Introduction to Deep Learning

Arijit Mondal

Dept. of Computer Science & Engineering Indian Institute of Technology Patna

arijit@iitp.ac.in

Deep Reinforcement Learning

Image source: http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

Interaction with environment

Reinforcement learning

- Set of actions that the learner will make in order to maximize its profit
- Action may not only affect the next situation but also subsequent situation
 - Trial and error search
 - Delayed reward
- A learning agent is interacting with environment to achieve a goal
- Agent needs to have idea of state so that it can take right action
- Three key aspects observation, action, goal

Reinforcement vs supervised learning

Reinforcement learning

- It is different from supervised learning
 - Learning from examples provided by a knowledgeable external supervisor
 - Not adequate for learning from interaction
- In interaction problem it is often impractical to obtain examples of desired behavior that are correct and representative of all situations
- Trade-off between exploration and exploitation
 - To improve reward it must prefer effective action from the past (exploit)
 - To discover such action it has to try unselected actions (explore)
 - Exploit and exploration cannot be pursued exclusively
- Agent interacts with uncertain environment

When to use RL

- Data in the form of trajectories
- Need to make a sequence of decision
- Observe (partial, noisy) feedback to state or choice of action

Examples

- Chess player eg. games
- Robotics
- Adaptive controller
- All involve interaction between active decision making agent and its environment

Elements of RL

- Agent
- Environment
- Policy The way agent behaves at a given time
 - Mapping of state-action pair to state
 - Can use look up table or search method
 - Core of reinforcement learning problem
- Reward function Defines the goal in reinforcement learning problem
 - It maps state-action pair to a single number
 - Objective of RL agent is to maximize total reward
 - Defines bad or good events
 - Must be unalterable by agent, however policy can be changed

Elements of RL (contd.)

- Value function
 - Specifies what is good in long run
 - Value of a state is the total amount of reward an agent can expect to accumulate over future starting from the state
 - Indicates long term desirability of states
 - The action tries to move to a state of highest value (not highest reward)
 - Rewards are mostly given by the environment
 - Value must be estimated or reestimated from the sequence of observation
 - Need efficient method to find values
 - Evolutionary methods (genetic algorithm, simulated annealing) search directly in the space of policies without applying value function

Elements of RL (contd.)

- Model of environment
 - Mimics the behavior of environment
 - Given state and action, model might predict resultant next state and next reward
 - Every RL system uses trial and search methodology to learn

Reinforcement learning

- Learning agent tries a sequence of actions (*a*_t)
- Observes outcomes (state s_{t+1} , rewards r_t) of those actions
- Statistically estimated relationship between action choice and outcomes Pr(s_t|s_{t-1}, a_{t-1})
- Selection of policy $\pi(s)$ that optimizes selected outcome

$$\arg\max_{\pi} E_{\pi}[r_0 + r_1 + \ldots + r_T | s_0]$$

Markovian decision process

- S set of states
- A set of actions
- $Pr(s_t|s_{t-1}, a_{t-1})$ Probabilistic effects
- r_t reward function

The Markov property

• The future state depends only on the current state

$$Pr(s_t|s_{t-1},\ldots,s_0) = Pr(s_t|s_{t-1})$$

Utility maximization

- Let U_t be the utility for a trajectory starting from t
- Episodic tasks (eg. games)

 $U_t = r_t + r_{t+1} + r_{t+2} + \ldots + r_T$

- Continuing tasks (eg. can run forever) $U_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots = \sum \gamma^k r_{t+k}$
- γ is known as discount factor and lies between 0 and 1
 - At each time step there is a chance of (1γ) that agent dies and no reward after that

k=0

• Inflation rate - receiving an amount of money today, the value of it tomorrow will be less by a factor of γ

Policy defines the action selection strategy at every state

$$\pi(s,a) = P(a_t = a, s_t = s)$$

- It can be stochastic or deterministic
- Goal is to maximize expected total reward

$$rg\max_{\pi} E_{\pi}[r_0+r_1+\ldots+r_T|s_0]$$

• There are many policies!

Example

- As we are looking for best policy, it will be useful to estimate the expected return
- Good policy may be chosen by searching over the space of policies
- Value function at a state under a given policy is

 $V^{\pi}(s) = E_{\pi}[r_t + r_{t+1} + \ldots + r_T | s_t = s]$

- As we are looking for best policy, it will be useful to estimate the expected return
- Good policy may be chosen by searching over the space of policies
- Value function at a state under a given policy is

 $V^{\pi}(s) = E_{\pi}[r_t + r_{t+1} + \ldots + r_T | s_t = s]$ $V^{\pi}(s) = E_{\pi}[r_t | s_t = s] + E_{\pi}[r_{t+1} + \ldots + r_T | s_t = s]$

- As we are looking for best policy, it will be useful to estimate the expected return
- Good policy may be chosen by searching over the space of policies
- Value function at a state under a given policy is

$$V^{\pi}(s) = E_{\pi}[r_{t} + r_{t+1} + \ldots + r_{T}|s_{t} = s]$$

$$V^{\pi}(s) = E_{\pi}[r_{t}|s_{t} = s] + E_{\pi}[r_{t+1} + \ldots + r_{T}|s_{t} = s]$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a)r(s, a) + E_{\pi}[r_{t+1} + \ldots + r_{T}|s_{t} = s]$$

