Introduction to Deep Learning

Ariiit Mondal

Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

General Information

- Teaching assistants
 - Niraj Kumar
 - Aakash

• Course webpage: www.iitp.ac.in/~arijit/, then follow Teaching

Course structure

- Introduction to big data problem & representation learning
- Overview of linear algebra and probability
- Basics of feature engineering
- Neural network
- Introduction to open-source tools
- Deep learning network
- Regularization
- Optimization
- Advanced topics
- Practical applications

Evaluation policy

- Mid-sem 20%
- **Project 40%**
- End-sem 40%
- 75% attendance is compulsory

Project

- Group wise project
- A group can have maximum of 3 students
- Final presentation of project will be held before your end semester

Books

- Deep Learning Ian Goodfellow, Yoshua Bengio, Aaron Courville
- The Elements of Statistical Learning Jerome H Friedman, Robert Tibshirani, Trevor Hastie
- Reinforcement Learning: An Introduction Richard S Sutton, Andrew G Barto
- Neural Network and Learning Machines Simon S. Haykin

Acknowledgement

- Deep Learning Book by Ian Goodfellow, Yoshua Bengio, Aaron Courville
- Presentations by Yann LeCun, Geoff Hinton, Yoshua Bengio
- Various websites for images
- Dr. Jacob Minz (Synopsys)
- IIT KGP Batch of 2001
 - Joydeep Acharya (Hitachi)
 - Sanjeev Kumar (Liv.AI)
 - Mithun Dasgupta (Microsoft)
 - Amit Kumar (Avnera)

- Mrinmoy Ghosh (Facebook)
- Animesh Datta (Qualcomm)
- Bhaskar Saha (PARC)
- Banit Agrawal (Facebook)

Introduction

Problem space

- **Problems** a matter or situation regarded as unwelcome or harmful and needing to be dealt with and overcome
- Target is to solve the same on a computer

Problem space

- **Problems** a matter or situation regarded as unwelcome or harmful and needing to be dealt with and overcome
- Target is to solve the same on a computer
- Problems can be intellectually challenging for human being but relatively straight forward for a computer
 - Travelling salesman problem, chess
- Problems can be easy for common people but difficult for computer (even expressing it in a formal way)

• Identifying an object, car (say), in a picture

Problem space

- **Problems** a matter or situation regarded as unwelcome or harmful and needing to be dealt with and overcome
- Target is to solve the same on a computer
- Problems can be intellectually challenging for human being but relatively straight forward for a computer
 - Travelling salesman problem, chess
- Problems can be easy for common people but difficult for computer (even expressing it in a formal way)
 - Identifying an object, car (say), in a picture

• Primary focus will be in the second category problems

Problem Solving Strategies for Big Data

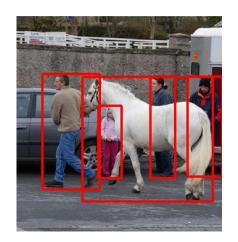
- Need to solve problems efficiently and accurately when the input data is huge (\sim GB, TB order)
- Finding a deterministic algorithm is difficult
 - Need to find out features
 - Requires significant effort for model building
 - Need to have domain knowledge
- Statistical inference is found to be suitable
 - Feature selection is not crucial
 - Model will learn from past data

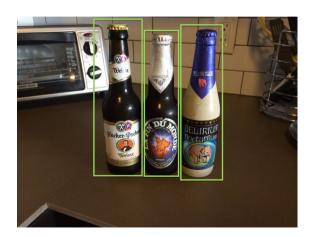
Applications: Computer vision

- 2d to 3d conversion
- Street view generation
- Image classifications
- Image segmentation

Applications: Activity Recognition

 Recognize activities like walking, running, cooking, etc. from still image or video data


Applications: Image Captioning


• Automated caption generation for a given image

Applications: Object Identification

• Identify objects in still image or in video stream

Applications: Automated Car

• Self driving car

Applications: Drones & Robots

Managing movement of robot or drones

Applications: Natural Language Processing

- Recommender system
- Sentiment analysis
- Question answering
- Information extraction from website
- Automated email reply

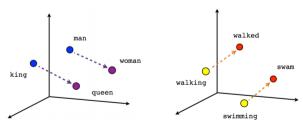
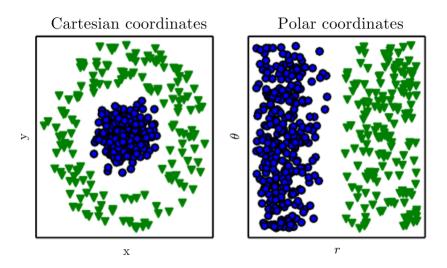


Image source: Internet Male-Female Verb tense Country-Capital

Applications: Speech processing

- Conversion of speech into text
- Generation of particular voice for a given text

Other possible applications


- Language translation
- Weather prediction
- Genomics
- Drug discovery
- Particle physics
- Surveillance
- Cryptography and many more.

