Discrete Mathematics

Mathematical Induction

Arijit Mondal
Dept of CSE
arijit@iitp.ac.in

Well-ordering

- Integers - Z, Rationals - Q, Reals - R

Well-ordering

- Integers - Z, Rationals - Q, Reals - R
- Given any two distinct integers x and y, we can have either $x<y$ or $x>y$

Well-ordering

- Integers - Z, Rationals - Q, Reals - R
- Given any two distinct integers x and y, we can have either $x<y$ or $x>y$
- Suppose we want to express Z^{+}

$$
\mathbf{Z}^{+}=\{x \in \mathbf{Z} \mid x>0\}=\{x \in \mathbf{Z} \mid x \geq 1\}
$$

Well-ordering

- Integers - Z, Rationals - Q, Reals - R
- Given any two distinct integers x and y, we can have either $x<y$ or $x>y$
- Suppose we want to express Z^{+}
$Z^{+}=\{x \in Z \mid x>0\}=\{x \in Z \mid x \geq 1\}$
- How about Q^{+}and R^{+}?

Well-ordering

- Integers - Z, Rationals - Q, Reals - R
- Given any two distinct integers x and y, we can have either $x<y$ or $x>y$
- Suppose we want to express Z^{+}
$Z^{+}=\{x \in Z \mid x>0\}=\{x \in \mathbf{Z} \mid x \geq 1\}$
- How about Q^{+}and R^{+}?

$$
\mathrm{Q}^{+}=\{x \in \mathrm{Q} \mid x>0\} \text { and } \mathrm{R}^{+}=\{x \in \mathrm{R} \mid x>0\}
$$

Well-ordering

- Integers - Z, Rationals - Q, Reals - R
- Given any two distinct integers x and y, we can have either $x<y$ or $x>y$
- Suppose we want to express Z^{+}
$Z^{+}=\{x \in Z \mid x>0\}=\{x \in Z \mid x \geq 1\}$
- How about Q^{+}and R^{+}?

$$
\mathrm{Q}^{+}=\{x \in \mathrm{Q} \mid x>0\} \text { and } \mathrm{R}^{+}=\{x \in \mathrm{R} \mid x>0\}
$$

- Every non-empty subset of Z^{+}contains a least / smallest element. This is not true for Q^{+}, R^{+}

Mathematical induction

- Let $S(n)$ denote an open mathematical statement that involves one or more occurrences of the variable n, which represents a positive integer
a) If $S(1)$ is true; and
b) If whenever $S(k)$ is true then $S(k+1)$ is true (arbitrary $k \in Z^{+}$) Then $S(n)$ is true for all $n \in \mathrm{Z}^{+}$

Mathematical induction

- Let $S(n)$ denote an open mathematical statement that involves one or more occurrences of the variable n, which represents a positive integer
a) If $S(1)$ is true; and
b) If whenever $S(k)$ is true then $S(k+1)$ is true (arbitrary $k \in Z^{+}$)

Then $S(n)$ is true for all $n \in Z^{+}$

- Proof:
- Let $S(n)$ be an open statement satisfying (a) and (b). Let $F=\left\{t \in \mathbf{Z}^{+} \mid S(t)\right.$ is false $\}$

Mathematical induction

- Let $S(n)$ denote an open mathematical statement that involves one or more occurrences of the variable n, which represents a positive integer
a) If $S(1)$ is true; and
b) If whenever $S(k)$ is true then $S(k+1)$ is true (arbitrary $k \in \mathrm{Z}^{+}$)

Then $S(n)$ is true for all $n \in Z^{+}$

- Proof:
- Let $S(n)$ be an open statement satisfying (a) and (b). Let $F=\left\{t \in Z^{+} \mid S(t)\right.$ is false $\}$
- We wish to prove that $F=\emptyset$, so to obtain a contradiction we assume $F \neq \emptyset$

Mathematical induction

- Let $S(n)$ denote an open mathematical statement that involves one or more occurrences of the variable n, which represents a positive integer
a) If $S(1)$ is true; and
b) If whenever $S(k)$ is true then $S(k+1)$ is true (arbitrary $k \in \mathrm{Z}^{+}$)

Then $S(n)$ is true for all $n \in Z^{+}$

- Proof:
- Let $S(n)$ be an open statement satisfying (a) and (b). Let $F=\left\{t \in Z^{+} \mid S(t)\right.$ is false $\}$
- We wish to prove that $F=\emptyset$, so to obtain a contradiction we assume $F \neq \emptyset$
- By well-ordering principle, F has a least element m.

