Discrete Mathematics

Propositional Logic: Introduction

Arijit Mondal

Dept of CSE

arijit@iitp.ac.in

• If I am the President then I am well-known. I am the President. So I am well-known.

- If I am the President then I am well-known. I am the President. So I am well-known.
- If I am the President then I am well-known. I am not the President. So I am not well-known.

- If I am the President then I am well-known. I am the President. So I am well-known.
- If I am the President then I am well-known. I am not the President. So I am not well-known.
- If Rajat is the President then Rajat is well-known. Rajat is the President. So Rajat is well known.

- If I am the President then I am well-known. I am the President. So I am well-known.
- If I am the President then I am well-known. I am not the President. So I am not well-known.
- If Rajat is the President then Rajat is well-known. Rajat is the President. So Rajat is well known.
- If Asha is elected VP then Rajat is chosen as G-Sec and Bharati is chosen as Treasurer. Rajat is not chosen as G-Sec. Therefore Asha is not elected VP.

- If I am the President then I am well-known. I am the President. So I am well-known.
- If I am the President then I am well-known. I am not the President. So I am not well-known.
- If Rajat is the President then Rajat is well-known. Rajat is the President. So Rajat is well known.
- If Asha is elected VP then Rajat is chosen as G-Sec and Bharati is chosen as Treasurer. Rajat is not chosen as G-Sec. Therefore Asha is not elected VP.
- If Asha is elected VP then Rajat is chosen as G-Sec and Bharati is chosen as Treasurer. Rajat is chosen as G-Sec. Therefore Asha is elected VP.

• Choice of Boolean Variables a, b, c, d, ... which can take values true or false.

- Choice of Boolean Variables a, b, c, d, ... which can take values true or false.
- Boolean Formulae developed using well defined connectors ∼, ∧, ∨, →, etc, whose meaning (semantics) is given by their truth tables.

- Choice of Boolean Variables a, b, c, d, ... which can take values true or false.
- Boolean Formulae developed using well defined connectors ∼, ∧, ∨, →, etc, whose meaning (semantics) is given by their truth tables.
- Codification of Sentences of the argument into Boolean Formulae.

- Choice of Boolean Variables a, b, c, d, ... which can take values true or false.
- Boolean Formulae developed using well defined connectors ∼, ∧, ∨, →, etc, whose meaning (semantics) is given by their truth tables.
- Codification of Sentences of the argument into Boolean Formulae.
- Developing the Deduction Process as obtaining truth of a Combined Formula expressing the complete argument.

- Choice of Boolean Variables a, b, c, d, ... which can take values true or false.
- Boolean Formulae developed using well defined connectors ∼, ∧, ∨, →, etc, whose meaning (semantics) is given by their truth tables.
- Codification of Sentences of the argument into Boolean Formulae.
- Developing the Deduction Process as obtaining truth of a Combined Formula expressing the complete argument.
- Determining the Truth or Validity of the formula and thereby proving or disproving the argument and Analyzing its truth under various Interpretations.

- Choice of Boolean Variables a, b, c, d, ... which can take values true or false.
- Boolean Formulae developed using well defined connectors ∼, ∧, ∨, →, etc, whose meaning (semantics) is given by their truth tables.
- Codification of Sentences of the argument into Boolean Formulae.
- Developing the Deduction Process as obtaining truth of a Combined Formula expressing the complete argument.
- Determining the Truth or Validity of the formula and thereby proving or disproving the argument and Analyzing its truth under various Interpretations.

• If I am the President then I am well-known. I am the President. So I am well-known.

- Choice of Boolean Variables a, b, c, d, ... which can take values true or false.
- Boolean Formulae developed using well defined connectors ∼, ∧, ∨, →, etc, whose meaning (semantics) is given by their truth tables.
- Codification of Sentences of the argument into Boolean Formulae.
- Developing the Deduction Process as obtaining truth of a Combined Formula expressing the complete argument.
- Determining the Truth or Validity of the formula and thereby proving or disproving the argument and Analyzing its truth under various Interpretations.

