
IIT Patna 1

Scheduling

Arijit Mondal
Dept. of Computer Science & Engineering

Indian Institute of Technology Patna

arijit@iitp.ac.in

IIT Patna 2

Introduction

• In general there will be more number of tasks than the number of processors

• Need a scheduler to run the tasks effectively

• Tasks may have precedence constraints

• Tasks may have hard timing constraints (Real time systems)

• Typically referred as deadline

• Scheduling techniques are applicable in different domains

IIT Patna 3

Scheduler

• Decides what task to execute next when faced with a choice in the execution of
concurrent programs

• Multiprocessor scheduler needs to decide which processor as well (Processor assignment)

• Scheduling decision

• Assignments - which processor should execute
• Ordering - in what order each processor should execute
• Timing - the time at which each task executes

• Above parameters can be decided in design time (static scheduler) or at run time
(dynamic scheduler)

IIT Patna 4

Scheduler (contd.)

• Static scheduler - decides the parameter in design time

• Does not require semaphore or lock in general
• Predicting time for modern processor is extremely difficult (out-of-order execution)

Dynamic scheduler

• Performs all decision at run time

• Online vs Offline

• Preemption vs Non-preemption

• Blocked - waiting for mutual exclusion lock

IIT Patna 5

Task model

• Arrival of tasks - scheduler needs to know the task before scheduling

• Periodic, aperiodic, sporadic

• Execution of tasks - preemptive vs non-preemptive

• Precedence constraints

• Pre-condition

• Release time, Start time, Finish time, Execution time, Deadline

• Hard real time scheduling, Soft real time scheduling

• Priority - fixed, dynamic

image source: Introduction to Embedded Systems book

IIT Patna 6

Execution of task

o
i

ei

ri si fi di

i

IIT Patna 7

Comparing scheduler

• Goal of any scheduler is to find any feasible schedule that is fi ≤ di for all tasks

• A scheduler that yields feasible schedule for a task set when there is a feasible schedule
is said to be optimal with respect to feasibility

• Utilization - Percentage of time that the processor spends executing tasks

• Most popular metric

• Maximum lateness - It is defined as Lmax = max(fi − di)

• For feasible schedule it will be 0 or negative

• Total completion time / Makespan - It is defined as M = max
T

fi −min
T

ri

IIT Patna 8

Implementation of scheduler

• Scheduler can be part of compiler or code generation

• Decision made at design time

• Scheduler can be part of operating system or kernel

• Decision made at run time

• It can be both as well

• For non-preemptive scheduling procedure is invoked when a task completes

• For preemptive scheduling procedure is invoked when several things occur

• A timer interrupt occurs
• An I/O interrupt occurs
• AN OS service is invoked
• Task attempts to get mutex
• A task tests semaphore

IIT Patna 9

Rate monotonic

• n tasks execute periodically

• Let pi be the period for ith task and ri be the release time

• Deadline for jth execution ri + j × pi

• Fixed priority scheduling

• Scheduling strategy: higher priority to a task that has smaller period

• Optimal with respect to feasibility for fixed priority

image source: Introduction to Embedded Systems book

IIT Patna 10

Rate monotonic: Example

e
2

p
2

e
1

p
1

τ1,1 τ1,2

τ2,2τ2,1

τ1,7τ1,6τ1,5τ1,4τ1,3τ1

τ2

image source: Introduction to Embedded Systems book

IIT Patna 11

Rate monotonic: Example

e
2

p
2

p
1

+

τ1

τ2

τ1

τ2

τ1

τ2

τ1

τ2

τ1

τ2

o
2

image source: Introduction to Embedded Systems book

IIT Patna 12

Rate monotonic: Response time

• Response time of the lower priority task is worst
when its starting time matches that of higher
priority tasks

• Worst case scenario occurs when all start at the
same time

image source: Introduction to Embedded Systems book

IIT Patna 13

Rate monotonic: Optimality

e
2

p
2

e
1

p
1

τ1

τ2

image source: Introduction to Embedded Systems book

IIT Patna 14

Rate monotonic: Optimality

e
2

p
2

e
1

p
1

τ1

τ2

IIT Patna 15

Rate monotonic: Utilization

• May not achieve 100% utilization

• Utilization is defined as µ =
n∑

i=1

ei
pi

• Utilization bound µ ≤ n
(

2
1
n − 1

)
• For n = 2 maximum utilization can be achieved as 82.8%
• When n is very large, maximum utilization can be achieved as 69.3%

IIT Patna 16

Earliest Deadline Due

• Given a set of non-preemptive non-repeating tasks with deadlines and no precedence
constraints

• Executes tasks in the same order as their deadline

• EDD is optimal in a sense that minimizes maximum lateness

• Does not support arrival of tasks

IIT Patna 17

Earliest Deadline First

• Given a set of n independent tasks T = {τ1, τ2, . . . , τn} associated with deadlines
d1, d2, . . . , dn and arbitrary arrival time

