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Reinforcement learning

e Set of actions that the learner will make in order to maximize its profit

e Action may not only affect the next situation but also subsequent sit-
uation

e Trial and error search
e Delayed reward

e A learning agent is interacting with environment to achieve a goal
e Agent needs to have idea of state so that it can take right action
e Three key aspects — observation, action, goal
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Reinforcement vs supervised learning
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Reinforcement learning

e It is different from supervised learning
e Learning from examples provided by a knowledgeable external supervisor
¢ Not adequate for learning from interaction

¢ In interaction problem it is often impractical to obtain examples of de-
sired behavior that are correct and representative of all situations

e Trade-off between exploration and exploitation

e To improve reward it must prefer effective action from the past (exploit)
e To discover such action it has to try unselected actions (explore)
e Exploit and exploration cannot be pursued exclusively

e Agent interacts with uncertain environment
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When to use RL

e Data in the form of trajectories
o Need to make a sequence of decision

e Observe (partial, noisy) feedback to state or choice of action

IIT Patna 8



e Chess player eg. games
e Robotics
e Adaptive controller

e All involve interaction between active decision making agent and its
environment
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Elements of RL

e Agent

e Environment
e Policy — The way agent behaves at a given time
e Mapping of state-action pair to state

e Can use look up table or search method
e Core of reinforcement learning problem

e Reward function — Defines the goal in reinforcement learning problem
It maps state-action pair to a single number

Objective of RL agent is to maximize total reward

Defines bad or good events

Must be unalterable by agent, however policy can be changed
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Elements of RL (contd.)

e Value function

Specifies what is good in long run

Value of a state is the total amount of reward an agent can expect to accumulate

over future starting from the state

Indicates long term desirability of states

The action tries to move to a state of highest value (not highest reward)

Rewards are mostly given by the environment

Value must be estimated or reestimated from the sequence of observation

Need efficient method to find values

e Evolutionary methods (genetic algorithm, simulated annealing) search directly in the
space of policies without applying value function
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Elements of RL (contd.)

e Model of environment

e Mimics the behavior of environment
e Given state and action, model might predict resultant next state and next reward
e Every RL system uses trial and search methodology to learn
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Reinforcement learning

e Learning agent tries a sequence of actions (a;)
e Observes outcomes (state s, |, rewards r;) of those actions

o Statistically estimated relationship between action choice and out-
comes Pr(s¢|s; 1, d; 1)

e Selection of policy 7(s) that optimizes selected outcome

argmaxE,[ro+ r+ ...+ r7[so]
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Markovian decision process

e S — set of states

e A — set of actions

o Pr(s¢|s;_1,a: 1) — Probabilistic effects
e r; — reward function

e /i; — initial state distribution
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The Markov property

e The future state depends only on the current state

Pr(st|st_1,...,S0) = Pr(st|st_1)

IIT Patna 15



Utility maximization

e Let U; be the utility for a trajectory starting from t
e Episodic tasks (eg. games)
Up=rt+re+ o+ ...+ 07

e Continuing tasks (eg. can run forever)
U= re+ e +9rge+ ... = ZWerk
k=0

e 7 is known as discount factor and lies between O and 1

e At each time step there is a chance of (1 — 7) that agent dies and no reward after
that

e Inflation rate - receiving an amount of money today, the value of it tomorrow will
be less by a factor of v
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e Policy defines the action selection strategy at every state

n(s,a) = P(a; = a,s; = s)

e [t can be stochastic or deterministic

e Goal is to maximize expected total reward

argmaxE;[ro +r + ...+ rr|so]

e There are many policies!
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Value functions

e As we are looking for best policy, it will be useful to estimate the ex-
pected return

e Good policy may be chosen by searching over the space of policies
e Value function at a state under a given policy is

Vi(s) = Eglre+repq+...+rrlse =59
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Value functions

e As we are looking for best policy, it will be useful to estimate the ex-
pected return

e Good policy may be chosen by searching over the space of policies
e Value function at a state under a given policy is
V7(s)
V7(s)

E?T[rt + rep+ . —|—rT|5t = 5]
Ex[relst = 8] + Ex[repqn + ...+ rrlse = 9]

Vi(s) = Y _m(s,a)r(s,a) + Exlrepr+ ...+ rrlse = o]
acA
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Value functions

e As we are looking for best policy, it will be useful to estimate the ex-
pected return

e Good policy may be chosen by searching over the space of policies
e Value function at a state under a given policy is

Vi(s) = Eglre+repq+...+rrlse =59
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Value of policy

e Reorganizing the last expression

V”(s):Z( <sa+fyz T(s,a,s)V"(s )

acA 'eS
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Value of policy

e Reorganizing the last expression

Vi(s) = ) n(s,a) <r(s, a)+v) T(s.a, s’)V”(s’))

acA s'eS

e If we have state-action value functions

Q"(s,a) = r(s,a +WZ s'|a, s) Zw(s’,a’)Q”(s’,a’)

s’'es
e Known as Bellman’s equation
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Value computation