- If I am the President then I am well-known. I am the President. So I am well-known.
- Coding: Variables

- Choice of Boolean Variables a, b, c, d, ... which can take values true or false.
- Boolean Formulae developed using well defined connectors ∼, ∧, ∨, →, etc, whose meaning (semantics) is given by their truth tables.
- Codification of Sentences of the argument into Boolean Formulae.
- Developing the Deduction Process as obtaining truth of a Combined Formula expressing the complete argument.
- Determining the Truth or Validity of the formula and thereby proving or disproving the argument and Analyzing its truth under various Interpretations.

- If I am the President then I am well-known. I am the President. So I am well-known.
- Coding: Variables
 - a: I am the President
 - b: I am well-known

- Choice of Boolean Variables a, b, c, d, ... which can take values true or false.
- Boolean Formulae developed using well defined connectors ∼, ∧, ∨, →, etc, whose meaning (semantics) is given by their truth tables.
- Codification of Sentences of the argument into Boolean Formulae.
- Developing the Deduction Process as obtaining truth of a Combined Formula expressing the complete argument.
- Determining the Truth or Validity of the formula and thereby proving or disproving the argument and Analyzing its truth under various Interpretations.

- If I am the President then I am well-known. I am the President. So I am well-known.
- Coding: Variables
 - a: I am the President
 - b: I am well-known
- Coding sentences

- Choice of Boolean Variables a, b, c, d, ... which can take values true or false.
- Boolean Formulae developed using well defined connectors ∼, ∧, ∨, →, etc, whose meaning (semantics) is given by their truth tables.
- Codification of Sentences of the argument into Boolean Formulae.
- Developing the Deduction Process as obtaining truth of a Combined Formula expressing the complete argument.
- Determining the Truth or Validity of the formula and thereby proving or disproving the argument and Analyzing its truth under various Interpretations.

- If I am the President then I am well-known. I am the President. So I am well-known.
- Coding: Variables
 - a: I am the President
 - b: I am well-known
- Coding sentences
 - F_1 : $a \rightarrow b$

- Choice of Boolean Variables a, b, c, d, ... which can take values true or false.
- Boolean Formulae developed using well defined connectors ∼, ∧, ∨, →, etc, whose meaning (semantics) is given by their truth tables.
- Codification of Sentences of the argument into Boolean Formulae.
- Developing the Deduction Process as obtaining truth of a Combined Formula expressing the complete argument.
- Determining the Truth or Validity of the formula and thereby proving or disproving the argument and Analyzing its truth under various Interpretations.

- If I am the President then I am well-known. I am the President. So I am well-known.
- Coding: Variables
 - a: I am the President
 - b: I am well-known
- Coding sentences
 - $F_1: a \rightarrow b$
 - *F*₂: *a*

- Choice of Boolean Variables a, b, c, d, ... which can take values true or false.
- Boolean Formulae developed using well defined connectors ∼, ∧, ∨, →, etc, whose meaning (semantics) is given by their truth tables.
- Codification of Sentences of the argument into Boolean Formulae.
- Developing the Deduction Process as obtaining truth of a Combined Formula expressing the complete argument.
- Determining the Truth or Validity of the formula and thereby proving or disproving the argument and Analyzing its truth under various Interpretations.

- If I am the President then I am well-known. I am the President. So I am well-known.
- Coding: Variables
 - a: I am the President
 - b: I am well-known
- Coding sentences
 - F_1 : $a \rightarrow b$
 - *F*₂: *a*
 - G: b

- Choice of Boolean Variables a, b, c, d, ... which can take values true or false.
- Boolean Formulae developed using well defined connectors ∼, ∧, ∨, →, etc, whose meaning (semantics) is given by their truth tables.
- Codification of Sentences of the argument into Boolean Formulae.
- Developing the Deduction Process as obtaining truth of a Combined Formula expressing the complete argument.
- Determining the Truth or Validity of the formula and thereby proving or disproving the argument and Analyzing its truth under various Interpretations.