Issue of Representation

- Representation of data in an efficient/structured manner is crucial for solving problems more effectively
 - Searching of a set of elements in a given list (sorted/unsorted)
 - Arithmetic operations on Arabic and Roman numerals
 - Primality test of n when n is represented as 11111 . . . 111 (n-number of one)

• Structured representation can help in predicting future values

Choice of Representation

Learning representation/feature

- Traditional approaches
 - Pattern recognition
 - Input, output of the problem
- End to end learning
 - System automatically learns internal representation

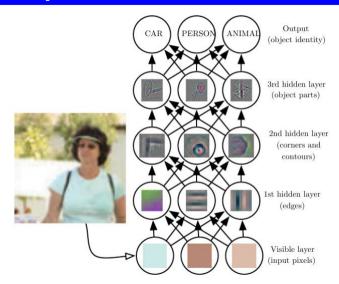
AI-ML Tasks

- Heavily depends on features
- Requires good domain knowledge
- Feature extraction is not easy job
 - Identify a car
 - How to describe wheel
 - Shadow/brightness
 - Obscuring element

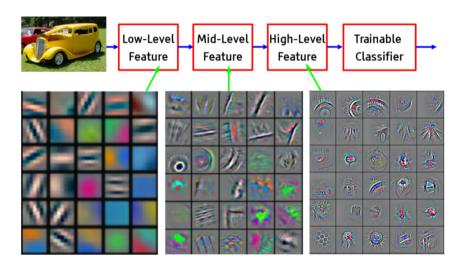
Representation Learning

- Learned representation often result in better performance compared to hand design
- Allows the system to rapidly adapt to new task
- Need to discover a good set of features
- Manual design of features is nearly impossible

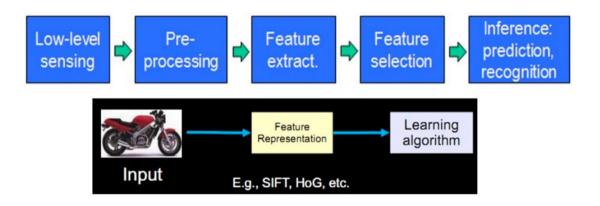
Design of Features


- Goal is to separate out variation factors
- These factors are separate sources of influence
- It may exist as unobserved object or unobserved forces that affect observable quantity
 - Speech Factors are age, sex, accent, etc
 - Image Position, color, brightness, etc.

Deep Learning


- Try to address the problem of representation learning
- Representation are expressed in terms of other simpler representation

Develop complex concept using simpler concept


Simple to Complex Features

Simple to Complex Features

Conventional Machine Learning

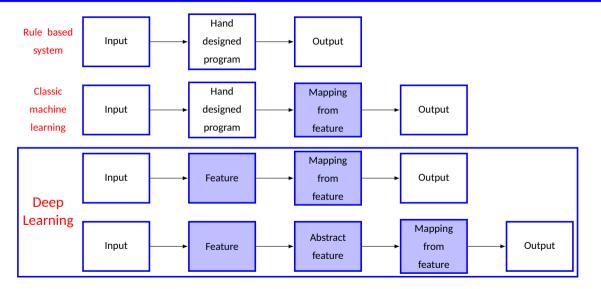
IIT Patna


29

Deep Learning Model

- Feed-forward deep network or multilayer perceptron
- Mathematical functions that map input to output
- Composed of simpler functions
- Each layer provides a new representation
- Learning right representation

Depth of network

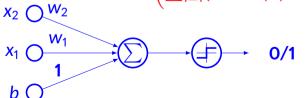

- Number of sequential instruction must be executed to evaluate the architecture
 - Length of the longest path
- Depth of the model

IIT Patna

31

Representation learning

History

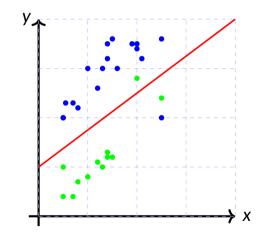

- Has many names and view point
 - Cybernetics (1940-1960)
 - Connectionism (1980-1990) (neural net)
 - Deep learning (2006+)
- More useful as the amount of data is increased
- Models have grown in size as increase in computing resources
- Solving complex problem with increasing accuracy

Learning Algorithm

- Early learning algorithm
 - How learning happen in brain?
 - Computational model of biological learning
- Neural perspective of DL
 - Brains provide a proof by example
 - Reverse engineer the computational principle behind the brain and duplicate its functionality

