Introduction to Keras: Theory and Examples

IIT PATNA

- Introduction to Google Colab
- Keras
 - Introduction
 - Fully Connected Neural Network

- Convolution Neural Network
- Working with own data

- Introductory (Hello World)
- Internet (sources at the end)

ヘロト 人間 とうほどう ほどう

э

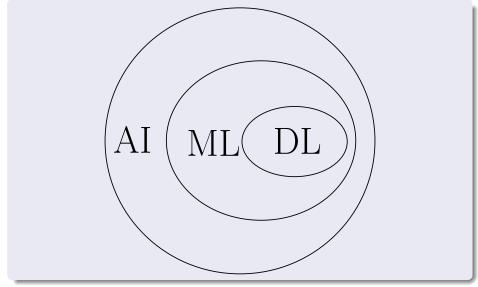
Part 0: Google Colab

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のQ@

- Product by Google
- Google's free cloud service with GPU support for AI developers
 - CPU \Leftrightarrow GPU \Leftrightarrow TPU
 - Python programming language
 - Support to many neural network libraries such as Keras, PyTorch, OpenCV

• Files are stored on Drive

Introduction to Google Colab


- https://github.com/
 - nrjcs/swym
- https://colab.research.google.com/
- Notebook: list of cells (code or text)
- can be shared
- collaborated
- GitHub
- Default folder is Colab Notebooks

• welcome example

Part I: Regular Neural Network

▲□▶▲□▶▲□▶▲□▶ □ のQで

Introduction

Architecture of a Neural Network

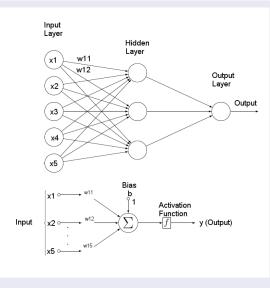


Figure: A Neural Network

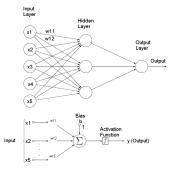


Figure: A Neural Network

Learning Steps (Decisions to be made):

- Application (Problem)
- O Type of model
- No. of layers
- No. of nodes
- Initialization of weights
- Activation Function
- Optimization Function
- 8 Evaluation Metrics
- Oataset
- Testing and Training Data
- Batch size
- 2 Epoch

• NN: development (implementation and experimentation) is difficult.

Keras is

- high-level neural networks library
- written in Python
- capable of running on top of
 - TensorFlow (open source software library for numerical computation)
 - Theano (numerical computation library for Python)
 - CNTK (Microsoft Cognitive Toolkit): Deep learning framework
- developed with a focus on enabling fast experimentation (through user friendliness, modularity, and extensibility)
- and much more visit

Guiding principles

- Modularity
 - configurable modules
 - neural layers, cost functions, optimizers, initialization schemes, activation functions, regularization schemes are all standalone modules that you can combine to create new models
- Minimalism
 - Each module should be kept short and simple
- Easy extensibility
 - New modules are simple to add (as new classes and functions)
 - suitable for advanced research
- Work with Python
 - Models are described in Python code, which is compact, easier to debug, and allows for ease of extensibility
- User friendliness

- No worries
 - Google Colab
- You may visit Keras Installation Page @ keras.io

Keras Toolbox

What is in the toolbox ?

- Models
- Layers
- Preprocessing
- Metrics
- Optimizers
- Activations
- Datasets
- Constraints
- Initializers
- Loss (Objecitve) Function

イロト イボト イヨト イヨト

э

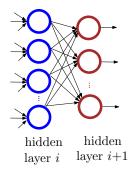
• and many more...

Model

- core data structure of Keras
- a way to organize layers
- Two types:
 - Sequential
 - Model class API
- Sequential Model: a linear stack of layers
- functional API: for defining complex models, such as models with shared layers

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

- Core Layers
 - Dense
 - Activation
 - Dropout
 - Flatten
 - many more ...
- Convolutional Layers
- Pooling Layers
- Recurrent Layers
- Your own Keras layers


< □ > < □ > < □ > < □ > < □ > < □ >

э

• and many more ...