- As we are looking for best policy, it will be useful to estimate the expected return
- Good policy may be chosen by searching over the space of policies
- Value function at a state under a given policy is

$$V^{\pi}(s) = E_{\pi}[r_{t} + r_{t+1} + \dots + r_{T}|s_{t} = s]$$

$$V^{\pi}(s) = E_{\pi}[r_{t}|s_{t} = s] + E_{\pi}[r_{t+1} + \dots + r_{T}|s_{t} = s]$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a)r(s, a) + E_{\pi}[r_{t+1} + \dots + r_{T}|s_{t} = s]$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a)r(s, a) + \sum_{a \in A} \pi(s, a)\sum_{s' \in S} T(s, a, s')E_{\pi}[r_{t+1} + \dots + r_{T}|s_{t+1} = s']$$

- As we are looking for best policy, it will be useful to estimate the expected return
- Good policy may be chosen by searching over the space of policies
- Value function at a state under a given policy is

$$V^{\pi}(s) = E_{\pi}[r_{t} + r_{t+1} + \ldots + r_{T}|s_{t} = s]$$

$$V^{\pi}(s) = E_{\pi}[r_{t}|s_{t} = s] + E_{\pi}[r_{t+1} + \ldots + r_{T}|s_{t} = s]$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a)r(s, a) + E_{\pi}[r_{t+1} + \ldots + r_{T}|s_{t} = s]$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a)r(s, a) + \sum_{a \in A} \pi(s, a)\sum_{s' \in S} T(s, a, s')E_{\pi}[r_{t+1} + \ldots + r_{T}|s_{t+1} = s']$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a)r(s, a) + \sum_{a \in A} \pi(s, a)\sum_{s' \in S} T(s, a, s')V^{\pi}(s')$$

Value of policy

• Reorganizing the last expression

$$\mathbf{V}^{\pi}(s) = \sum_{a \in A} \pi(s, a) \left(\mathbf{r}(s, a) + \gamma \sum_{s' \in S} \mathbf{T}(s, a, s') \mathbf{V}^{\pi}(s') \right)$$

Value of policy

• Reorganizing the last expression

$$\mathbf{V}^{\pi}(s) = \sum_{a \in \mathbf{A}} \pi(s, a) \left(\mathbf{r}(s, a) + \gamma \sum_{s' \in \mathbf{S}} \mathbf{T}(s, a, s') \mathbf{V}^{\pi}(s') \right)$$

• If we have state-action value functions

$$Q^{\pi}(s,a) = r(s,a) + \gamma \sum_{s' \in S} P(s'|a,s) \sum_{a'} \pi(s',a') Q^{\pi}(s',a')$$

• Known as Bellman's equation

Value computation

Value of policy

• State value function

$$\mathbf{V}^{\pi}(s) = \sum_{a \in A} \pi(s, a) \left(r(s, a) + \gamma \sum_{s' \in S} T(s, a, s') \mathbf{V}^{\pi}(s') \right)$$

- In case of finite number of states, we have a system of linear equations with unique solution to \mathbf{V}^{π}
- Above equation can be written in matrix form as

 $\mathbf{V}^{\pi} = \mathbf{R}^{\pi} + \gamma \mathbf{T}^{\pi} \mathbf{V}^{\pi}$

• Solution will be

$$\mathbf{V}^{\pi} = (\mathbf{1} - \gamma \mathbf{T}^{\pi})^{-1} \mathbf{R}^{\pi}$$

Iterative policy evaluation

- Guess initial values for V₀(s)
 - It can be 0
- In every iteration say *k*, the value function for every state will be updated as

$$V_{k+1} = R(s, \pi(s)) + \gamma \sum_{s'} T(s, \pi(s), s') V_k(s')$$

• Iteration will stop when the difference between two consecutive iteration is within a given threshold

Convergence of iterative policy evaluation

• Absolute error in after (k + 1)th iteration

$$\begin{aligned} \mathsf{V}_{k+1}(s) - \mathsf{V}^{\pi}(s) &= |\sum_{a} \pi(s, a)(\mathsf{R}(s, a) + \gamma \sum_{s'} \mathsf{T}(s, a, s')\mathsf{V}_{k}(s') \\ &- \sum_{a} \pi(s, a)(\mathsf{R}(s, a) - \gamma \sum_{s'} \mathsf{T}(s, a, s')\mathsf{V}^{\pi}(s')| \\ &\leq \gamma \sum_{a} \pi(s, a) \sum_{s'} \mathsf{T}(s, a, s')|\mathsf{V}_{k}(s') - \mathsf{V}^{\pi}(s')| \end{aligned}$$

• If $\gamma \leq$ 1, then error reduces to 0 gradually

• Optimal value function may be defined as

```
V^*(s) = \max_{\pi} V^{\pi}(s)Q^*(s,a) = \max_{\pi} Q^{\pi}(s,a)
```

