyset$
- By well-ordering principle, *F* has a least element *m*.
- Since S(1) is true, hence, $m \neq 1$, so, m > 1. Consequently $m 1 \in \mathsf{Z}^+$
- With $m-1 \notin F$, we have S(m-1) true. So, by condition (b), S((m-1)+1) = S(m) is true and it contradicts $m \in F$.

• Let S(n) denote an open mathematical statement that involves one or more occurrences of the variable n, which represents a positive integer

a) If S(1) is true; and

b) If whenever S(k) is true then S(k+1) is true (arbitrary $k\in Z^+$) Then S(n) is true for all $n\in Z^+$

- Let S(n) be an open statement satisfying (a) and (b). Let $F = \{t \in Z^+ | S(t) \text{ is false}\}$
- We wish to prove that $F = \emptyset$, so to obtain a contradiction we assume $F \neq \emptyset$
- By well-ordering principle, *F* has a least element *m*.
- Since S(1) is true, hence, $m \neq 1$, so, m > 1. Consequently $m 1 \in \mathsf{Z}^+$
- With $m-1 \notin F$, we have S(m-1) true. So, by condition (b), S((m-1)+1) = S(m) is true and it contradicts $m \in F$.
- Hence $F \in \emptyset$

Mathematical induction (contd.)

- Let S(n) denote an open mathematical statement that involves one or more occurrences of the variable n, which represents a positive integer
 - a) If $S(n_0)$ is true for some $n_0 \in \mathsf{Z}^+$; and

b) If whenever S(k) is true then S(k+1) is true (arbitrary $k \in Z^+$)

Then S(n) is true for all $n \ge n_0$

Mathematical induction (contd.)

- Let S(n) denote an open mathematical statement that involves one or more occurrences of the variable n, which represents a positive integer
 - a) If $S(n_0)$ is true for some $n_0 \in Z^+$; and

b) If whenever S(k) is true then S(k+1) is true (arbitrary $k \in Z^+$) Then S(n) is true for all $n \ge n_0$

• $[S(n_0) \land [\forall k \ge n_0[S(k) \Rightarrow S(k+1)]]] \Rightarrow \forall n \ge n_0S(n)$

• Prove that,
$$\sum_{k=1}^{n} H_k = (n+1)H_n - n$$
 where $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$

• Prove that,
$$\sum_{k=1}^{n} H_k = (n+1)H_n - n$$
 where $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$

• Prove that,
$$\sum_{k=1}^{n} H_k = (n+1)H_n - n$$
 where $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$

• Base case: Consider
$$n = 1$$
. $\sum_{k=1}^{1} H_k = H_1 = 1 = 2 \cdot 1 - 1 = (1+1)H_1 - 1$

• Prove that,
$$\sum_{k=1}^{n} H_k = (n+1)H_n - n$$
 where $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$

• Base case: Consider
$$n = 1$$
. $\sum_{k=1}^{1} H_k = H_1 = 1 = 2 \cdot 1 - 1 = (1+1)H_1 - 1$
• Inductive step: We assume the truth of $S(k) = \sum_{j=1}^{k} H_j = (k+1)H_k - k$.

• Prove that,
$$\sum_{k=1}^{n} H_k = (n+1)H_n - n$$
 where $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$

• Base case: Consider
$$n = 1$$
. $\sum_{k=1}^{1} H_k = H_1 = 1 = 2 \cdot 1 - 1 = (1+1)H_1 - 1$
• Inductive step: We assume the truth of $S(k) = \sum_{j=1}^{k} H_j = (k+1)H_k - k$.

• Prove that,
$$\sum_{k=1}^{n} H_k = (n+1)H_n - n$$
 where $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$

• Proof:

• Base case: Consider
$$n = 1$$
. $\sum_{k=1}^{1} H_k = H_1 = 1 = 2 \cdot 1 - 1 = (1+1)H_1 - 1$

• Inductive step: We assume the truth of $S(k) = \sum_{j=1}^{k} H_j = (k+1)H_k - k$.

$$\sum_{j=1}^{k+1} H_j = \sum_{j=1}^k H_j + H_{k+1}$$

• Prove that,
$$\sum_{k=1}^{n} H_k = (n+1)H_n - n$$
 where $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$

• Proof:

• Base case: Consider
$$n = 1$$
. $\sum_{k=1}^{1} H_k = H_1 = 1 = 2 \cdot 1 - 1 = (1+1)H_1 - 1$

• Inductive step: We assume the truth of $S(k) = \sum_{j=1}^{k} H_j = (k+1)H_k - k$.

$$\sum_{j=1}^{k+1} H_j = \sum_{j=1}^{k} H_j + H_{k+1} = [(k+1)H_k - k] + H_{k+1}$$

• Prove that,
$$\sum_{k=1}^{n} H_k = (n+1)H_n - n$$
 where $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$

