Discrete Mathematics

Relations

Arijit Mondal

Dept of CSE

arijit@iitp.ac.in

• Let A and B be sets. A binary relation from A to B is a subset of $A \times B$

- Let A and B be sets. A binary relation from A to B is a subset of $A \times B$
- A binary relation from A to B is a set R of ordered pairs where the first element of each pair belongs to A and the second to B

- Let A and B be sets. A binary relation from A to B is a subset of $A \times B$
- A binary relation from A to B is a set R of ordered pairs where the first element of each pair belongs to A and the second to B
- Notation: $(a, b) \in R$, a R b

- Let A and B be sets. A binary relation from A to B is a subset of $A \times B$
- A binary relation from A to B is a set R of ordered pairs where the first element of each pair belongs to A and the second to B
- Notation: $(a, b) \in R$, a R b
- Example: Roll-No imes Registered-Subject, State imes City, etc.

- Let A and B be sets. A binary relation from A to B is a subset of $A \times B$
- A binary relation from A to B is a set R of ordered pairs where the first element of each pair belongs to A and the second to B
- Notation: $(a, b) \in R$, a R b
- Example: Roll-No imes Registered-Subject, State imes City, etc.
- Functions vs Relations

- Let A and B be sets. A binary relation from A to B is a subset of $A \times B$
- A binary relation from A to B is a set R of ordered pairs where the first element of each pair belongs to A and the second to B
- Notation: $(a, b) \in R$, a R b
- Example: Roll-No imes Registered-Subject, State imes City, etc.
- Functions vs Relations
- How many relations are there on a set with n elements?

Properties: Reflexive

- A relation R on a set A is reflexive if $(a, a) \in R$ for every element $a \in A$
- Which of the following are reflexive? (set of integers)

•
$$R_1 = \{(a, b) | a \le b\}$$

• $R_2 = \{(a, b) | a > b\}$
• $R_3 = \{(a, b) | a = b \text{ or } a = -b\}$
• $R_4 = \{(a, b) | a = b\}$
• $R_5 = \{(a, b) | a = b + 1\}$
• $R_6 = \{(a, b) | a + b \le 3\}$

A relation *R* on a set *A* is called symmetric if (*b*, *a*) ∈ *R* whenever (*a*, *b*) ∈ *R*, for all *a*, *b* ∈ *A*

- A relation *R* on a set *A* is called symmetric if (*b*, *a*) ∈ *R* whenever (*a*, *b*) ∈ *R*, for all *a*, *b* ∈ *A*
- A relation R on a set A such that for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$, then a = b is called antisymmetric

- A relation *R* on a set *A* is called symmetric if (*b*, *a*) ∈ *R* whenever (*a*, *b*) ∈ *R*, for all *a*, *b* ∈ *A*
- A relation R on a set A such that for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$, then a = b is called antisymmetric
 - $R_1 = \{(a, b) | a \le b\}$ • $R_2 = \{(a, b) | a > b\}$ • $R_3 = \{(a, b) | a = b \text{ or } a = -b\}$ • $R_4 = \{(a, b) | a = b\}$ • $R_5 = \{(a, b) | a = b + 1\}$ • $R_6 = \{(a, b) | a + b \le 3\}$

- A relation *R* on a set *A* is called symmetric if (*b*, *a*) ∈ *R* whenever (*a*, *b*) ∈ *R*, for all *a*, *b* ∈ *A*
- A relation R on a set A such that for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$, then a = b is called antisymmetric
 - $R_1 = \{(a, b) | a \le b\}$ • $R_2 = \{(a, b) | a > b\}$
 - $R_3 = \{(a, b) | a = b \text{ or } a = -b\}$
 - $R_4 = \{(a, b) | a = b\}$
 - $R_5 = \{(a, b) | a = b + 1\}$
 - $R_6 = \{(a, b) | a + b \le 3\}$
 - How to express symmetric/antisymmetric conditions using quantifiers?

Properties: Transitive

• A relation R on a set A is called transitive if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, for all $a, b, c \in A$.

