Discrete Mathematics

Relations

Arijit Mondal
Dept of CSE
arijit@iitp.ac.in

Relations

- Let A and B be sets. A binary relation from A to B is a subset of $A \times B$

Relations

- Let A and B be sets. A binary relation from A to B is a subset of $A \times B$
- A binary relation from A to B is a set R of ordered pairs where the first element of each pair belongs to A and the second to B

Relations

- Let A and B be sets. A binary relation from A to B is a subset of $A \times B$
- A binary relation from A to B is a set R of ordered pairs where the first element of each pair belongs to A and the second to B
- Notation: $(a, b) \in R, \quad a R b$

Relations

- Let A and B be sets. A binary relation from A to B is a subset of $A \times B$
- A binary relation from A to B is a set R of ordered pairs where the first element of each pair belongs to A and the second to B
- Notation: $(a, b) \in R, \quad a R b$
- Example: Roll-No \times Registered-Subject, State \times City, etc.

Relations

- Let A and B be sets. A binary relation from A to B is a subset of $A \times B$
- A binary relation from A to B is a set R of ordered pairs where the first element of each pair belongs to A and the second to B
- Notation: $(a, b) \in R, \quad a R b$
- Example: Roll-No \times Registered-Subject, State \times City, etc.
- Functions vs Relations

Relations

- Let A and B be sets. A binary relation from A to B is a subset of $A \times B$
- A binary relation from A to B is a set R of ordered pairs where the first element of each pair belongs to A and the second to B
- Notation: $(a, b) \in R, \quad a R b$
- Example: Roll-No \times Registered-Subject, State \times City, etc.
- Functions vs Relations
- How many relations are there on a set with n elements?

Properties: Reflexive

- A relation R on a set A is reflexive if $(a, a) \in R$ for every element $a \in A$
- Which of the following are reflexive? (set of integers)
- $R_{1}=\{(a, b) \mid a \leq b\}$
- $R_{2}=\{(a, b) \mid a>b\}$
- $R_{3}=\{(a, b) \mid a=b$ or $a=-b\}$
- $R_{4}=\{(a, b) \mid a=b\}$
- $R_{5}=\{(a, b) \mid a=b+1\}$
- $R_{6}=\{(a, b) \mid a+b \leq 3\}$

Properties: Symmetric

- A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$, for all $a, b \in A$

Properties: Symmetric

- A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$, for all $a, b \in A$
- A relation R on a set A such that for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$, then $a=b$ is called antisymmetric

Properties: Symmetric

- A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$, for all $a, b \in A$
- A relation R on a set A such that for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$, then $a=b$ is called antisymmetric
- $R_{1}=\{(a, b) \mid a \leq b\}$
- $R_{2}=\{(a, b) \mid a>b\}$
- $R_{3}=\{(a, b) \mid a=b$ or $a=-b\}$
- $R_{4}=\{(a, b) \mid a=b\}$
- $R_{5}=\{(a, b) \mid a=b+1\}$
- $R_{6}=\{(a, b) \mid a+b \leq 3\}$

Properties: Symmetric

- A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$, for all $a, b \in A$
- A relation R on a set A such that for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$, then $a=b$ is called antisymmetric
- $R_{1}=\{(a, b) \mid a \leq b\}$
- $R_{2}=\{(a, b) \mid a>b\}$
- $R_{3}=\{(a, b) \mid a=b$ or $a=-b\}$
- $R_{4}=\{(a, b) \mid a=b\}$
- $R_{5}=\{(a, b) \mid a=b+1\}$
- $R_{6}=\{(a, b) \mid a+b \leq 3\}$
- How to express symmetric/antisymmetric conditions using quantifiers?

Properties: Transitive

- A relation R on a set A is called transitive if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, for all $a, b, c \in A$.

