Discrete Mathematics

Proof Techniques

Arijit Mondal
Dept of CSE
arijit@iitp.ac.in

Trivial proof

- To prove, $p \rightarrow q$, we show q is true

Trivial proof

- To prove, $p \rightarrow q$, we show q is true
- Let $x \in \mathcal{R}$. If $x>0$ then $x^{2}+5>0$

Direct proof

- To prove, $p \rightarrow q$, we show q is true under the assumption of p

Direct proof

- To prove, $p \rightarrow q$, we show q is true under the assumption of p
- The square of an odd integer is odd

Direct proof

- To prove, $p \rightarrow q$, we show q is true under the assumption of p
- The square of an odd integer is odd
- Every odd integer is equal to the difference between the squares of two integers

Direct proof

- To prove, $p \rightarrow q$, we show q is true under the assumption of p
- The square of an odd integer is odd
- Every odd integer is equal to the difference between the squares of two integers
- If n is an odd integer, then $5 n+3$ is an even integer

Vacuous proof

- To prove, $p \rightarrow q$, we show p is false

Vacuous proof

- To prove, $p \rightarrow q$, we show p is false
- Let $x \in \mathcal{R}$. If $x^{2}+1<0$ then $x^{7}>3$

Exhaustive Proof and Proof by Cases

- To prove a conditional statement of the form
- $\left(p_{1} \vee p_{2} \vee \ldots \vee p_{n}\right) \rightarrow q$
- $\left[\left(p_{1} \vee p_{2} \vee \ldots \vee p_{n}\right) \rightarrow q\right] \Leftrightarrow\left[\left(p_{1} \rightarrow q\right) \wedge\left(p_{2} \rightarrow q\right) \wedge \ldots \wedge\left(p_{n} \rightarrow q\right)\right]$

Exhaustive Proof and Proof by Cases

- To prove a conditional statement of the form
- $\left(p_{1} \vee p_{2} \vee \ldots \vee p_{n}\right) \rightarrow q$
- $\left[\left(p_{1} \vee p_{2} \vee \ldots \vee p_{n}\right) \rightarrow q\right] \Leftrightarrow\left[\left(p_{1} \rightarrow q\right) \wedge\left(p_{2} \rightarrow q\right) \wedge \ldots \wedge\left(p_{n} \rightarrow q\right)\right]$
- Prove that $(n+1)^{3} \leq 3^{n}$ if n is a positive integer with $n \leq 4$

Exhaustive Proof and Proof by Cases

- To prove a conditional statement of the form
- $\left(p_{1} \vee p_{2} \vee \ldots \vee p_{n}\right) \rightarrow q$
- $\left[\left(p_{1} \vee p_{2} \vee \ldots \vee p_{n}\right) \rightarrow q\right] \Leftrightarrow\left[\left(p_{1} \rightarrow q\right) \wedge\left(p_{2} \rightarrow q\right) \wedge \ldots \wedge\left(p_{n} \rightarrow q\right)\right]$
- Prove that $(n+1)^{3} \leq 3^{n}$ if n is a positive integer with $n \leq 4$
- Show that there are no solutions in integers x and y of $x^{2}+3 y^{2}=8$

Exhaustive Proof and Proof by Cases

- To prove a conditional statement of the form
- $\left(p_{1} \vee p_{2} \vee \ldots \vee p_{n}\right) \rightarrow q$
- $\left[\left(p_{1} \vee p_{2} \vee \ldots \vee p_{n}\right) \rightarrow q\right] \Leftrightarrow\left[\left(p_{1} \rightarrow q\right) \wedge\left(p_{2} \rightarrow q\right) \wedge \ldots \wedge\left(p_{n} \rightarrow q\right)\right]$
- Prove that $(n+1)^{3} \leq 3^{n}$ if n is a positive integer with $n \leq 4$
- Show that there are no solutions in integers x and y of $x^{2}+3 y^{2}=8$
- Let $n \in \mathcal{Z}$. Then $n^{2}+3 n+5$ is an odd integer

Existence proof

- Many theorems are of the form $\exists x p(x)$
- Need to provide at least a single witness, a say, for the claim - constructive proof
- Instead providing a single witness, one can directly show $\exists x p(x)$ - nonconstructive proof

Constructive existence proof

- Show that there is a positive integer that can be written as sum of cubes of positive integers in two different ways.

