Embedded Systems

Arijit Mondal
Dept. of Computer Science \& Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

Embedded Processors

Processor

- General purpose computing
- Processor is capable of doing different kind of computations
- Embedded computing
- Typically used for a dedicated function
- More customizations are possible
- Can reduce power, size, etc.
- Instruction set architecture - X86, ARM, etc.
- Processor realization

Types of processor

- Microcontrollers
- DSP processors
- Graphics processor
- Need to choose appropriate processor depending on application domain
- Small,
- Slow
- Inexpensive
- Low power
- High performance
- Special purpose, etc.

Microcontrollers

- Small computer on a single integrated circuit
- Usually have single CPU
- Have peripheral devices such as memories, input/output devices, timers, etc.

DSP processor

- Typically many applications read different parameters in a certain interval
- Motion control - few hertz to few hundred hertz
- Audio - 8 KHz to 44.1 KHz
- Video-25-30 Hz for common devices
- and many other applications
- Processor designed for numerical intensive signal processing

Graphics processor unit (GPU)

- Specialized processor designed to perform the calculation requires in graphics rendering
- Usage:
- Rendering text and Graphics
- Combining multiple patterns
- 3D graphics, shading
- Digital video games, etc.
- Usually power hungry

Parallelism

- Affect significantly the execution time of a program
- Concurrent - if different parts of program conceptually execute simultaneously
- Parallel - if different parts of the program physically execute simultaneously on distinct hardware
- Non-concurrent programs specify a sequence of instruction to execute
- Imperative program - C
- Thread library
- Example:

```
double pi, piSquared, piCubed;
pi = 3.14159;
piSquared = pi * pi ;
piCubed = pi * pi * pi;
```

```
double pi, piSquared, piCubed;
```

double pi, piSquared, piCubed;
pi = 3.14159;
pi = 3.14159;
piSquared = pi * pi ;
piSquared = pi * pi ;
piCubed = piSquared * pi;

```
piCubed = piSquared * pi;
```


Parallelism (contd.)

- Compiler may analyze the dependencies between operations in a program and produce parallel code
- It does data flow analysis
- Parallel execution using multi issue streams VLIW (very large instruction word) architecture
- Independent instructions can be executed in parallel
- Goal is to improve performance
- Timeliness is important for concurrent program
- Multitasking program

Pipelining

Instruction level parallelism

- CISC - Complex instruction set computer
- Usually DSP processor - supports FIR filtering, FFT etc.
- All instruction may not have same length
- Code optimization is difficult
- Subword parallelism - Enables simultaneous arithmetic or logical operations on smaller words
- Superscalar - Hardware dispatches multiple instructions to distinct hardware when there is no issue
- VLIW - Combines multiple independent operations into single instruction

Multicore architecture

- Combination of several processor on a single chip
- Heterogeneous in nature
- Cell phone - radio and speech processing
- FPGA

Custom processor design

```
int x, y;
    while(1){
        while(!ready);
        x=x_i ;
        y=y_i;
        while(x!=y){
        if(x<y) y=y-x;
        else x=x-y;
        }
    d_o=x
    }
```


Custom processor design

```
int x, y;
    while(1){
        while(!ready);
        x=x_i;
        y=y_i;
        while(x!=y){
        if(x<y) y=y-x;
        else x=x-y;
        }
        d_o=x
    }
```


Custom processor design