Properties: Transitive

- A relation R on a set A is called transitive if whenever (a, b) ∈ R and (b, c) ∈ R, then (a, c) ∈ R, for all a, b, c ∈ A.
 - $R_1 = \{(a, b) | a \le b\}$ • $R_2 = \{(a, b) | a > b\}$ • $R_3 = \{(a, b) | a = b \text{ or } a = -b\}$ • $R_4 = \{(a, b) | a = b\}$ • $R_5 = \{(a, b) | a = b + 1\}$
 - $R_6 = \{(a, b) | a + b \le 3\}$

Properties: Transitive

- A relation R on a set A is called transitive if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, for all $a, b, c \in A$.
 - $R_1 = \{(a, b) | a \le b\}$ • $R_2 = \{(a, b) | a > b\}$
 - $R_2 = \{(a, b) | a > b\}$ • $R_3 = \{(a, b) | a = b \text{ or } a = -b\}$
 - $R_4 = \{(a, b) | a = b\}$
 - $R_5 = \{(a, b) | a = b + 1\}$
 - $R_6 = \{(a, b) | a + b \le 3\}$
 - How to express transitive condition using quantifiers?

Problem

• How many reflexive relations are there on a set with *n* elements?

Composition of relations

- Let *R* be a relation from a set *A* to a set *B* and *S* a relation from *B* to a set *C*. The composite of *R* and *S* is the relation consisting of ordered pairs (a, c), where $a \in A, c \in C$, and for which there exists an element $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. We denote the composite of *R* and *S* by $S \circ R$.
- Let R be a relation on the set A. The powers R^n are defined as
 - $R^1 = R$ and $R^{n+1} = R^n \circ R$
 - Let $R = \{(1,1), (2,1), (3,2), (4,3)\}$. Find R^2, R^3, R^4

Representation

• Using matrcies

Representation

- Using matrcies
- Using directed graph

• If *R* is a relation on a set *A*, then the closure of *R* with respect to *P*, if it exists, is the relation *S* on *A* with property *P* that contains *R* and is a subset of every subset of *A* × *A* containing *R* with property *P*.

- If *R* is a relation on a set *A*, then the closure of *R* with respect to *P*, if it exists, is the relation *S* on *A* with property *P* that contains *R* and is a subset of every subset of *A* × *A* containing *R* with property *P*.
 - Let $R = \{(1, 1), (1, 2), (2, 1), (3, 2)\}$ on the set $A = \{1, 2, 3\}$

- If *R* is a relation on a set *A*, then the closure of *R* with respect to *P*, if it exists, is the relation *S* on *A* with property *P* that contains *R* and is a subset of every subset of *A* × *A* containing *R* with property *P*.
 - Let $R = \{(1, 1), (1, 2), (2, 1), (3, 2)\}$ on the set $A = \{1, 2, 3\}$
 - Is it reflexive?

- If *R* is a relation on a set *A*, then the closure of *R* with respect to *P*, if it exists, is the relation *S* on *A* with property *P* that contains *R* and is a subset of every subset of *A* × *A* containing *R* with property *P*.
 - Let $R = \{(1,1), (1,2), (2,1), (3,2)\}$ on the set $A = \{1,2,3\}$
 - Is it reflexive?
 - What will be reflexive closure

- If *R* is a relation on a set *A*, then the closure of *R* with respect to *P*, if it exists, is the relation *S* on *A* with property *P* that contains *R* and is a subset of every subset of *A* × *A* containing *R* with property *P*.
 - Let $R = \{(1,1), (1,2), (2,1), (3,2)\}$ on the set $A = \{1,2,3\}$
 - Is it reflexive?
 - What will be reflexive closure
 - What will be symmetric closure

Transitive Closures

• Let *R* be a relation on a set *A*. The connectivity relation *R*^{*} consists of the pairs (*a*, *b*) such that there is a path of length at least one from *a* to *b* in *R*.

Transitive Closures

- Let *R* be a relation on a set *A*. The connectivity relation R^* consists of the pairs (a, b) such that there is a path of length at least one from *a* to *b* in *R*.
- The transitive closure of a relation R equals the connectivity relation R^* .