- If I am the President then I am well-known. I am the President. So I am well-known.
- Coding: Variables
 - a: I am the President
 - b: I am well-known
- Coding sentences
 - F_1 : $a \rightarrow b$
 - *F*₂: *a*
 - G: b
- The final formula for deduction (F₁ ∧ F₂) → G that is ((a → b) ∧ a) → b

- If I am the President then I am well-known. I am the President. So I am well-known.
- Coding: Variables
 - a: I am the President, b: I am well-known
- Coding sentences
 - F_1 : $a \rightarrow b$, F_2 : a, G: b
- The final formula for deduction $(F_1 \wedge F_2) \rightarrow G$ that is $((a \rightarrow b) \wedge a) \rightarrow b$

- If I am the President then I am well-known. I am the President. So I am well-known.
- Coding: Variables
 - a: I am the President, b: I am well-known
- Coding sentences
 - F_1 : $a \rightarrow b$, F_2 : a, G: b
- The final formula for deduction $(F_1 \wedge F_2) \rightarrow G$ that is $((a \rightarrow b) \wedge a) \rightarrow b$

 $a \mid b \mid a \rightarrow b \mid (a \rightarrow b) \land a \mid ((a \rightarrow b) \land a) \rightarrow b$

- If I am the President then I am well-known. I am the President. So I am well-known.
- Coding: Variables
 - a: I am the President, b: I am well-known
- Coding sentences
 - F_1 : $a \rightarrow b$, F_2 : a, G: b
- The final formula for deduction $(F_1 \land F_2) \rightarrow G$ that is $((a \rightarrow b) \land a) \rightarrow b$

а	b	a ightarrow b	$(\textit{a} ightarrow \textit{b}) \land \textit{a}$	$((a \rightarrow b) \land a) \rightarrow b$
Т	Т	Т	Т	Т
Т	F	F	F	Т
F	Т	Т	F	Т
F	F	Т	F	Т

• If I am the President then I am well-known. I am not the President. So I am not well-known.

- If I am the President then I am well-known. I am not the President. So I am not well-known.
- Coding: Variables

- If I am the President then I am well-known. I am not the President. So I am not well-known.
- Coding: Variables
 - a: I am the President, b: I am well-known

- If I am the President then I am well-known. I am not the President. So I am not well-known.
- Coding: Variables
 - a: I am the President, b: I am well-known
- Coding sentences

- If I am the President then I am well-known. I am not the President. So I am not well-known.
- Coding: Variables
 - a: I am the President, b: I am well-known
- Coding sentences
 - F_1 : $a \rightarrow b$,

- If I am the President then I am well-known. I am not the President. So I am not well-known.
- Coding: Variables
 - a: I am the President, b: I am well-known
- Coding sentences
 - F_1 : $a \rightarrow b$, F_2 : $\sim a$,

- If I am the President then I am well-known. I am not the President. So I am not well-known.
- Coding: Variables
 - a: I am the President, b: I am well-known
- Coding sentences
 - $F_1: a \rightarrow b$, $F_2: \sim a$, $G: \sim b$

- If I am the President then I am well-known. I am not the President. So I am not well-known.
- Coding: Variables
 - a: I am the President, b: I am well-known
- Coding sentences
 - $F_1: a \rightarrow b$, $F_2: \sim a$, $G: \sim b$
- The final formula for deduction $(F_1 \wedge F_2) \rightarrow G$ that is $((a \rightarrow b) \wedge \sim a) \rightarrow \sim b$

- If I am the President then I am well-known. I am not the President. So I am not well-known.
- Coding: Variables
 - a: I am the President, b: I am well-known
- Coding sentences
 - $F_1: a \rightarrow b$, $F_2: \sim a$, $G: \sim b$
- The final formula for deduction $(F_1 \wedge F_2) \rightarrow G$ that is $((a \rightarrow b) \wedge \sim a) \rightarrow \sim b$