Non-constructive existence proof

- Show that there exist irrational numbers x and y such that x^{y} is rational

Non-constructive existence proof

- Show that there exist irrational numbers x and y such that x^{y} is rational
- Chomp is a game played by two players. In this game, cookies are laid out on a rectangular grid. The cookie in the top left position is poisoned. The two players take turns making moves; at each move, a player is required to eat a remaining cookie, together with all cookies to the right and/or below it. The loser is the player who has no choice but to eat the poisoned cookie. We ask whether one of the two players has winning strategy. That is, can one of the players always make moves that are guaranteed to lead to a win?

Uniqueness proof

- To prove existence of a unique element with a particular property
- Existence: We show that an element x with the desired property exists
- Uniqueness: Show that if x and y both have the desired property, then $x=y$

Uniqueness proof

- To prove existence of a unique element with a particular property
- Existence: We show that an element x with the desired property exists
- Uniqueness: Show that if x and y both have the desired property, then $x=y$
- Show that if a and b are real numbers and $a \neq 0$, then there is a unique real number r such that $a r+b=0$.

Proof by contrapositive

- To prove $p \rightarrow q$, we use an equivalent form of it $-\neg q \rightarrow \neg p$
- Assume $\neg q$ then prove $\neg p$

Proof by contrapositive

- To prove $p \rightarrow q$, we use an equivalent form of it $-\neg q \rightarrow \neg p$
- Assume $\neg q$ then prove $\neg p$
- Let $x \in \mathcal{Z}$. If $3 x-15$ is even, then x is odd

Forward and backward reasoning

- To prove q, we try to find a statement p that we can prove with the property that $p \rightarrow q$

Forward and backward reasoning

- To prove q, we try to find a statement p that we can prove with the property that $p \rightarrow q$
- Given two positive real numbers x and y, prove that $(x+y) / 2>\sqrt{x y}$

Forward and backward reasoning

- To prove q, we try to find a statement p that we can prove with the property that $p \rightarrow q$
- Given two positive real numbers x and y, prove that $(x+y) / 2>\sqrt{x y}$
- Suppose that two people play a game taking turns removing one, two, or three stones at a time from a pile that begins with 15 stones. The person who removes the last stone wins the game. Show that the first player can win the game no matter what the second player does.

Problems

- Consider a checkerboard of size 8×8. You need to tile it with non-overlapping dominoes of size 1×2 or 2×1.

Problems

- Consider a checkerboard of size 8×8. You need to tile it with non-overlapping dominoes of size 1×2 or 2×1.
- Can you tile a board obtained by removing one of the four corners of the checkerboard

Problems

- Consider a checkerboard of size 8×8. You need to tile it with non-overlapping dominoes of size 1×2 or 2×1.
- Can you tile a board obtained by removing one of the four corners of the checkerboard
- Can you tile a board obtained by removing upper left and bottom right corner squares of the checkerboard

Law of invariance

- Suppose the positive integer n is odd. At first one writes the numbers $1,2, \ldots, 2 n$ on the blackboard. Then he picks any two numbers a, b, erases them, and writes, instead, $|a-b|$. Prove that an odd number will remain at the end.

Law of invariance

- Suppose the positive integer n is odd. At first one writes the numbers $1,2, \ldots, 2 n$ on the blackboard. Then he picks any two numbers a, b, erases them, and writes, instead, $|a-b|$. Prove that an odd number will remain at the end.
- A circle is divided into six sectors. Then the numbers $1,0,1,0,0,0$ are written into the sectors (counterclockwise, say). You may increase two neighboring numbers by 1 . Is it possible to equalize all numbers by a sequence of such steps?