Transitive Closures

- Let *R* be a relation on a set *A*. The connectivity relation R^* consists of the pairs (a, b) such that there is a path of length at least one from *a* to *b* in *R*.
- The transitive closure of a relation R equals the connectivity relation R^* .
 - Let $R = \{(1,1), (1,2), (2,1), (3,2)\}$ on the set $A = \{1,2,3\}$
 - What will be transitive closure?

• A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive.

- A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive.
- Two elements a and b that are related by an equivalence relation are called equivalent. The notation $a \sim b$ is often used to denote that a and b are equivalent elements with respect to a particular equivalence relation.

- A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive.
- Two elements a and b that are related by an equivalence relation are called equivalent. The notation $a \sim b$ is often used to denote that a and b are equivalent elements with respect to a particular equivalence relation.
 - Let R be a relation on the set of integers such that aRb iff a = b or a = -b.
 R?

- A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive.
- Two elements a and b that are related by an equivalence relation are called equivalent. The notation $a \sim b$ is often used to denote that a and b are equivalent elements with respect to a particular equivalence relation.
 - Let R be a relation on the set of integers such that aRb iff a = b or a = -b.
 R?
 - Let R be a relation on the set of integers such that aRb iff a b is an integer

- A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive.
- Two elements a and b that are related by an equivalence relation are called equivalent. The notation $a \sim b$ is often used to denote that a and b are equivalent elements with respect to a particular equivalence relation.
 - Let R be a relation on the set of integers such that aRb iff a = b or a = -b. R?
 - Let R be a relation on the set of integers such that aRb iff a b is an integer
 - Congruence modulo

- A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive.
- Two elements a and b that are related by an equivalence relation are called equivalent. The notation $a \sim b$ is often used to denote that a and b are equivalent elements with respect to a particular equivalence relation.
 - Let R be a relation on the set of integers such that aRb iff a = b or a = -b.
 R?
 - Let R be a relation on the set of integers such that aRb iff a b is an integer
 - Congruence modulo
- Equivalence class
- Partition

Partial orderings

• A relation *R* on a set *S* is called a partial ordering or partial order if it is reflexive, antisymmetric, and transitive.

Partial orderings

- A relation *R* on a set *S* is called a partial ordering or partial order if it is reflexive, antisymmetric, and transitive.
- A set S together with a partial ordering R is called a partially ordered set, or poset, and is denoted by (S, R). Members of S are called elements of the poset.

Partial orderings

- A relation *R* on a set *S* is called a partial ordering or partial order if it is reflexive, antisymmetric, and transitive.
- A set S together with a partial ordering R is called a partially ordered set, or poset, and is denoted by (S, R). Members of S are called elements of the poset.
 - Is \geq a partial ordering in the set of intergers?

Partial orderings

- A relation *R* on a set *S* is called a partial ordering or partial order if it is reflexive, antisymmetric, and transitive.
- A set S together with a partial ordering R is called a partially ordered set, or poset, and is denoted by (S, R). Members of S are called elements of the poset.
 - Is \geq a partial ordering in the set of intergers?
 - Is a | b (a divides b) a partial ordering on the set of positive integers?

Partial orderings

- A relation *R* on a set *S* is called a partial ordering or partial order if it is reflexive, antisymmetric, and transitive.
- A set S together with a partial ordering R is called a partially ordered set, or poset, and is denoted by (S, R). Members of S are called elements of the poset.
 - Is \geq a partial ordering in the set of intergers?
 - Is a b (a divides b) a partial ordering on the set of positive integers?
 - Is inclusion relation \subseteq a partial ordering on the power set of a set *S*?

The elements *a* and *b* of a poset (S, ≼) are called comparable if either *a* ≼ *b* or *b* ≼ *a*. When *a* and *b* are elements of S such that neither *a* ≼ *b* nor *b* ≼ *a*, *a* and *b* are called incomparable.