Mathematical induction

- Let $S(n)$ denote an open mathematical statement that involves one or more occurrences of the variable n, which represents a positive integer
a) If $S(1)$ is true; and
b) If whenever $S(k)$ is true then $S(k+1)$ is true (arbitrary $k \in \mathrm{Z}^{+}$)

Then $S(n)$ is true for all $n \in Z^{+}$

- Proof:
- Let $S(n)$ be an open statement satisfying (a) and (b). Let $F=\left\{t \in Z^{+} \mid S(t)\right.$ is false $\}$
- We wish to prove that $F=\emptyset$, so to obtain a contradiction we assume $F \neq \emptyset$
- By well-ordering principle, F has a least element m.
- Since $S(1)$ is true, hence, $m \neq 1$, so, $m>1$. Consequently $m-1 \in \mathbf{Z}^{+}$

Mathematical induction

- Let $S(n)$ denote an open mathematical statement that involves one or more occurrences of the variable n, which represents a positive integer
a) If $S(1)$ is true; and
b) If whenever $S(k)$ is true then $S(k+1)$ is true (arbitrary $k \in \mathrm{Z}^{+}$)

Then $S(n)$ is true for all $n \in Z^{+}$

- Proof:
- Let $S(n)$ be an open statement satisfying (a) and (b). Let $F=\left\{t \in Z^{+} \mid S(t)\right.$ is false $\}$
- We wish to prove that $F=\emptyset$, so to obtain a contradiction we assume $F \neq \emptyset$
- By well-ordering principle, F has a least element m.
- Since $S(1)$ is true, hence, $m \neq 1$, so, $m>1$. Consequently $m-1 \in \mathbf{Z}^{+}$
- With $m-1 \notin F$, we have $S(m-1)$ true. So, by condition (b), $S((m-1)+1)=S(m)$ is true and it contradicts $m \in F$.

Mathematical induction

- Let $S(n)$ denote an open mathematical statement that involves one or more occurrences of the variable n, which represents a positive integer
a) If $S(1)$ is true; and
b) If whenever $S(k)$ is true then $S(k+1)$ is true (arbitrary $k \in \mathrm{Z}^{+}$)

Then $S(n)$ is true for all $n \in Z^{+}$

- Proof:
- Let $S(n)$ be an open statement satisfying (a) and (b). Let $F=\left\{t \in Z^{+} \mid S(t)\right.$ is false $\}$
- We wish to prove that $F=\emptyset$, so to obtain a contradiction we assume $F \neq \emptyset$
- By well-ordering principle, F has a least element m.
- Since $S(1)$ is true, hence, $m \neq 1$, so, $m>1$. Consequently $m-1 \in \mathbf{Z}^{+}$
- With $m-1 \notin F$, we have $S(m-1)$ true. So, by condition (b), $S((m-1)+1)=S(m)$ is true and it contradicts $m \in F$.
- Hence $F \in \emptyset$

Mathematical induction (contd.)

- Let $S(n)$ denote an open mathematical statement that involves one or more occurrences of the variable n, which represents a positive integer
a) If $S\left(n_{0}\right)$ is true for some $n_{0} \in \mathrm{Z}^{+}$; and
b) If whenever $S(k)$ is true then $S(k+1)$ is true (arbitrary $k \in Z^{+}$)

Then $S(n)$ is true for all $n \geq n_{0}$

Mathematical induction (contd.)