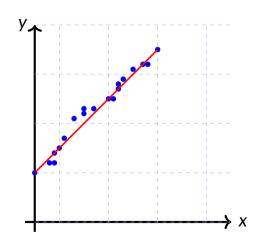

History of basic model

- The first learning machine: the Perceptron
 - Built at Cornell, 1960
- Perceptron was linear classifier on top of simple feature extractor
- Most of the practical applications of ML today use glorified linear classifiers or glorified template matching.
- Significant effort is required for identifying relevant features
- Typically it will solve $y = sign\left(\sum_{i=1}^{N} (w_i \times f_i(X) + b)\right)$

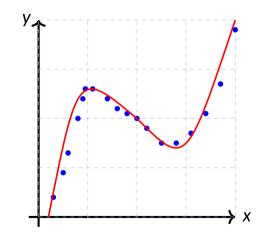


Broad Categories of Problem

• Regression

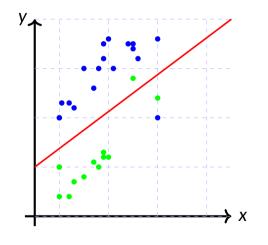


• Classification

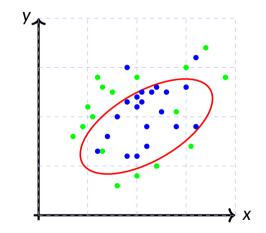


Regression

• Regression (linear)

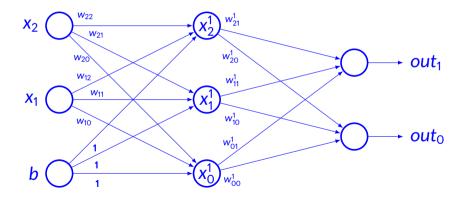


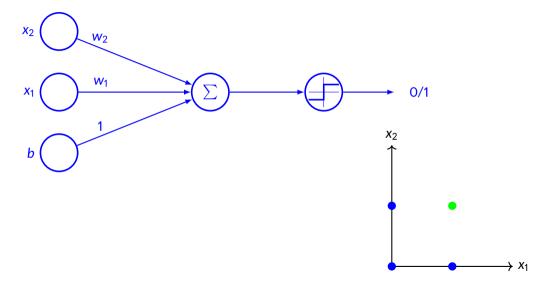
• Regression (Non-linear)

