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Introduction

¢ In machine learning, target is to make an algorithm performs well not
only on training data but also on new data

e Many strategies exist to reduce test error at the cost of training error

e Any modification we make to a learning algorithm that is intended to
reduce its generalization error but not its training error
e Objectives

e To encode prior knowledge
e Constraints and penalties are designed to express generic preference for simpler
model

IIT Patna 3



Regularization in DL

¢ In DL regularization works by trading increased bias for reduced vari-
ance
e Consider the following scenario
e Excluded the true data generating process
e Underfitting, inducing bias
e Matched the true data generating process
e Desired one
e Included the generating process but also many other generating process
e Overfitting, variance dominates
e Goal of regularizer is to take an model overfit zone to desired zone
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Norm penalties

e Most of the regularization approaches are based on limiting the ca-
pacity of the model
e Objective function becomes J(9; X, y) = J(0; X, y) + aQ(8)
e « — Hyperparameter denotes relative contribution
e Minimization of J implies minimization of J
e () penalizes only the weight of affine transform

e Bias remain unregularized
e Regularizing bias may lead to underfitting

IIT Patna 5



L? parameter regularization

e Weights are closer to origin as Q(6) = ;|| w||3
e Also known as ridge regression or Tikhonov regression

e Objective function J(w; X, y) = %wTw +J(w; X, y)
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L? parameter regularization

e Weights are closer to origin as Q(6) = 1||w||?
e Also known as ridge regression or Tikhonov regression

e Objective function J(w; X, y) = %wTw +J(w; X, y)
e Gradient V,, J(w; X, y) = aw + V,J(w; X, y)
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L? parameter regularization

e Weights are closer to origin as Q(6) = 1||w||?
e Also known as ridge regression or Tikhonov regression

e Objective function J(w; X, y) = %wTw +J(w; X, y)

e Gradient V,, J(w; X, y) = aw + V,J(w; X, y)
e New weights
w = w—¢elaw+ VyJ(w; X,y))
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L? parameter regularization

e Weights are closer to origin as Q(6) = 1||w||?
e Also known as ridge regression or Tikhonov regression

e Objective function J(w; X, y) = %wTw +J(w; X, y)

e Gradient V,, J(w; X, y) = aw + V,J(w; X, y)
e New weights

w = w—e¢claw+ VuJ(w; X, y)) = w(l—ea)—eVu(w;X,y)
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L? parameter regularization

e Weights are closer to origin as Q(6) = 1||w||?
e Also known as ridge regression or Tikhonov regression

e Objective function J(w; X, y) = %wTw +J(w; X, y)
e Gradient V,, J(w; X, y) = aw + V,J(w; X, y)
e New weights
w = w—e¢claw+ VuJ(w; X, y)) = w(l—ea)—eVu(w;X,y)

e Assuming quadratic nature of curve in the neighborhood of
w* = arg min J(w)
w

e J(w) — unregularized cost
e Perfect scenario for linear regression with MSE
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Jacobian & Hessian

e Derivative of a function having single input and single output — %

e Derivative of function having vector input and vector output that is,

f:R" - R"

e Jacobian J € R"*™ of f defined as J;; = -2 f(x);
e Second derivative is also required sometime

82
f
8X,‘8Xj
e If second derivative is O, then there is no curvature

2
aX,'an f(X)

e For example, f : R" — R,

e Hessian matrix H(f)(x); =
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Jacobian & Hessian

e Derivative of a function having single input and single output — %

e Derivative of function having vector input and vector output that is,

f:R" - R"

e Jacobian J € R"*™ of f defined as J;; = -2 f(x);
e Second derivative is also required sometime

82
f
8X,‘8Xj
e If second derivative is O, then there is no curvature

2
aX,'an f(X)

e For example, f : R" — R,

e Hessian matrix H(f)(x); =

e Jacobian of gradient
e Symmetric
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Directional derivative

e The directional derivative of a scalar function f(x) = f(xy,x2,...,x,)
along a vector v = (v, ..., v,) is given by
h _
V. f(x) = lim fx+ hv) — f(x)
h—0 h

o If f is differentiable at point x then
Vif(x) = Vf(x) - v
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Taylor series expansion

e Areal valued function differentiable at point xo can be expressed as

f'(Xo) f"(Xo) &) (xo)