Dense

• fully connected NN layer: connection to all activations from previous layer

Core Layers

Activation

- Applies an activation function
 - detailed next

Dropout

- Applies Dropout to the input
- randomly setting a fraction p of input units to 0

A D > A P > A B > A B >

ъ

prevent overfitting

Flatten

- Flattens the input
- many more

Activation Function: Sigmoid

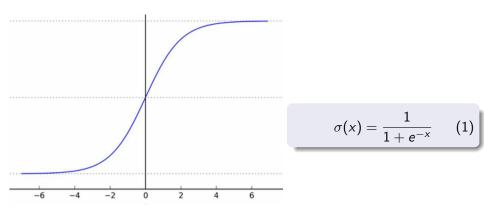
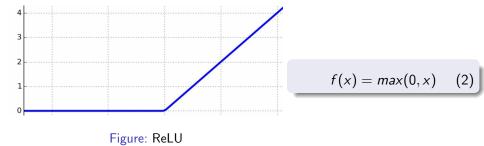



Figure: Sigmoid Function

Activation Function: ReLU (rectified linear unit)

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ● ● ●

- usually used on the output layer to turn the outputs into probability-like values
- Sigmoid: two class
- softmax: multiclass

$$\sigma(z)_i = \frac{e^{z_i}}{\sum\limits_{j=1}^{K} e^{z_j}}$$

(3)

イロト 不得 トイヨト イヨト

for i=1 to K and K is number of output units in output layer

Activation Function

linear

$$f(x) = x$$

(4)

• and many more...

Optimizer

- the specific algorithm used to update weights while we train our model
- such as sgd (Stochastic gradient descent optimizer)

Objective function or loss function

- used by the optimizer to navigate the space of weights
- such as mse (mean squared error)

Metrics

- used to judge the performance of your model
- such as accuracy

- Keras provides nice API
- documentation
 - A tour of https://keras.io

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

< 同 > < 国 > < 国 >

Steps

- Import libraries and modules
- Load image data
- Pre-process data
- Define model architecture
- Compile model
- Fit and evaluate Model
- Improvements

• Fully Connected Neural Network with MNIST dataset

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ ○ ○ ○ ○

File Edit View Bookmarks Settings niraj@niraj.Veriton-M200-(U Sing Theano backend. (60000, 28, 28) (60000,)		terr	p : bash – Konsole		© © ©
Layer (type)	Output Shape	Param #	Connected to		
dense_1 (Dense)	(None, 784)	615440	dense_input_1[0][0]		
dense_2 (Dense)	(None, 10)	7850	dense_1[0][0]		
Epoch 2/2 60000/60000 [=================================] - 4s -] - 4s -] - 4s -	loss: 0.1078	- acc: 0.9221 - val_loss: - acc: 0.9688 - val_loss: 93%	-	

Improving Performance of Simple Network: additional hidden layers

File Edit View Bookmarks Settings I niraj@niraj-Veriton-M200-Q8 Using Theano backend. (60000, 28, 28) (60000,)		tem	: bash - Konsole	
Layer (type)	Output Shape	Param #	Connected to	
dense_1 (Dense)	(None, 784)	615440	dense_input_1[0][0]	
dense_2 (Dense)	(None, 784)	615440	dense_1[0][0]	
dense_3 (Dense)	(None, 10)	7850	dense_2[0][0]	
Epoch 2/2	.idate on 10000 samples 	- loss: 0.0755	- acc: 0.9354 - val_loss: 0.1094 - v - acc: 0.9767 - val_loss: 0.0852 - v 0%	-

temp : bash

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ○ ◆ ○

Improving Performance of Simple Network: additional hidden layers

		tem	p : bash – Konsole		
File Edit View Bookmarks Settings niraj@niraj-Veriton-M200-Q Using Theano backend. (60000, 28, 28) (60000,)					î
Layer (type)	Output Shape	Param #	Connected to		
dense_1 (Dense)	(None, 784)	615440	dense_input_1[0][0]	===	
dense_2 (Dense)	(None, 784)	615440	dense_1[0][0]		
dense_3 (Dense)	(None, 784)	615440	dense_2[0][0]		
dense_4 (Dense)	(None, 10)	7850	dense_3[0][0]		
Total params: 1,854,170 Trainable params: 1,854,17 Non-trainable params: θ	0				
Epoch 2/2 60000/60000 [=================================] - 11s	loss: 0.075	9 - acc: 0.9388 - val_loss: 0.095 1 - acc: 0.9770 - val_loss: 0.091 52%	-	
niraj@niraj-Veriton-M200-Q	87:~/temp\$ ∎				