Properties: Transitive

- A relation R on a set A is called transitive if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, for all $a, b, c \in A$.
- $R_{1}=\{(a, b) \mid a \leq b\}$
- $R_{2}=\{(a, b) \mid a>b\}$
- $R_{3}=\{(a, b) \mid a=b$ or $a=-b\}$
- $R_{4}=\{(a, b) \mid a=b\}$
- $R_{5}=\{(a, b) \mid a=b+1\}$
- $R_{6}=\{(a, b) \mid a+b \leq 3\}$

Properties: Transitive

- A relation R on a set A is called transitive if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, for all $a, b, c \in A$.
- $R_{1}=\{(a, b) \mid a \leq b\}$
- $R_{2}=\{(a, b) \mid a>b\}$
- $R_{3}=\{(a, b) \mid a=b$ or $a=-b\}$
- $R_{4}=\{(a, b) \mid a=b\}$
- $R_{5}=\{(a, b) \mid a=b+1\}$
- $R_{6}=\{(a, b) \mid a+b \leq 3\}$
- How to express transitive condition using quantifiers?

Problem

- How many reflexive relations are there on a set with n elements?

Composition of relations

- Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite of R and S is the relation consisting of ordered pairs (a, c), where $a \in A, c \in C$, and for which there exists an element $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. We denote the composite of R and S by $S \circ R$.
- Let R be a relation on the set A. The powers R^{n} are defined as

$$
R^{1}=R \text { and } R^{n+1}=R^{n} \circ R
$$

- Let $R=\{(1,1),(2,1),(3,2),(4,3)\}$. Find R^{2}, R^{3}, R^{4}

Representation

- Using matrcies

Representation

- Using matrcies
- Using directed graph

Closures

- If R is a relation on a set A, then the closure of R with respect to P, if it exists, is the relation S on A with property P that contains R and is a subset of every subset of $A \times A$ containing R with property P.

Closures

- If R is a relation on a set A, then the closure of R with respect to P, if it exists, is the relation S on A with property P that contains R and is a subset of every subset of $A \times A$ containing R with property P.
- Let $R=\{(1,1),(1,2),(2,1),(3,2)\}$ on the set $A=\{1,2,3\}$

Closures

- If R is a relation on a set A, then the closure of R with respect to P, if it exists, is the relation S on A with property P that contains R and is a subset of every subset of $A \times A$ containing R with property P.
- Let $R=\{(1,1),(1,2),(2,1),(3,2)\}$ on the set $A=\{1,2,3\}$
- Is it reflexive?

Closures

- If R is a relation on a set A, then the closure of R with respect to P, if it exists, is the relation S on A with property P that contains R and is a subset of every subset of $A \times A$ containing R with property P.
- Let $R=\{(1,1),(1,2),(2,1),(3,2)\}$ on the set $A=\{1,2,3\}$
- Is it reflexive?
- What will be reflexive closure

Closures

- If R is a relation on a set A, then the closure of R with respect to P, if it exists, is the relation S on A with property P that contains R and is a subset of every subset of $A \times A$ containing R with property P.
- Let $R=\{(1,1),(1,2),(2,1),(3,2)\}$ on the set $A=\{1,2,3\}$
- Is it reflexive?
- What will be reflexive closure
- What will be symmetric closure

Transitive Closures

- Let R be a relation on a set A. The connectivity relation R^{*} consists of the pairs (a, b) such that there is a path of length at least one from a to b in R.

Transitive Closures

- Let R be a relation on a set A. The connectivity relation R^{*} consists of the pairs (a, b) such that there is a path of length at least one from a to b in R.
- The transitive closure of a relation R equals the connectivity relation R^{*}.

Transitive Closures

- Let R be a relation on a set A. The connectivity relation R^{*} consists of the pairs (a, b) such that there is a path of length at least one from a to b in R.
- The transitive closure of a relation R equals the connectivity relation R^{*}.
- Let $R=\{(1,1),(1,2),(2,1),(3,2)\}$ on the set $A=\{1,2,3\}$
- What will be transitive closure?

Equivalence relations

- A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive.

Equivalence relations

- A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive.
- Two elements a and b that are related by an equivalence relation are called equivalent. The notation $a \sim b$ is often used to denote that a and b are equivalent elements with respect to a particular equivalence relation.