- Any policy that achieves the optimal value function is known as optimal policy
 - Usually denoted as π^*
- Optimal value is unique
- Optimal policy is not necessarily unique

• Suppose V^* , R, T, γ are known, then π^* can be determined as

$$\pi^*(s) = \arg \max_{a \in A} \left(r(s, a) + \gamma \sum_{s'} T(s, a, s') \mathsf{V}^*(s) \right)$$

• Suppose V^* , R, T, γ are known, then π^* can be determined as

$$\pi^*(s) = \arg \max_{a \in A} \left(r(s, a) + \gamma \sum_{s'} T(s, a, s') \mathsf{V}^*(s) \right)$$

• Suppose $\pi^*, \mathbf{R}, \mathbf{T}, \gamma$ are known, then \mathbf{V}^* can be determined as

$$V^*(s) = \sum_{a \in A} \pi^*(s, a) \left(r(s, a) + \gamma \sum_{s'} T(s, a, s') V^*(s) \right)$$
$$V^*(s) = r(s, \pi(s)) + \gamma \sum_{s'} T(s, \pi(s), s') V^*(s')$$

• For state-action pair

$$Q^{*}(s,a) = r(s,a) + \gamma \sum_{s' \in S} P(s'|a,s) \max_{a'} Q^{*}(s',a')$$

Optimal value computation

Recycling Robot

- A robot does one of the following at each time step
 - Actively search for a can
 - Remain stationary and wait for someone to bring a can
 - Go back to home base to recharge battery

Recycling Robot: Transition relation

S	s′	а	p(s' s,a)	r(s, a, s')
high	high	search	α	r _{search}
high	low	search	1-lpha	r _{search}
low	high	search	$1-\beta$	-3
low	low	search	β	r _{search}
high	high	wait	1	r _{wait}
high	low	wait	0	r _{wait}
low	high	wait	0	r _{wait}
low	low	wait	1	r _{wait}
low	high	recharge	1	0
low	low	recharge	0	0

Example

Optimal value computation

• For recycling robot

 $V^{*}(h) = \max \left\{ \begin{array}{l} p(h|h,s)[r(h,s,h) + \gamma V^{*}(h)] + p(l|h,s)[r(h,s,l) + \gamma V^{*}(l)], \\ p(h|h,w)[r(h,w,h) + \gamma V^{*}(h)] + p(l|h,w)[r(h,w,l) + \gamma V^{*}(l)] \end{array} \right\}$ $V^{*}(h) = \max \{ r_{s} + \gamma [\alpha V^{*}(h) + (1-\alpha) V^{*}(l)], r_{w} + \gamma V^{*}(h) \}$

$$\mathbf{V}^*(l) = \max \left\{ \begin{array}{l} \beta r_s - 3(1-\beta) + \gamma [(1-\beta)\mathbf{V}^*(h) + \beta \mathbf{V}^*(l)] \\ r_w + \gamma \mathbf{V}^*(l), \\ \gamma \mathbf{V}^*(h) \end{array} \right\}$$

Finding a good policy (iterative approach)

- Start with an initial policy π_0
- Repeat the following
 - Determine the V^{π} using policy evaluation
 - Determine a new policy π' which is greedy with respect to V^{π}
- Terminate when $\pi = \pi'$

Finding a good policy (iterative approach)

- Start with an initial value V₀(s)
- In every iteration, update the value function

$$V_k(s) = \max_{a \in A} \left(R(s,a) + \gamma \sum_{s'} T(s,a,s') V_{k-1}(s') \right)$$

- Stop when maximum value change between iterations is below threshold
- The algorithm converges to the true value of V*

Approaches to RL

- Value based RL
 - Estimate the optimal value function Q^{*}(s, a)
 - The maximum value that can be achieved under any policy
- Policy based RL
 - Look for optimal policy π^*
 - Policy achieving maximum future reward
- Model based RL
 - A model of the environment is developed
 - Plan is made using the model

Q-Networks

• Represent value function by Q-network with weights \mathbf{w} , $Q(s, a, \mathbf{w}) \approx Q^*(s, a)$

Q learning

- Optimal Q-values should obey Bellman equation $Q^*(s, a) = E_{s'} \left[r + \gamma \max_{a'} Q^*(s', a') | s, a \right]$
- Right hand side may be treated as target
- Minimize MSE loss by SGD

$$I = \left(\mathbf{r} + \gamma \max_{a'} \mathbf{Q}(s', a', \mathbf{w}) - \mathbf{Q}(s, a, \mathbf{w}) \right)^2$$

- Can diverge using neural networks because of
 - Correlations between samples
 - Non-stationary targets

Deep Q network

• Data set are generated from agents own experience

• Sample experience from data set and apply update

$$I = \left(r + \gamma \max_{a'} Q(s', a', \mathbf{w}^{-}) - Q(s, a, \mathbf{w})\right)^{2}$$

Deep reinforcement learning

DQN

References

- Reinforcement Learning: An Introduction by Andrew Barto and Richard S. Sutton
- Human-level control through deep reinforcement learning by Deep Mind, Google