- If I am the President then I am well-known. I am not the President. So I am not well-known.
- Coding: Variables
 - a: I am the President, b: I am well-known
- Coding sentences
 - $F_1: a \rightarrow b$, $F_2: \sim a$, $G: \sim b$
- The final formula for deduction $(F_1 \wedge F_2) \rightarrow G$ that is $((a \rightarrow b) \wedge \sim a) \rightarrow \sim b$

а	b	a ightarrow b	$(a ightarrow b) \wedge \sim a$	$((a \rightarrow b) \land \sim a) \rightarrow \sim b$
Т	Т	Т	F	Т
Т	F	F	F	Т
F	Т	Т	Т	F
F	F	Т	Т	Т

- If I am the President then I am well-known. I am the President. So I am well-known.
- Coding: Variables
 - a: I am the President,
 - *b*: I am well-known
- Coding sentences
 - F_1 : $a \rightarrow b$, F_2 : a, G: b
- The final formula for deduction $(F_1 \wedge F_2) \to G$ that is $((a \to b) \wedge a) \to b$

а	b	a ightarrow b	$(a \rightarrow$	$egin{array}{ccc} ((a \ ightarrow \ b) \ \land \ a) ightarrow b \end{array}$
			b) ∧ a	a) ightarrow b
Т	Т	Т	Т	Т
Т	F	F	F	Т
F	Т	Т	F	Т
F	F	Т	F	Т

• If Rajat is the President then Rajat is wellknown. Rajat is the President. So Rajat is well-known.

- If I am the President then I am well-known. I am the President. So I am well-known.
- Coding: Variables
 - a: I am the President,
 - *b*: I am well-known
- Coding sentences
 - F_1 : $a \rightarrow b$, F_2 : a, G: b
- The final formula for deduction (F₁∧F₂) → G that is ((a → b) ∧ a) → b

а	Ь	a ightarrow b	$egin{array}{cc} (a & ightarrow \ b) \wedge a \end{array}$	$((a \rightarrow b) \land a) \rightarrow b$
Т	Т	Т	Т	Т
Т	F	F	F	Т
F	Т	Т	F	Т
F	F	Т	F	Т

- If Rajat is the President then Rajat is wellknown. Rajat is the President. So Rajat is well-known.
- Coding: Variables
 - a: Rajat is the President,
 - *b*: Rajat is well-known
- Coding sentences
 - $F_1: a \rightarrow b$, $F_2: a$, G: b
- The final formula for deduction (F₁ ∧ F₂) → G that is ((a → b) ∧ a) → b

• If Asha is elected VP then Rajat is chosen as G-Sec and Bharati is chosen as Treasurer. Rajat is not chosen as G-Sec. Therefore Asha is not elected VP.

- If Asha is elected VP then Rajat is chosen as G-Sec and Bharati is chosen as Treasurer. Rajat is not chosen as G-Sec. Therefore Asha is not elected VP.
- If Asha is elected VP then Rajat is chosen as G-Sec and Bharati is chosen as Treasurer. Rajat is chosen as G-Sec. Therefore Asha is elected VP.

More examples

• If Asha is elected VP then Rajat is chosen as G-Sec or Bharati is chosen as Treasurer. Rajat is not chosen as G-Sec. Therefore if Asha is elected VP then Bharati is chosen as Treasurer.

More examples

- If Asha is elected VP then Rajat is chosen as G-Sec or Bharati is chosen as Treasurer. Rajat is not chosen as G-Sec. Therefore if Asha is elected VP then Bharati is chosen as Treasurer.
- If Asha is elected VP then either Rajat is chosen as G-Sec or Bharati is chosen as Treasurer but not both. Rajat is not chosen as G-Sec. Therefore if Asha is elected VP then Bharati is chosen as Treasurer.

Thank you!