Equivalence relations

- A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive.
- Two elements a and b that are related by an equivalence relation are called equivalent. The notation $a \sim b$ is often used to denote that a and b are equivalent elements with respect to a particular equivalence relation.
- Let R be a relation on the set of integers such that $a R b$ iff $a=b$ or $a=-b$. R ?

Equivalence relations

- A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive.
- Two elements a and b that are related by an equivalence relation are called equivalent. The notation $a \sim b$ is often used to denote that a and b are equivalent elements with respect to a particular equivalence relation.
- Let R be a relation on the set of integers such that $a R b$ iff $a=b$ or $a=-b$. R ?
- Let R be a relation on the set of integers such that $a R b$ iff $a-b$ is an integer

Equivalence relations

- A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive.
- Two elements a and b that are related by an equivalence relation are called equivalent. The notation $a \sim b$ is often used to denote that a and b are equivalent elements with respect to a particular equivalence relation.
- Let R be a relation on the set of integers such that $a R b$ iff $a=b$ or $a=-b$. R ?
- Let R be a relation on the set of integers such that $a R b$ iff $a-b$ is an integer
- Congruence modulo

Equivalence relations

- A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive.
- Two elements a and b that are related by an equivalence relation are called equivalent. The notation $a \sim b$ is often used to denote that a and b are equivalent elements with respect to a particular equivalence relation.
- Let R be a relation on the set of integers such that $a R b$ iff $a=b$ or $a=-b$. R ?
- Let R be a relation on the set of integers such that $a R b$ iff $a-b$ is an integer
- Congruence modulo
- Equivalence class
- Partition

Partial orderings

- A relation R on a set S is called a partial ordering or partial order if it is reflexive, antisymmetric, and transitive.

Partial orderings

- A relation R on a set S is called a partial ordering or partial order if it is reflexive, antisymmetric, and transitive.
- A set S together with a partial ordering R is called a partially ordered set, or poset, and is denoted by (S, R). Members of S are called elements of the poset.

Partial orderings

- A relation R on a set S is called a partial ordering or partial order if it is reflexive, antisymmetric, and transitive.
- A set S together with a partial ordering R is called a partially ordered set, or poset, and is denoted by (S, R). Members of S are called elements of the poset.
- Is \geq a partial ordering in the set of intergers?

Partial orderings

- A relation R on a set S is called a partial ordering or partial order if it is reflexive, antisymmetric, and transitive.
- A set S together with a partial ordering R is called a partially ordered set, or poset, and is denoted by (S, R). Members of S are called elements of the poset.
- Is \geq a partial ordering in the set of intergers?
- Is $a \mid b$ (a divides b) a partial ordering on the set of positive integers?

Partial orderings

- A relation R on a set S is called a partial ordering or partial order if it is reflexive, antisymmetric, and transitive.
- A set S together with a partial ordering R is called a partially ordered set, or poset, and is denoted by (S, R). Members of S are called elements of the poset.
- Is \geq a partial ordering in the set of intergers?
- Is $a \mid b$ (a divides b) a partial ordering on the set of positive integers?
- Is inclusion relation \subseteq a partial ordering on the power set of a set S ?

Total orderings

- The elements a and b of a poset (S, \preccurlyeq) are called comparable if either $a \preccurlyeq b$ or $b \preccurlyeq a$. When a and b are elements of S such that neither $a \preccurlyeq b$ nor $b \preccurlyeq a$, a and b are called incomparable.

Total orderings

- The elements a and b of a poset (S, \preccurlyeq) are called comparable if either $a \preccurlyeq b$ or $b \preccurlyeq a$. When a and b are elements of S such that neither $a \preccurlyeq b$ nor $b \preccurlyeq a$, a and b are called incomparable.
- If (S, \preccurlyeq) is a poset and every two elements of S are comparable, S is called a totally ordered or linearly ordered set, and \preccurlyeq is called a total order or a linear order. A totally ordered set is also called a chain.