- Let $S(n)$ denote an open mathematical statement that involves one or more occurrences of the variable n, which represents a positive integer
a) If $S\left(n_{0}\right)$ is true for some $n_{0} \in \mathrm{Z}^{+}$; and
b) If whenever $S(k)$ is true then $S(k+1)$ is true (arbitrary $k \in Z^{+}$)

Then $S(n)$ is true for all $n \geq n_{0}$

- $\left[S\left(n_{0}\right) \wedge\left[\forall k \geq n_{0}[S(k) \Rightarrow S(k+1)]\right]\right] \Rightarrow \forall n \geq n_{0} S(n)$

Example: Harmonic series

- Prove that, $\sum_{k=1}^{n} H_{k}=(n+1) H_{n}-n$ where $H_{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots$

Example: Harmonic series

- Prove that, $\sum_{k=1}^{n} H_{k}=(n+1) H_{n}-n$ where $H_{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots$
- Proof:

Example: Harmonic series

- Prove that, $\sum_{k=1}^{n} H_{k}=(n+1) H_{n}-n$ where $H_{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots$
- Proof:
- Base case: Consider $n=1 . \sum_{k=1}^{1} H_{k}=H_{1}=1=2 \cdot 1-1=(1+1) H_{1}-1$

Example: Harmonic series

- Prove that, $\sum_{k=1}^{n} H_{k}=(n+1) H_{n}-n$ where $H_{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots$
- Proof:
- Base case: Consider $n=1 . \sum_{k=1}^{1} H_{k}=H_{1}=1=2 \cdot 1-1=(1+1) H_{1}-1$
- Inductive step: We assume the truth of $S(k)=\sum_{j=1}^{k} H_{j}=(k+1) H_{k}-k$.

Example: Harmonic series

- Prove that, $\sum_{k=1}^{n} H_{k}=(n+1) H_{n}-n$ where $H_{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots$
- Proof:
- Base case: Consider $n=1 . \sum_{k=1}^{1} H_{k}=H_{1}=1=2 \cdot 1-1=(1+1) H_{1}-1$
- Inductive step: We assume the truth of $S(k)=\sum_{j=1}^{k} H_{j}=(k+1) H_{k}-k$.

$$
\sum_{j=1}^{k+1} H_{j}
$$

Example: Harmonic series

- Prove that, $\sum_{k=1}^{n} H_{k}=(n+1) H_{n}-n$ where $H_{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots$
- Proof:
- Base case: Consider $n=1 . \sum_{k=1}^{1} H_{k}=H_{1}=1=2 \cdot 1-1=(1+1) H_{1}-1$
- Inductive step: We assume the truth of $S(k)=\sum_{j=1}^{k} H_{j}=(k+1) H_{k}-k$.

$$
\sum_{j=1}^{k+1} H_{j}=\sum_{j=1}^{k} H_{j}+H_{k+1}
$$

Example: Harmonic series

- Prove that, $\sum_{k=1}^{n} H_{k}=(n+1) H_{n}-n$ where $H_{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots$
- Proof:
- Base case: Consider $n=1 . \sum_{k=1}^{1} H_{k}=H_{1}=1=2 \cdot 1-1=(1+1) H_{1}-1$ - Inductive step: We assume the truth of $S(k)=\sum_{j=1}^{k} H_{j}=(k+1) H_{k}-k$.

$$
\sum_{j=1}^{k+1} H_{j}=\sum_{j=1}^{k} H_{j}+H_{k+1}=\left[(k+1) H_{k}-k\right]+H_{k+1}
$$

Example: Harmonic series

- Prove that, $\sum_{k=1}^{n} H_{k}=(n+1) H_{n}-n$ where $H_{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots$
- Proof:
- Base case: Consider $n=1 . \sum_{k=1}^{1} H_{k}=H_{1}=1=2 \cdot 1-1=(1+1) H_{1}-1$ - Inductive step: We assume the truth of $S(k)=\sum_{j=1}^{k} H_{j}=(k+1) H_{k}-k$.

$$
\begin{aligned}
\sum_{j=1}^{k+1} H_{j} & =\sum_{j=1}^{k} H_{j}+H_{k+1}=\left[(k+1) H_{k}-k\right]+H_{k+1} \\
& =(k+1)\left[H_{k+1}-\frac{1}{k+1}\right]-k+H_{k+1}=(k+2) H_{k+1}-(k+1)
\end{aligned}
$$

Prove by induction

- Prove that, $S(n)=\sum_{k=1}^{n} k=1+2+3+4+\cdots+n=\frac{n^{2}+n+2}{2}$

Prove by induction

- Prove that, $S(n)=\sum_{k=1}^{n} k=1+2+3+4+\cdots+n=\frac{n^{2}+n+2}{2}$
- Proof:

Prove by induction

- Prove that, $S(n)=\sum_{k=1}^{n} k=1+2+3+4+\cdots+n=\frac{n^{2}+n+2}{2}$
- Proof:
- We assume the truth of $S(k)=\sum_{j=1}^{k} j=\frac{k^{2}+k+2}{2}$. We need to show

Prove by induction

- Prove that, $S(n)=\sum_{k=1}^{n} k=1+2+3+4+\cdots+n=\frac{n^{2}+n+2}{2}$
- Proof:
- We assume the truth of $S(k)=\sum_{j=1}^{k} j=\frac{k^{2}+k+2}{2}$. We need to show

$$
S(k+1)=\sum_{j}^{k+1}=1+2+\cdots+(k+1)=\frac{(k+1)^{2}+(k+1)+2}{2}=\frac{k^{2}+3 k+4}{2}
$$

Prove by induction

- Prove that, $S(n)=\sum_{k=1}^{n} k=1+2+3+4+\cdots+n=\frac{n^{2}+n+2}{2}$
- Proof:
- We assume the truth of $S(k)=\sum_{j=1}^{k} j=\frac{k^{2}+k+2}{2}$. We need to show

$$
S(k+1)=\sum_{j}^{k+1}=1+2+\cdots+(k+1)=\frac{(k+1)^{2}+(k+1)+2}{2}=\frac{k^{2}+3 k+4}{2}
$$

- Now we have

$$
\sum_{j=1}^{k+1} j=\sum_{j=1}^{k} j+(k+1)=\frac{k^{2}+k+2}{2}+(k+1)=\frac{k^{2}+3 k+4}{2}
$$

Prove by induction

- Prove that, $S(n)=\sum_{k=1}^{n} k=1+2+3+4+\cdots+n=\frac{n^{2}+n+2}{2}$
- Proof:
- We assume the truth of $S(k)=\sum_{j=1}^{k} j=\frac{k^{2}+k+2}{2}$. We need to show

$$
S(k+1)=\sum_{j}^{k+1}=1+2+\cdots+(k+1)=\frac{(k+1)^{2}+(k+1)+2}{2}=\frac{k^{2}+3 k+4}{2}
$$

- Now we have

$$
\sum_{j=1}^{k+1} j=\sum_{j=1}^{k} j+(k+1)=\frac{k^{2}+k+2}{2}+(k+1)=\frac{k^{2}+3 k+4}{2}
$$

- Incorrect proof !!

Exercise-1

- Prove that for every $n \in Z^{+}$where $n \geq 14, S(n)$: n can be written as a sum of 3 's and/or 8 's.

Exercise-2

- Consider the integer sequence $a_{0}, a_{1}, a_{2}, \ldots$ where $a_{0}=1, a_{1}=2, a_{2}=3$ and $a_{n}=a_{n-1}+$ $a_{n-2}+a_{n-3}$ for all $n \geq 3$. Prove that $a_{n} \leq 3^{n}$ for all $n \in \mathbf{Z}^{+}$

Exercise-3

- Consider the following sequence of the numbers 2021, 20821, 208821, 2088821, 20888821, . . Find a prime number that divides all these numbers. Prove it also.

Exercise-4

- For a given $n \in \mathbf{Z}^{+}$, a composition of n is an ordered sum of positive-integer summands summing to n. Find the number of compositions for $1,2,3,4$ and then generalize.

Exercise-5

- $F_{0}=0, F_{1}=1, F_{n+2}=F_{n+1}+F_{n}$. Prove following
- $\sum_{i=1}^{n} F_{i}^{2}=F_{n} F_{n+1}$
- $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]^{n}=\left[\begin{array}{cc}F_{n+1} & F_{n} \\ F_{n} & F_{n-1}\end{array}\right]$
- $F_{n-1} F_{n+1}=F_{n}^{2}+(-1)^{n}$

Exercise-6

- Consider the following sequence a_{n} such that $a_{0}=9$ and $a_{n+1}=3 a_{n}^{4}+4 a_{n}^{3}$ for $n>0$. Show that a_{10} contains more than 1000 nines in decimal notation.

Thante youl