() > (b)
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Value of policy

e State value function

vi(s) = 3 n(s.a) (( a)+7 3 T(s.a, s’)V”(s’))

acA s'eS

o In case of finite number of states, we have a system of linear equations
with unique solution to V"

e Above equation can be written in matrix form as
v7T — R7T + /YT’/Tv’/T

e Solution will be :
Vi=(1—~T")" R"
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Iterative policy evaluation

e Guess initial values for Vy(s)
e Itcanbe O

e In every iteration say k, the value function for every state will be up-
dated as

Vigr = R(s, (s +vz s, 7(s), s )Vk(s')

e Iteration will stop when the difference between two consecutive iter-
ation is within a given threshold
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Convergence of iterative policy evaluation

e Absolute error in after (k -+ 1)th iteration

) — [t 2 LT
—Z s,a) —va(S,G,S/)Vﬂ(SI)‘
S/
< 72 SGZ (s,a,s)|Vk(s') — V7(5)]

e If v < 1, then error reduces to O gradually

IIT Patna 24



Optimal value function

e Optimal value function may be defined as

V*(s) = max V" (s)

™

Q*(s,a) = maxQ"(s,a)

™

e Any policy that achieves the optimal value function is known as opti-
mal policy

e Usually denoted as 7*
e Optimal value is unique
e Optimal policy is not necessarily unique
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Optimal value function

e Suppose V* R, T,y are known, then 7* can be determined as

7*(s) = arg max <r(5, a)+-y Z T(s,a, s’)V*(s))
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Optimal value function

e Suppose V* R, T,y are known, then 7* can be determined as
* o / *
7*(s) = arg max <r(s, a) + VZ T(s,a,s" )V (s))
S/

e Suppose 7", R, T,y are known, then V* can be determined as

Vi(s) = Zw*(s, a) (r(s, a) + vz T(s, a,s’)V*(s)>

acA

Vi(s) = r(s,m(s)) +7 > _ T(s,7(s),s)V'(s)
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Optimal value function

e For state-action pair

Q*(s,a) = r(s, a)+vz s'|a, s) maxQ(s a)

s'es
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Optimal value computation

(a) 5 (b)

max

r max
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Recycling Robot

e Arobot does one of the following at each time step

e Actively search for a can
e Remain stationary and wait for someone to bring a can
e Go back to home base to recharge battery
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Recycling Robot: Transition relation
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low | high | recharge 1 0

low | low | recharge 0 0




l, Twait I—B N —3

P, Tsearch
search

1. 0 recharge

1, Tyait
O, Tsearch 1-0t, Tsearcn

Image source: Reinforcement Learning by Andrew Barto and Richard S. Sutton
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Optimal value computation

e For recycling robot

Vi(h) — max{ p(hlh,s)[r(h,s, h) + yV*(h)] + p(I|h, s)[r(h,s, 1) + ~V*(1)], }
p(h|h,w)[r(h,w, h) +~V*(h)] 4+ p(Ilh, w)[r(h, w, ) + yV*(I)]
)

Vi) = max{rs +~faVi(h) + (1— )V ()], rw +V*(h)}

vi(l) = rw + V(1)

Brs —3(1— B) +~[(1 = B)v*(h) + BV*(I)] }
max{ v+ (h)
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Finding a good policy (iterative approach)

e Start with an initial policy mj
e Repeat the following

e Determine the V™ using policy evaluation
e Determine a new policy 7’ which is greedy with respect to V"

e Terminate when m = 7/
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Finding a good policy (iterative approach)

e Start with an initial value V;(s)
e In every iteration, update the value function

acA

Vi(s) = max (R(s, a)+-y Z T(s,a, s’)Vk1(s’))

S/

e Stop when maximum value change between iterations is below thresh-
old

e The algorithm converges to the true value of V*
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Approaches to RL

e Value based RL

e Estimate the optimal value function Q*(s, a)
e The maximum value that can be achieved under any policy

e Policy based RL

e Look for optimal policy 7*
e Policy achieving maximum future reward

e Model based RL

e A model of the environment is developed
e Plan is made using the model
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Q-Networks

e Represent value function by Q-network with weights w, Q(s,a, w) =~
Q*(s, a)

Q(s,a,w) Q(s,aq,w) - Qfs,a,,w)

bt
A~ N AN

w

T 1

)
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e Optimal Q-values should obey Bellman equation
Q*(s,a) = Eg [r + vy maxQ*(s’,d')ls, a}
a/

¢ Right hand side may be treated as target
e Minimize MSE loss by SGD

2
| = (r+7mz/axQ(s’7a’,w) —Q(s,a,w))

e Can diverge using neural networks because of

e Correlations between samples
e Non-stationary targets
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Deep Q network

e Data set are generated from agents own experience
S$1,01,I2,52
$2,0d2,r3,53

St, At, Mt1, St41
e Sample experience from data set and apply update

2
| = (r +ymaxQ(s’,a’,w™) — Q(s,a, w))
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Deep reinforcement learning

Image source:Deep reinforcement learning by David Silver
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