Total orderings

- The elements a and b of a poset (S, \preccurlyeq) are called comparable if either $a \preccurlyeq b$ or $b \preccurlyeq a$. When a and b are elements of S such that neither $a \preccurlyeq b$ nor $b \preccurlyeq a$, a and b are called incomparable.
- If (S, \preccurlyeq) is a poset and every two elements of S are comparable, S is called a totally ordered or linearly ordered set, and \preccurlyeq is called a total order or a linear order. A totally ordered set is also called a chain.
- Example:
- In the poset $\left(\mathbf{Z}^{+}, \mid\right)$are 3 \& 9 comparable? What is about 5 \& 7 ?

Total orderings

- The elements a and b of a poset (S, \preccurlyeq) are called comparable if either $a \preccurlyeq b$ or $b \preccurlyeq a$. When a and b are elements of S such that neither $a \preccurlyeq b$ nor $b \preccurlyeq a$, a and b are called incomparable.
- If (S, \preccurlyeq) is a poset and every two elements of S are comparable, S is called a totally ordered or linearly ordered set, and \preccurlyeq is called a total order or a linear order. A totally ordered set is also called a chain.
- Example:
- In the poset $\left(\mathbf{Z}^{+}, \mid\right)$are 3 \& 9 comparable? What is about 5 \& 7 ?
- Poset (\mathbf{Z}, \leq) - total order?

Total orderings

- The elements a and b of a poset (S, \preccurlyeq) are called comparable if either $a \preccurlyeq b$ or $b \preccurlyeq a$. When a and b are elements of S such that neither $a \preccurlyeq b$ nor $b \preccurlyeq a$, a and b are called incomparable.
- If (S, \preccurlyeq) is a poset and every two elements of S are comparable, S is called a totally ordered or linearly ordered set, and \preccurlyeq is called a total order or a linear order. A totally ordered set is also called a chain.
- Example:
- In the poset $\left(\mathrm{Z}^{+}, \mid\right)$are 3 \& 9 comparable? What is about 5 \& 7 ?
- Poset (\mathbf{Z}, \leq) - total order?
- ($S, \preccurlyeq)$ is a well-ordered set if it is a poset such that \preccurlyeq is a total ordering and every nonempty subset of S has a least element.

Hasse diagram

- $(\{1,2,3,4\}, \leq)$

Hasse diagram

- $(\{1,2,3,4\}, \leq)$

Hasse diagram

- $(\{1,2,3,4\}, \leq)$

Hasse diagram

- $(\{1,2,3,4\}, \leq)$

Maximal, Minimal Elements

- Elements of posets that have certain extremal properties are imporant for many applications

Maximal, Minimal Elements

- Elements of posets that have certain extremal properties are imporant for many applications
- An element a is maximal in the poset (S, \preccurlyeq) if there is no $b \in S$ such that $a \prec b$.
- An element a is minimal in the poset (S, \preccurlyeq) if there is no $b \in S$ such that $b \prec a$.

Maximal, Minimal Elements

- Elements of posets that have certain extremal properties are imporant for many applications
- An element a is maximal in the poset (S, \preccurlyeq) if there is no $b \in S$ such that $a \prec b$.
- An element a is minimal in the poset (S, \preccurlyeq) if there is no $b \in S$ such that $b \prec a$.
- Sometimes there is an element in a poset that is greater than every other element. Such an element is called the greatest element.
- Similarly least element

Maximal, Minimal Elements

- Elements of posets that have certain extremal properties are imporant for many applications
- An element a is maximal in the poset (S, \preccurlyeq) if there is no $b \in S$ such that $a \prec b$.
- An element a is minimal in the poset (S, \preccurlyeq) if there is no $b \in S$ such that $b \prec a$.
- Sometimes there is an element in a poset that is greater than every other element. Such an element is called the greatest element.
- Similarly least element
- The element x is called the least upper bound of the subset A if x is an upper bound that is less than every other upper bound of A
- The element y is called the greatest lower bound of A if y is a lower bound of A and $z \preccurlyeq y$ whenever z is a lower bound of A

Lattices

- A partially ordered set in which every pair of elements has both a least upper bound and a greatest lower bound is called a lattice.
- Is the poset $\left(\mathbf{Z}^{+}, \mid\right)$a lattice?
- Is the poset $(P(S), \subseteq)$ a lattice?