- The elements *a* and *b* of a poset (S, ≼) are called comparable if either *a* ≼ *b* or *b* ≼ *a*. When *a* and *b* are elements of S such that neither *a* ≼ *b* nor *b* ≼ *a*, *a* and *b* are called incomparable.
- If (S, ≼) is a poset and every two elements of S are comparable, S is called a totally ordered or linearly ordered set, and ≼ is called a total order or a linear order. A totally ordered set is also called a chain.

- The elements *a* and *b* of a poset (S, ≼) are called comparable if either *a* ≼ *b* or *b* ≼ *a*. When *a* and *b* are elements of S such that neither *a* ≼ *b* nor *b* ≼ *a*, *a* and *b* are called incomparable.
- If (S, ≼) is a poset and every two elements of S are comparable, S is called a totally ordered or linearly ordered set, and ≼ is called a total order or a linear order. A totally ordered set is also called a chain.
- Example:
 - In the poset $(\mathbf{Z}^+,|)$ are 3 & 9 comparable? What is about 5 & 7?

- The elements *a* and *b* of a poset (S, ≼) are called comparable if either *a* ≼ *b* or *b* ≼ *a*. When *a* and *b* are elements of S such that neither *a* ≼ *b* nor *b* ≼ *a*, *a* and *b* are called incomparable.
- If (S, ≼) is a poset and every two elements of S are comparable, S is called a totally ordered or linearly ordered set, and ≼ is called a total order or a linear order. A totally ordered set is also called a chain.
- Example:
 - In the poset $(\mathbf{Z}^+,|)$ are 3 & 9 comparable? What is about 5 & 7?
 - Poset (\mathbf{Z}, \leq) total order?

- The elements *a* and *b* of a poset (S, ≼) are called comparable if either *a* ≼ *b* or *b* ≼ *a*. When *a* and *b* are elements of S such that neither *a* ≼ *b* nor *b* ≼ *a*, *a* and *b* are called incomparable.
- If (S, ≼) is a poset and every two elements of S are comparable, S is called a totally ordered or linearly ordered set, and ≼ is called a total order or a linear order. A totally ordered set is also called a chain.
- Example:
 - In the poset $(\mathbf{Z}^+,|)$ are 3 & 9 comparable? What is about 5 & 7?
 - Poset (\mathbf{Z}, \leq) total order?
- (*S*, *≼*) is a well-ordered set if it is a poset such that *≼* is a total ordering and every nonempty subset of *S* has a least element.

• Elements of posets that have certain extremal properties are imporant for many applications

- Elements of posets that have certain extremal properties are imporant for many applications
- An element *a* is maximal in the poset (S, \preccurlyeq) if there is no $b \in S$ such that $a \prec b$.
- An element *a* is minimal in the poset (S, \preccurlyeq) if there is no $b \in S$ such that $b \prec a$.

- Elements of posets that have certain extremal properties are imporant for many applications
- An element *a* is maximal in the poset (S, \preccurlyeq) if there is no $b \in S$ such that $a \prec b$.
- An element *a* is minimal in the poset (S, \preccurlyeq) if there is no $b \in S$ such that $b \prec a$.
- Sometimes there is an element in a poset that is greater than every other element. Such an element is called the greatest element.
- Similarly least element

- Elements of posets that have certain extremal properties are imporant for many applications
- An element *a* is maximal in the poset (S, \preccurlyeq) if there is no $b \in S$ such that $a \prec b$.
- An element *a* is minimal in the poset (S, \preccurlyeq) if there is no $b \in S$ such that $b \prec a$.
- Sometimes there is an element in a poset that is greater than every other element. Such an element is called the greatest element.
- Similarly least element
- The element x is called the least upper bound of the subset A if x is an upper bound that is less than every other upper bound of A
- The element *y* is called the greatest lower bound of *A* if *y* is a lower bound of *A* and *z* ≼ *y* whenever *z* is a lower bound of *A*

Lattices

- A partially ordered set in which every pair of elements has both a least upper bound and a greatest lower bound is called a lattice.
 - Is the poset $(\mathbf{Z}^+, |)$ a lattice?
 - Is the poset $(P(S), \subseteq)$ a lattice?

Thank you!