• Proof:

• Base case: Consider
$$n = 1$$
. $\sum_{k=1}^{1} H_k = H_1 = 1 = 2 \cdot 1 - 1 = (1+1)H_1 - 1$

• Inductive step: We assume the truth of $S(k) = \sum_{j=1}^{k} H_j = (k+1)H_k - k$.

$$\sum_{j=1}^{k+1} H_j = \sum_{j=1}^{k} H_j + H_{k+1} = [(k+1)H_k - k] + H_{k+1}$$
$$= (k+1)\left[H_{k+1} - \frac{1}{k+1}\right] - k + H_{k+1} = (k+2)H_{k+1} - (k+1)$$

• Prove that,
$$S(n) = \sum_{k=1}^{n} k = 1 + 2 + 3 + 4 + \dots + n = \frac{n^2 + n + 2}{2}$$

• Prove that,
$$S(n) = \sum_{k=1}^{n} k = 1 + 2 + 3 + 4 + \dots + n = \frac{n^2 + n + 2}{2}$$

• Prove that,
$$S(n) = \sum_{k=1}^{n} k = 1 + 2 + 3 + 4 + \dots + n = \frac{n^2 + n + 2}{2}$$

• We assume the truth of
$$S(k) = \sum_{j=1}^{k} j = \frac{k^2 + k + 2}{2}$$
. We need to show

• Prove that,
$$S(n) = \sum_{k=1}^{n} k = 1 + 2 + 3 + 4 + \dots + n = \frac{n^2 + n + 2}{2}$$

• We assume the truth of
$$S(k) = \sum_{j=1}^{k} j = \frac{k^2 + k + 2}{2}$$
. We need to show
$$S(k+1) = \sum_{j=1}^{k+1} = 1 + 2 + \dots + (k+1) = \frac{(k+1)^2 + (k+1) + 2}{2} = \frac{k^2 + 3k + 4}{2}$$

• Prove that,
$$S(n) = \sum_{k=1}^{n} k = 1 + 2 + 3 + 4 + \dots + n = \frac{n^2 + n + 2}{2}$$

• Proof:

• We assume the truth of $S(k) = \sum_{j=1}^{k} j = \frac{k^2 + k + 2}{2}$. We need to show $S(k+1) = \sum_{j=1}^{k+1} = 1 + 2 + \dots + (k+1) = \frac{(k+1)^2 + (k+1) + 2}{2} = \frac{k^2 + 3k + 4}{2}$ • Now we have $\sum_{j=1}^{k+1} j = \sum_{j=1}^{k} j + (k+1) = \frac{k^2 + k + 2}{2} + (k+1) = \frac{k^2 + 3k + 4}{2}$

• Prove that,
$$S(n) = \sum_{k=1}^{n} k = 1 + 2 + 3 + 4 + \dots + n = \frac{n^2 + n + 2}{2}$$

• Proof:

• We assume the truth of $S(k) = \sum_{j=1}^{k} j = \frac{k^2 + k + 2}{2}$. We need to show $S(k+1) = \sum_{j=1}^{k+1} = 1 + 2 + \dots + (k+1) = \frac{(k+1)^2 + (k+1) + 2}{2} = \frac{k^2 + 3k + 4}{2}$ • Now we have $\sum_{j=1}^{k+1} j = \sum_{j=1}^{k} j + (k+1) = \frac{k^2 + k + 2}{2} + (k+1) = \frac{k^2 + 3k + 4}{2}$

• Incorrect proof !!

• Prove that for every $n \in Z^+$ where $n \ge 14$, S(n): n can be written as a sum of 3's and/or 8's.

• Consider the integer sequence a_0, a_1, a_2, \ldots where $a_0 = 1, a_1 = 2, a_2 = 3$ and $a_n = a_{n-1} + a_{n-2} + a_{n-3}$ for all $n \ge 3$. Prove that $a_n \le 3^n$ for all $n \in \mathbb{Z}^+$

• Consider the following sequence of the numbers 2021, 20821, 208821, 2088821, 2088821, ... Find a prime number that divides all these numbers. Prove it also.

• For a given $n \in \mathbb{Z}^+$, a composition of n is an ordered sum of positive-integer summands summing to n. Find the number of compositions for 1, 2, 3, 4 and then generalize.

• $F_0 = 0, F_1 = 1, F_{n+2} = F_{n+1} + F_n$. Prove following • $\sum_{i=1}^{n} F_i^2 = F_n F_{n+1}$ • $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n = \begin{bmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{bmatrix}$ • $F_{n-1}F_{n+1} = F_n^2 + (-1)^n$

• Consider the following sequence a_n such that $a_0 = 9$ and $a_{n+1} = 3a_n^4 + 4a_n^3$ for n > 0. Show that a_{10} contains more than 1000 nines in decimal notation.

Thank you!