• Scheduling strategy: at any instant executes the task with earliest deadline among all
arrival tasks

• EDF is optimal in a sense that minimizes maximum lateness

• Dynamic priority scheduling algorithm

• If a task repeatedly executed, it may be assigned different priorities

• Complex to implement

• More expensive to implement than RM but performance is superior

IIT Patna 18

RM vs EDF

• RM is optimal with fixed priority

• EDF is optimal with dynamic priority

• Also minimizes maximum lateness
• Results in less preemption, less overhead

• Any EDF schedule with less than 100% utilization can tolerate increase in execution
time and/or reduction in period and still feasible

image source: Introduction to Embedded Systems book

IIT Patna 19

EDF with precedence

0

1

d1= 2

d2= 5

d3= 4
d6= 6

d5= 5

d4= 3

642

3 2 4 5 6EDF

1 2 4 3 5 6LDF

1 2 4 3 5 6EDF*

IIT Patna 20

LDF, EDF*

• Latest Dedline First (LDF)

• Construct the scheduling backward
• The last task is chosen first and which has latest deadline
• Does not support arrival of tasks

• EDF*

• Support arrival of tasks and minimizes maximum lateness
• For a task i , let D(i) be the set of task execution that immediately depend on i in

precedence graph

• Modified deadline d ′
i = min

(
di , min

j∈D(i)
(d ′

j − ei)

)

image source: Introduction to Embedded Systems book

IIT Patna 21

Scheduling and mutual exclusion

• Priority inversion

• Priority is based preemptive scheduler enables high priority task
• Using mutual exclusion, a task may become blocked

0 2 4 6 8 10

task 1

task 2

task 3

ac
q

u
ir

e
lo

ck

p
re

em
p

t

b
lo

ck

p
re

em
p

t

re
le

as
e

d
o

n
e

task 1 blocked

image source: Introduction to Embedded Systems book

IIT Patna 22

Priority inheritance protocol

• When a task blocks attempting to acquire a lock, then the task that holds the lock
inherits the priority of the blocked task

0 2 4 6 8 10

task 1

task 2

task 3

ac
q

u
ir

e
lo

ck

p
re

em
p

t

b
lo

ck

re
le

as
e

d
o

n
e

task 1 blocked

at priority of 1

d
o

n
e

task 2 preempted

image source: Introduction to Embedded Systems book

IIT Patna 23

Priority ceiling protocol

• Every lock is assigned a priority ceiling equal to the priority of the highest priority task
that can lock it

0 2 4 6

task 1

task 2

ac
q

u
ir

e
lo

ck
 a

p
re

em
p

t

block on a

acquire lock b

a

b

block on ba

0 2 4 6

task 1

task 2

lo
ck

 a

p
re

em
p

t

prevented from locking b
by priority ceiling protocol

a

b

a b

unlock b, then a

a

image source: Introduction to Embedded Systems book

IIT Patna 24

Multiprocessor scheduling

• Scheduling on a single processor is hard, scheduling on multiprocessor is harder

• Scheduling of fixed finite set of tasks with precedence on a finite number of processors
with goal to minimize makespan

• NP-Hard problem

• Hu level scheduling algorithm

• Assigns priority to each task based on the level
• Greatest sum of execution times of tasks on a path in the precedence graph from τ to

another task with no dependents

IIT Patna 25

Scheduling anomalies

• Multiprocessor scheduling are non-monotone

• Improvement in local performance can degrade over all performance

• Richard’s anomalies

• If a task set with fixed priorities, execution times, and precedence constraints is scheduled
on a fixed number of processors in accordance with the priorities, then increasing the
number of processors, reducing execution times, or weakening precedence constraints can
increase the schedule length.

image source: Introduction to Embedded Systems book

IIT Patna 26

Multiprocessor scheduling

0 4 8 12 16

proc1

proc2

proc3

2 6 10 14

3

2

1

4

9

5 7

86

time

e1 = 3

e2 = 2

e3 = 2

e4 = 2

e9 = 9

e8 = 4

e7 = 4

e6 = 4

e5 = 4

image source: Introduction to Embedded Systems book

IIT Patna 27

Richard’s anomalies: Reducing execution time

0 4 8 12 16

proc1

proc2

proc3

2 6 10 14

3

2

1

4 9

5

7

8

6

time

image source: Introduction to Embedded Systems book

IIT Patna 28

Richard’s anomalies: More processor

0 4 8 12 16

proc1

proc2

proc3

2 6 10 14

3

2

1

4

95

7

8

6

time

proc4

image source: Introduction to Embedded Systems book

IIT Patna 29

Richard’s anomalies:: Removing precedence

0 4 8 12 16

proc1

proc2

proc3

2 6 10 14

3

2

1

4

9

5

7

8

6

time

image source: Introduction to Embedded Systems book

IIT Patna 30

Anomaly due to mutex

0 4 8 12

proc1

proc2

2 6 10

3

1

4 5

time

2

proc1

proc2 3

1

4 5

2

0 4 8 122 6 10
time