F(3) = F(x0) + o2 (X —x0) 2 (k=0 P 2 (kX0 )
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Taylor series expansion

e Areal valued function differentiable at point xo can be expressed as

F (X0 (% £9)(x,
(1! o)+ (2! ) 3(! )

f(x) = f(xo) + (x—x0)*+ (x—x0)’ 4
e When input is a vector
F) ~ F() =+ (x = X)T5 + 50— X H(x = x)

e g — gradient at x(°), H — Hessian at x(©)
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Taylor series expansion

e Areal valued function differentiable at point xo can be expressed as

f'(%o) f"(xo) f®)(xo)

f(x) = f(x0) + == (x=X0) +— 3l

(X—Xo)z—f— (X—Xo)3+"'

e When input is a vector
1
Flx) & Fx®) =+ (x = x)Tg 4 50 = x)TH(x = %)

e g — gradient at x(°), H — Hessian at x(©)

1
o If ¢ is the learning rate, then f(x(®) — ¢g) = f(x(°)) — cg'g + EengHg
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Quadratic approximation

e Let w* = arg min,, J(w) be optimum weights for minimal unregularized
cost

o If the objective function is quadratic then
N 1
J(0) = J(w*) + E(W — w*) H(w — w*)

e His the Hessian matrix of J with respect to w at w*
e No first order term as w* is minimum
e H s positive semidefinite

e Minimum of J occurs when V,,J(w) = Hw —w*) = 0
e With weight decay we have
aW + H(W — w*) = 0 = (H+ al)W = HW* = W = (H + al)"'Hw*
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Quadratic approximation (contd)

e As o — 0, regularized solution w approaches to w*
e Aso — o0
e His symmetric, therefore H = QAQ’. Now we have

w = (QAQ" +al)'QAQ'W*
= [QA+alQ] ' QAQ W
= QA+ al)'AQ"W*

e Weight decay rescale w* along the eigen vector of H

e Component of w* that is aligned to i-th eigen vector, will be rescaled by a factor of
e )\; > a — regularization effect is small

Ai
A,‘+OJ
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L2 Norm
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Linear regression

e For linear regression cost function is (Xw — y)" (Xw — y)
e Using L” regularization we have (Xw — y)"(Xw — y) + Jow'w
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Linear regression

e For linear regression cost function is (Xw — y)"(Xw — y)
e Using L” regularization we have (Xw — y)"(Xw — y) + Jow'w
e Solution for normal equation w = (X'X) X"y
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Linear regression

e For linear regression cost function is (Xw — y)" (Xw — y)

e Using L” regularization we have (Xw — y)"(Xw — y) + Jow'w
e Solution for normal equation w = (X'X) X"y

e Solution for with weight decay w = (X'X + al) X"y
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L' regularization

o Formally it is defined as Q(6) = [|w|j; = > _|w;|

e Regularized objective function will be J(w; X,y) = a|w/|; + J(w; X, y)
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L' regularization

o Formally it is defined as Q(6) = [|w|j; = > _|w;|
i
e Regularized objective function will be J(w; X,y) = a|w/|; + J(w; X, y)
e The gradient will be V,,J(w; X, y) = asign(w) + V,J(w; X, y)
e Gradient does not scale linearly compared to L? regularization
e Taylor series expansion with approximation provides ij(w) =
H(w — w")
e Simplification can be made by assuming H to be diagonal
e Apply PCA on the input dataset
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L' regularization

e Quadratic approximation of L' regularization objective function be-
comes J(w; X, y) = J(W*; X, y) + >, [3Hii(wi — w})? + a|wi]

e So, analytical solution in each dimension will be w; =
sign(w;) max{]w,.*\ — H&,O}

e Consider the situation when w; > 0

o If wi < -, optimal value for w; will be O under regularization
o If w > ;7-, w; moves towards O with a distance equal to ;-
ii i,i
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Constrained optimization

e Cost function regularized by norm penalty is given by
1(0;X,y) = J(0;X,y) + aQ(0)
e Let us assume f(x) needs to be optimized under a set of equality con-

straints 3()(x) = 0 and inequality constraints hU)(x) < 0, then general-
ized Lagrangian is then defined as

L(x, A\, ) = f(x +Z)\,g )+Z%h0)
j

e If there exists a solution then

min max maxL(x, A, a) = mlnf( )
X A a>0

e This can be solved by V,  ,L(x. A\, &) =0
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Constraint optimization (contd.)