Improving Performance of Simple Network: introducing dropout layer

🔳 🕗 File Edit View Bookmarks Settings Help			temp	: bash - Konsole	S @ 3
niraj@niraj-Veriton-M200-087:- Using Theano backend. (60000, 28, 28) (60000,)	-∕temp\$pyt	hon 1.py			Í
Layer (type)	0utput	Shape	Param #	Connected to	
dense_1 (Dense)	(None,	784)	615440	dense_input_1[0][0]	
dense_2 (Dense)	(None,	784)	615440	dense_1[0][0]	
dense_3 (Dense)	(None,	784)	615440	dense_2[0][0]	
dropout_1 (Dropout)	(None,	784)	0	dense_3[0][0]	
dense_4 (Dense)	(None,	10)	7850	dropout_1[0][0]	
Total params: 1,854,170 Trainable params: 1,854,170 Non-trainable params: 0					
None Train on 60000 samples, valida Epoch 1/2	ite on 1000	0 samples			
60000/60000 [============		====] · 13s ·	loss: 0.2014	- acc: 0.9386 - val_loss: 0.1017	val_acc: 0.9697
Epoch 2/2 60000/60000 [loss: 0.0771	- acc: 0.9760 - val_loss: 0.0811 -	val_acc: 0.9740
niraj@niraj-Veriton-M200-Q87:-	/temp\$				
	temp : bash				

Improving Performance of Simple Network: using different optimizers

File Edit View Bookmarks Settings H niraj@niraj-Veriton-M200-08 Using Theano backend. (60000, 28, 28) (60000,)		tem	: besh – Konsole		* • *
Layer (type)	Output Shape	Param #	Connected to		
dense_1 (Dense)	(None, 784)	615440	dense_input_1[0][0]	==	
dense_2 (Dense)	(None, 784)	615440	dense_1[0][0]	_	
dense_3 (Dense)	(None, 784)	615440	dense_2[0][0]		
dropout_1 (Dropout)	(None, 784)	0	dense_3[0][0]	_	
dense_4 (Dense)	(None, 10)	7850	dropout_1[0][0]		
Total params: 1,854,170 Trainable params: 1,854,170 Non-trainable params: 0					
Epoch 2/2] - 95] - 105] - ETA	- loss: 0.4422	- acc: 0.7382 - val_loss: 0.4882 - acc: 0.8784 - val_loss: 0.3497 9%	-	Q

Improving Performance of Simple Network: training for more number of epochs

I •		tem	p : bash – Konsole		• ×
File Edit View Bookmarks Settings He	lp				
niraj@niraj-Veriton-M200-Q87	':~/temp\$ python 1.py				_
Using Theano backend.	· / ·····				
(60000, 28, 28)					- 8
(60000,)					- 8
(00000))					- 8
Layer (type)	Output Shape	Param #	Connected to	-	- 1
				=	
dense_1 (Dense)	(None, 784)	615440	dense_input_1[0][0]		- 11
dense_2 (Dense)	(None, 784)	615440	dense_1[0][0]		- 1
dense_3 (Dense)	(None, 784)	615440	dense_2[0][0]	_	
dropout_1 (Dropout)	(None, 784)	0	dense_3[0][0]	_	
dense_4 (Dense)	(None, 10)	7850	dropout_1[0][0]	_	
Total params: 1,854,170 Trainable params: 1,854,170 Non-trainable params: 0				=	
				_	- 1
None	1				
Train on 60000 samples, vali	date on 10000 samples				- 11
Epoch 1/20					
		loss: 1.053	7 - acc: 0.7378 - val_loss: 0.4933	- val_acc: 0.8815	- 11
Epoch 2/20					- 11
		loss: 0.4407	 acc: 0.8813 val_loss: 0.3505 	val_acc: 0.9054	- n
Epoch 3/20					
60000/60000 [===========		loss: 0.351	2 - acc: 0.9016 - val_loss: 0.3008	- val_acc: 0.9187	
Epoch 4/20			-	_	Ŷ
2	temp : bash				

