Embedded Systems

Arijit Mondal

Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

Course structure

- Introduction to Embedded Systems
- Modeling of systems continuous, discrete, hybrid
- Sensors & Actuators
- Embedded processors, memory architecture
- Scheduling, multi tasking
- Input, output
- Temporal logic, verification
- Advanced topics

Evaluation policy

- Mid-sem 30%
- Project / Term paper / Quiz 30%
- End-sem 40%

Books

- Introduction to Embedded Systems by Edward Ashford Lee, Sanjit A. Seshia
- Embedded Systems and Software Validation by Abhik Roychoudhury
- Hard Real-Time Computing Systems by Giorgio C. Buttazzo
- Real-Time Embedded Systems by Meikang Qiu, Jiayin Li

• An embedded system is a computer system with a dedicated function within a larger mechanical or electrical system, often with real-time computing constraints

- An embedded system is a computer system with a dedicated function within a larger mechanical or electrical system, often with real-time computing constraints
- A cyber-physical system (CPS) is a mechanism controlled or monitored by computerbased algorithms, tightly integrated with the internet and its users

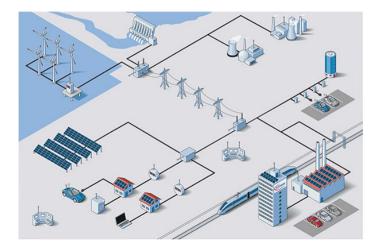
- An embedded system is a computer system with a dedicated function within a larger mechanical or electrical system, often with real-time computing constraints
- A cyber-physical system (CPS) is a mechanism controlled or monitored by computerbased algorithms, tightly integrated with the internet and its users
- The internet of things (IoT) is the inter-networking of physical devices, vehicles, buildings, and other items embedded with electronics, software, sensors, actuators, and network connectivity which enable these objects to collect and exchange data

Applications: Automotive

- Safer drive
- Fuel optimization
- Smart transportation
- Self-drive car
- Reduced emission
- Traffic management

Applications: Smart Building

- Efficient control of
 - Heating
 - Ventilation
 - Air conditioning
 - Security
 - Lighting


Applications: Manufacturing

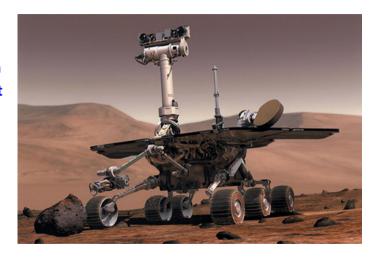
- Human labor
- Repetitive job
- Asset management
- Maintenance

Applications: Smart Grid

- Integration of renewable source
- Efficient usage
- Black-out
- Protection

Applications: Bio-Medical

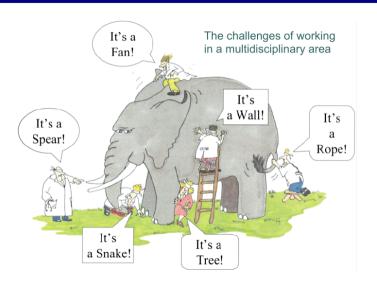
- CT-scan, MRI
- Ventilation support
- Remote supervision
- Assistive technology
- Reliable


Applications: Avionics

- Highly complex task
- Several sensors
- Complex control
- Reliable
- Safety
- Fault tolerance

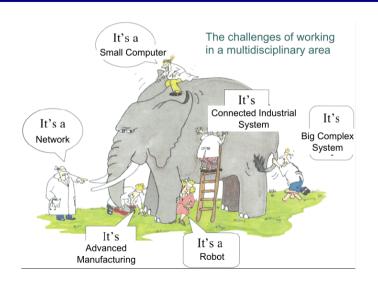
Applications: Robotics

- Repetitive task
- Human labor
- Product is bad for human
- Human is bad for product
- Quality control



Applications: Nuclear control

- Safety
- Reliability
- Monitoring parameters


General view of the problem

IIT Patna

15

General view of the problem

Two examples

Pacemaker

Quadrotor

Things to consider

- System dynamics
- Operation modes
- Hybrid system
- Sensors
- Actuators
- Processor
- Memory architecture
- Interfacing
- Real time scheduling

- Verification
- Security & privacy
- Delay
- Area
- Power
- Reliability
- Fault tolerance
- Testability
- Cost

Embedded systems

- Applications
 - Power
 - Communication
 - Healthcare
 - Manufacturing
 - Robotics
 - Transportation
 - Military
 - Industrial control

- Design methodology
 - Specification, Modeling, Analysis
 - Heterogeneous/Hybrid model
 - Interoperability
 - Networking
 - Scalability
 - Composibility
 - Synthesis
 - Validation, Verifiability
 - Certification
 - Simulation

- Security
 - Privacy
 - Intrusion detection
 - Malicious attack
- Feedback systems
 - Real time
 - Economics
 - Adaptive/predictive
 - Distributed / networked

Modeling, Design & Analysis

- Modeling is the process of gaining deeper understanding of a system through imitation. Models express what a system does or should do.
 - All models are wrong; some models are useful. George E. P. Box
- Design is the structured creation of artifacts. It specifies how a system does what it does.
- Analysis is the process of gaining a deeper understanding of a system through dissection. It specifies why a system does what it does (or fails to do what a model says it should do).

Modeling

- Models are abstraction of the physical systems
- Modeling of dynamic behavior of the system
 - Continuous dynamics
 - Discrete dynamics
- Composition of state machines
- Concurrent modules

Design

- Require knowledge of sensors and their role
- Require knowledge of actuators and their role
- Processor architecture
- Memory architecture
- Input, output
- Multitasking, scheduling
- Specialized operation

Design (contd.)

- It is complex process
- Need to create abstraction layers
 - Hardware & software
 - Computation
- Physical processes are heterogenous in nature
 - Programmer must have knowledge of real valued function
 - Automative application must have knowledge about pipelines, cache
 - Multithreaded program must know atomic operation

Analysis

- A system must meet desired specification
- Specification should be precise
- Need techniques for comparing specification

System development

- Functionality decomposition and modeling
- Architecture Selection: Choice of processors, standard hardware
- Mapping of functionality to HW and SW
- Development of Custom HW and software
- Communication protocol between components
- Prototyping, verification and validation

IIT Patna 2!

Project ideas

- https://www.hackster.io/intel/products/intel-galileo-gen-2
- http://www.instructables.com/id/Intel-Galileo-Projects/
- https://github.com/MPC-Berkeley/barc
- V-REP www.coppeliarobotics.com/
- Gazebo http://gazebosim.org/