e Suppose () < k needs to be satisfied. Then regularization equation
becomes
L(O,a; X,y) =J(0;X,y) + a(Q2(0) — k)
e Solution to the constrained problem

0" = i L(o,
arg min max (0, «)
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Dataset augmentation

o If data are limited, fake data can be added to training set
e Computer vision problem
e Speech recognition

e Easiest for classification problem

e Very effective in object recognition problem

e Translating
e Rotating
e Scaling

o Need to be careful for 'b’ and 'd’ or '6’ and '9’

¢ Injecting noise to input data can be viewed as data augmentation
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Multitask learning

Image source: Deep Learning Book
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Early stopping

Learning curves
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Image source: Deep Learning Book
IIT Patna 20



Early stopping approach

o Initialize the parameters

e Run training algorithm for n steps and update i = i +n

e Compute error on the validation set (V')

e If V' is less than previous best, then update the same. Start step 2 again

e If V' is more than the previous best, then increment the count that stores
the number of such occurrences. If the count is less than a threshold go
to step 2, otherwise exit.
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Early stopping (contd)

e Number of training step is a hyperparameter
e Most hyperparameters that control model capacity have U-shaped curve

o Additional cost for this approach is to store the parameters
e Requires a validation set
o It will have two passes
e First pass uses only training data for update of the parameters
e Second pass uses both training and validation data for update of the parameters
e Possible strategies
e Initialize the model again, retrain on all data, train for the same number of steps as ob-
tained by early stopping in pass 1
e Keep the parameters obtained from the first round, continue training using all data until
the loss is less than the training loss at the early stopping point

e It reduces computational cost as it limits the number of iteration
e Provides regularization without any penalty
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Early stopping as regularizer

e Let us assume 7 training iteration, ¢ learning rate
e ¢7 — measures effective capacity

e We have, J(0) = J(w*) + 2(w — w*)H(w — w*) and V,,J(w) = H(w —
w¥)
e Assume w(® =0
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Early stopping as regularizer (contd.)

e Approximate behavior of gradient descent provides
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Early stopping as regularizer (contd.)

e Approximate behavior of gradient descent provides

w = wl) — v, Jwl)
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Early stopping as regularizer (contd.)

e Approximate behavior of gradient descent provides

w = wl) — v, Jwl)

w = wl=) — eHw() — w¥)
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Early stopping as regularizer (contd.)

e Approximate behavior of gradient descent provides
w = wl) — v, Jwl)

o W(T—1) o EH(W(T_1) o w*)

wi —w' = (I—eH)(W ) —w)

2

\]
SN—r
|
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Early stopping as regularizer (contd.)

e Approximate behavior of gradient descent provides

w = wl) — v, Jwl)
w = wi=) — cHw(") — w")
wi —w' = (I—eH)(W ) —w)

w —w' = (1—eQAQ") (W) —w¥)
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Early stopping as regularizer (contd.)

e Approximate behavior of gradient descent provides

w = wl) — v, Jwl)
W — WD GH( (=) _ )
(1 — eH)(W™) — w)
w —w' = (1—eQAQ") (W) —w¥)
(1= eA)Q (W) —w")
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Early stopping as regularizer (contd.)

e Approximate behavior of gradient descent provides

w = wl) — v, Jwl)
w = wi=) — cHw(") — w")
wi —w' = (I—eH)(W ) —w)
wi) —w = (1—eQAQ)(WI ™Y —w¥)
QW™ —w") = (I—eA)Q' (WY —w)
Qw = [I—(I—eA)]Q'W*
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Early stopping as regularizer (contd)

e Assuming w(®) = 0 and ¢ is small value such that |1 — ¢\ < 1
e From L? regularization, we have

Qw = (A+al)'AQ'W*
Qw = [I—(A+al)a]Q'w

e Therefore we have, (I — cA)" = (A + al) '«

e Hence, 7 ~ 1, v ~ -

€Q TE
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Bagging

e Also known as Bootstrap aggregating

e Reduces generalization error by combining several models

e Train multiple models then vote on output for the test example
e Also known as model averaging, ensemble method

e Suppose we have k regression model and each model makes an error
¢ suchthat E(¢;) = 0, E(¢?) = v, E(ei¢;) = ¢

L
e Error made by average prediction P Z €
1
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Bagging (contd.)

e Expected mean square error
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Dropout
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Image source: Deep Learning Book
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Dropout

Image source: Deep Learning Book
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Adversarial training

Image source: Deep Learning Book
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