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Improving Performance of Simple Network: training for more number of epochs

🔳 💿		temp : bas	h – Konsole	× • ×
	Bookmarks Settings Help			
60000/60000	[=======]	• 9s • loss: 0.2415 • a	сс: 0.9314 · val_loss: 0.2227 · val_acc: 0.93	77 🄶
Epoch 8/20				
60000/60000	[=======]	- 10s - loss: 0.2280 -	acc: 0.9348 - val_loss: 0.2114 - val_acc: 0.9	104
Epoch 9/20				
60000/60000	[=======]	• 9s • loss: 0.2150 • a	cc: 0.9386 • val_loss: 0.2007 • val_acc: 0.94	28
Epoch 10/20				
60000/60000	[======]	• 9s • loss: 0.2036 • a	cc: 0.9420 - val_loss: 0.1931 - val_acc: 0.94	54
Epoch 11/20				
60000/60000	[======]	- 10s - loss: 0.1934 -	acc: 0.9446 - val_loss: 0.1835 - val_acc: 0.9	477
Epoch 12/20				
60000/60000	[======]	- 10s - loss: 0.1845 -	acc: 0.9476 - val_loss: 0.1775 - val_acc: 0.9	197
Epoch 13/20				
60000/60000	[======]	- 10s - loss: 0.1757 -	acc: 0.9500 - val_loss: 0.1714 - val_acc: 0.9	508
Epoch 14/20				
60000/60000	[======]	- 9s - loss: 0.1689 - a	cc: 0.9516 - val_loss: 0.1649 - val_acc: 0.95	25
Epoch 15/20				
60000/60000	[======]	- 10s - loss: 0.1614 -	acc: 0.9541 - val_loss: 0.1584 - val_acc: 0.9	532
Epoch 16/20				
60000/60000	[======]	- 10s - loss: 0.1546 -	acc: 0.9556 - val_loss: 0.1549 - val_acc: 0.9	547
Epoch 17/20				
60000/60000	[======]	- 9s - loss: 0.1484 - a	cc: 0.9583 - val_loss: 0.1491 - val_acc: 0.95	54
Epoch 18/20				
60000/60000	[======]	- 10s - loss: 0.1429 -	acc: 0.9593 - val_loss: 0.1455 - val_acc: 0.9	565
Epoch 19/20				
60000/60000	[=======]	- 10s - loss: 0.1373 -	acc: 0.9611 - val_loss: 0.1412 - val_acc: 0.9	579
Epoch 20/20				
60000/60000	[======]	- 10s - loss: 0.1324 -	acc: 0.9623 - val_loss: 0.1381 - val_acc: 0.9	583
10000/10000	[======]	- 1s		
Error: 4.17	%			U
niraj@niraj-	Veriton-M200-Q87:~/temp\$			÷
	temp : bash			

other options to explore

- additional hidden layers
- dropout
- different optimizers
- more number of epochs
- optimizer learning rate
- number of internal hidden neurons