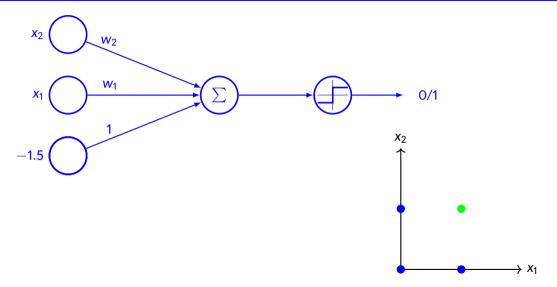


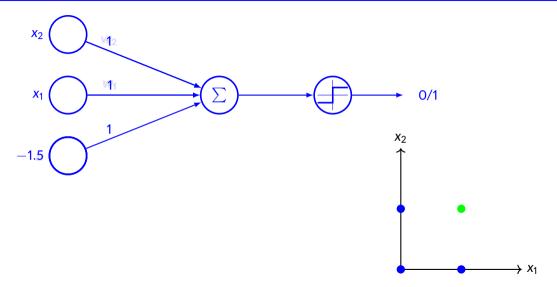
Classification

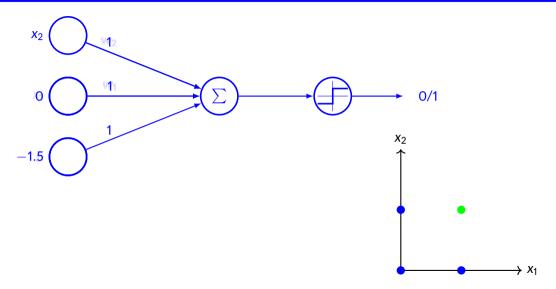
• Linear

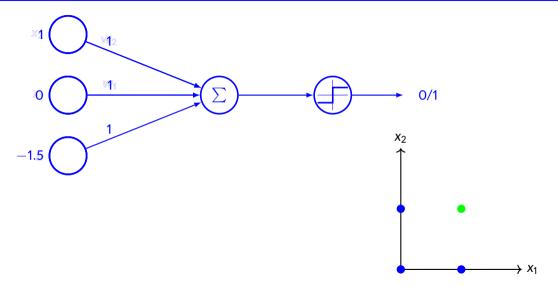


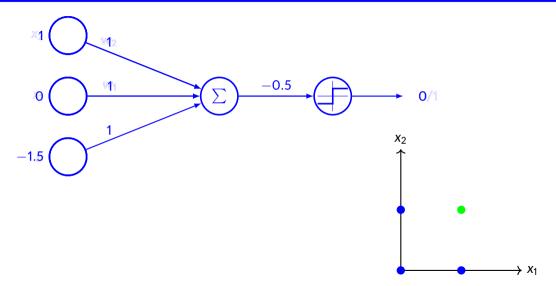

• Non-linear

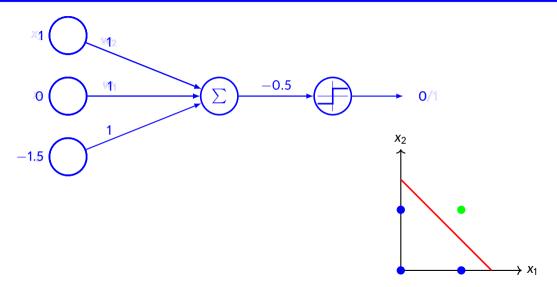


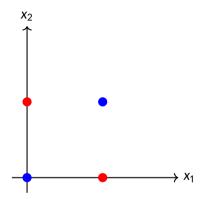

Artificial Neural Network

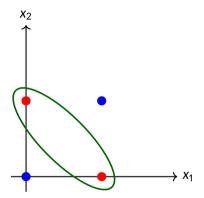

A simple model

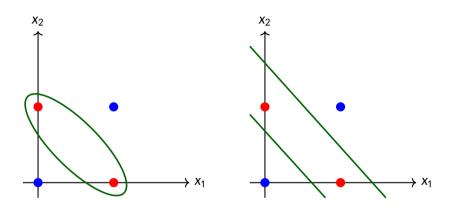






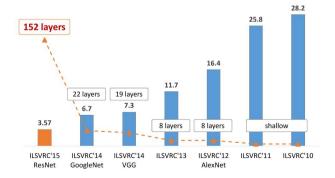





Example NN: XOR gate

Example NN: XOR gate

Example NN: XOR gate

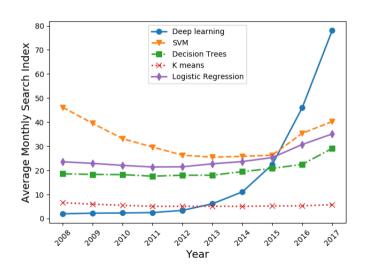


Distributed representation

- Each input should be represented by many features
- Each feature should be involved in the representation of many possible inputs
- Example: car, flower, birds red, green, blue
 - 9 neurons
 - For each combination of color and object
- Distributed neurons
 - 3 Neurons for color
 - 3 Neurons for object
 - Total 6 neurons

Popularization of Neural Network

- Most of the theory of neural network was developed in the 1980s
- Started gaining popularity around 2012
 - Geoffrey Hinton and Alex Krizhevsky winning the ImageNet competition where they beat the nearest competitor by a huge margin (2012)

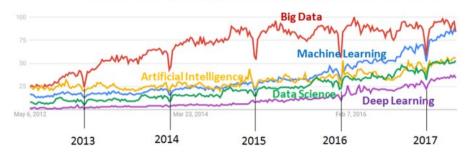

IIT Patna

43

Popularity

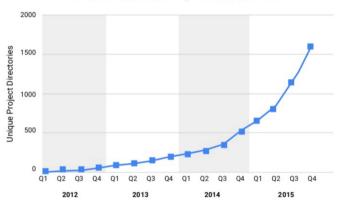
- Increase data size
 - Computing resources are available
 - Accepting performance 5000 labeled example per category
 - 10 million for human performance
- Increasing model size
- Increasing accuracy, complexity, real world impact
- Used by many companies
 - Google, Microsoft, Facebook, IBM, Baidu, Apple, Adobe, Nvidia, NEC, etc.
- Availability of good commercial & open-source tools
 - Theano, Torch, DistBelief, Caffe, TensorFlow, Keras, etc.

DL Trend


IIT Patna

45

Search trend in Google


Google Trends, May 2012 - April 2017, Worldwide

Big Data, Machine Learning, Artificial Intelligence, Data Science, Deep Learning

AI/DL in Google

Number of directories containing model description files

Across many products/areas

- AppsMaps
- Photos
- Gmail
- Speech
- Android
- YouTube
- Translation
- Robotics Research
- Image Understanding
- Natural Language
 Understanding
- Drug Discovery

Artificial Intelligence is the New Electricity — Andrew Ng

Artificial Intelligence is the New Electricity — Andrew Ng

Thank you!