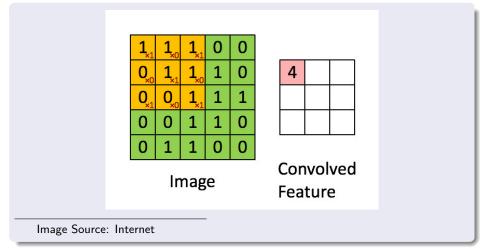
• 同 • • 三 • •

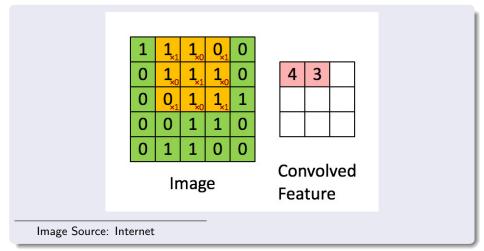
 $\exists \rightarrow$

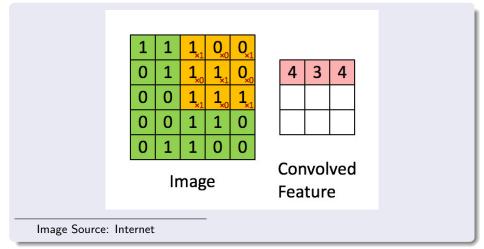
batch size

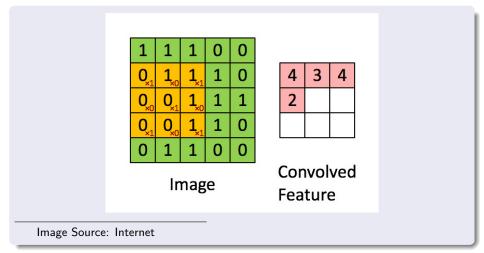
Part II: Convolution Neural Network

Convolution

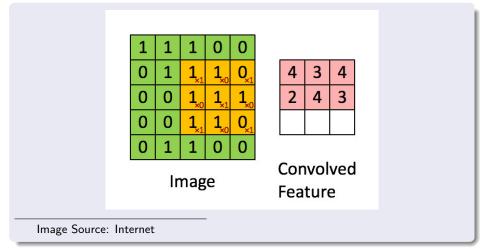

• among the most important operations in signal and image processing

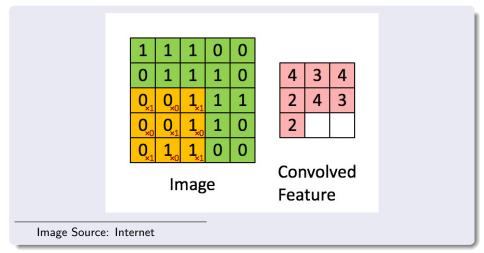

イロト 不得 トイヨト イヨト 三日

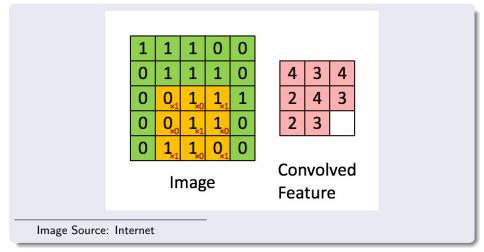

- it is the core concept behind the convolution neural network
- convolution operation: $(f * g) \triangleq \int_{-\infty}^{\infty} f(\tau)g(t \tau)d\tau$
- produces a third function which represents how functions are correlated

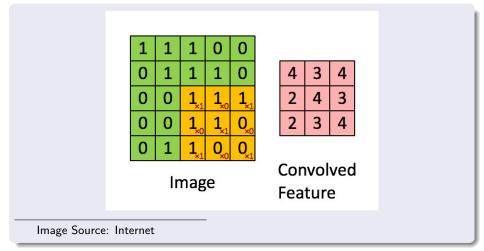

- the two functions in context of images are:
 - input image
 - kernel (filter/feature detector)
- output is some feature
- important for images due to the property of being stationary \Rightarrow same feature detector for whole image


・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト









Operation	Kernel ω	Image result g(x,y)		
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$			
Edge detection	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$			
	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$			
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$			
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$			

Image Source: Internet

Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	~
Gaussian blur 3 × 3 (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	~
Gaussian blur 5 × 5 (approximation)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C
Unsharp masking 5 × 5 Based on Gaussian blur with amount as 1 and threshold as 0 (with no image mask)	$\begin{array}{ccccc} -\frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & -476 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}$	

Image Source: Internet

Switching back ...

number of parameters

- a 32X32X3 image \Rightarrow 3072 (on input layer)
- a 720X720X3 image \Rightarrow 15,55,200 (on input layer)
- for large images, depending on number of hidden layers and the neurons in each layer, for fully connected neural network, number of parameters may be in *millions*

イロト イポト イヨト イヨト

- resource requirement
- overfitting

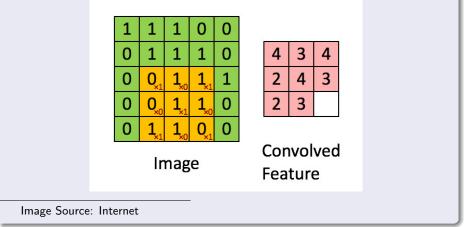
Convolution Neural Network (ConvNet)

in many way similar to regular Neural Networks

- neurons organized to form layers
- weights to be learnt
- biases
- neurons receive inputs, performs a dot product followed by some activation function
- have a loss function ...

in addition

- assume that input are images \Rightarrow thus, many things follows
- utilize spatial structure
 - $\bullet\,$ regular network $\Rightarrow\,$ image processed as a flat vector
- number of parameters is input independent


ConvNet

- well suited for classifying images
- being applied to other problems as well such as text, speech, video ...
- network architecture more appropriate
- layers of a ConvNet have neurons arranged in 3 dimensions: width, height, depth
- each layer transforms an input 3D volume to an output 3D volume

Image Source: http://cs231n.github.io/convolutional-networks/

Recall convolution operation

Padding

Issue

- pixels on the side are ignored
- in addition, padding helps in controlling image size

0	0	0	0	0	0	0	0
0	18	54	51	239	244	188	0
0	55	121	75	78	95	88	0
0	35	24	204	113	109	221	0
0	3	154	104	235	25	130	0
0	15	253	225	159	78	233	0
0	68	85	180	214	245	0	0
0	0	0	0	0	0	0	0

Image Source: Internet

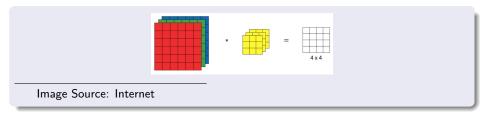
Padding

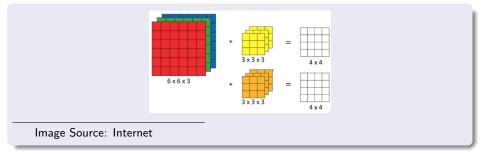
No padding

- Input: n X n
- Filter size: f X f
- Output: $(n-f+1) \times (n-f+1)$

with padding

- Input: n X n
- Padding: p
- Filter size: f X f
- Output: $(n+2p-f+1) \times (n+2p-f+1)$

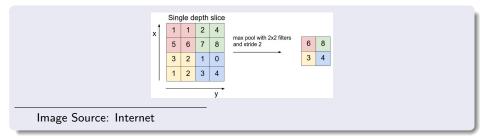

Two common choices for padding


- valid: no padding
- same: output size is same as input

•
$$n+2p-f+1 = n \Rightarrow p = (f-1)/2$$

- number of steps during convolution
- Input: n X n
- Padding: p
- Stride: s
- Filter size: f X f
- Output: [(n+2p-f)/s+1] X [(n+2p-f)/s+1]

• reduces the size of the image


- Stack of layers: each layer transform the image volume (w,h,d) to an output volume
- Commonly used layers: Convolutional Layer, Pooling Layer, Fully-Connected Layer, ReLU
- a layer may (such as convolution layer) or may not (such as ReLU) have parameters
- a layer (such as convolution layer) may or may not (such as ReLU) have additional hyper-parameters (number of filters, stride, zero padding)

(日)

- core building block of a ConvNet
- perform convolution with the three hyper-parameters: depth, stride and padding

(日)

• incoming example

Pooling Layer

 $\bullet\,$ reduces size $\Rightarrow\,$ number of parameters and computation also decreases

イロト 不得 トイヨト イヨト 三日

• helps avoiding overfitting

Findings

- Smaller stride is better (1)
- padding improves performance

- average pooling
- MNIST Example

Additional

• Working with own data

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

steps to follow to make an efficient image classifier?

 lot of experimentation and testing to get the optimal structure and parameters

(日)

• A pre-trained model

Links

- Keras Official Documentation Page
- 2 Keras official github
- Another GitHub Page
- GitHub Page MNIST example
- 6 Keras Tutorial
- O An Example
- O Another Example
- O Deep Learning with Keras (Book)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

The End