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Introduction

• In general there will be more number of tasks than the number of processors

• Need a scheduler to run the tasks effectively

• Tasks may have precedence constraints

• Tasks may have hard timing constraints (Real time systems)

• Typically referred as deadline

• Scheduling techniques are applicable in different domains
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Scheduler

• Decides what task to execute next when faced with a choice in the execution of
concurrent programs

• Multiprocessor scheduler needs to decide which processor as well (Processor assignment)

• Scheduling decision

• Assignments - which processor should execute
• Ordering - in what order each processor should execute
• Timing - the time at which each task executes

• Above parameters can be decided in design time (static scheduler) or at run time
(dynamic scheduler)
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Scheduler (contd.)

• Static scheduler - decides the parameter in design time

• Does not require semaphore or lock in general
• Predicting time for modern processor is extremely difficult (out-of-order execution)

Dynamic scheduler

• Performs all decision at run time

• Online vs Offline

• Preemption vs Non-preemption

• Blocked - waiting for mutual exclusion lock
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Task model

• Arrival of tasks - scheduler needs to know the task before scheduling

• Periodic, aperiodic, sporadic

• Execution of tasks - preemptive vs non-preemptive

• Precedence constraints

• Pre-condition

• Release time, Start time, Finish time, Execution time, Deadline

• Hard real time scheduling, Soft real time scheduling

• Priority - fixed, dynamic
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Execution of task
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Comparing scheduler

• Goal of any scheduler is to find any feasible schedule that is fi ≤ di for all tasks

• A scheduler that yields feasible schedule for a task set when there is a feasible schedule
is said to be optimal with respect to feasibility

• Utilization - Percentage of time that the processor spends executing tasks

• Most popular metric

• Maximum lateness - It is defined as Lmax = max(fi − di)

• For feasible schedule it will be 0 or negative

• Total completion time / Makespan - It is defined as M = max
T

fi −min
T

ri
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Implementation of scheduler

• Scheduler can be part of compiler or code generation

• Decision made at design time

• Scheduler can be part of operating system or kernel

• Decision made at run time

• It can be both as well

• For non-preemptive scheduling procedure is invoked when a task completes

• For preemptive scheduling procedure is invoked when several things occur

• A timer interrupt occurs
• An I/O interrupt occurs
• AN OS service is invoked
• Task attempts to get mutex
• A task tests semaphore
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Rate monotonic

• n tasks execute periodically

• Let pi be the period for ith task and ri be the release time

• Deadline for jth execution ri + j × pi

• Fixed priority scheduling

• Scheduling strategy: higher priority to a task that has smaller period

• Optimal with respect to feasibility for fixed priority
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Rate monotonic: Example
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Rate monotonic: Example
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Rate monotonic: Response time

• Response time of the lower priority task is worst
when its starting time matches that of higher
priority tasks

• Worst case scenario occurs when all start at the
same time



image source: Introduction to Embedded Systems book

IIT Patna 13

Rate monotonic: Optimality
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Rate monotonic: Optimality
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Rate monotonic: Utilization

• May not achieve 100% utilization

• Utilization is defined as µ =
n∑

i=1

ei
pi

• Utilization bound µ ≤ n
(

2
1
n − 1

)
• For n = 2 maximum utilization can be achieved as 82.8%
• When n is very large, maximum utilization can be achieved as 69.3%
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Earliest Deadline Due

• Given a set of non-preemptive non-repeating tasks with deadlines and no precedence
constraints

• Executes tasks in the same order as their deadline

• EDD is optimal in a sense that minimizes maximum lateness

• Does not support arrival of tasks
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Earliest Deadline First

• Given a set of n independent tasks T = {τ1, τ2, . . . , τn} associated with deadlines
d1, d2, . . . , dn and arbitrary arrival time

• Scheduling strategy: at any instant executes the task with earliest deadline among all
arrival tasks

• EDF is optimal in a sense that minimizes maximum lateness

• Dynamic priority scheduling algorithm

• If a task repeatedly executed, it may be assigned different priorities

• Complex to implement

• More expensive to implement than RM but performance is superior
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RM vs EDF

• RM is optimal with fixed priority

• EDF is optimal with dynamic priority

• Also minimizes maximum lateness
• Results in less preemption, less overhead

• Any EDF schedule with less than 100% utilization can tolerate increase in execution
time and/or reduction in period and still feasible
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EDF with precedence
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LDF, EDF*

• Latest Dedline First (LDF)

• Construct the scheduling backward
• The last task is chosen first and which has latest deadline
• Does not support arrival of tasks

• EDF*

• Support arrival of tasks and minimizes maximum lateness
• For a task i , let D(i) be the set of task execution that immediately depend on i in

precedence graph

• Modified deadline d ′
i = min

(
di , min

j∈D(i)
(d ′

j − ei )

)
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Scheduling and mutual exclusion

• Priority inversion

• Priority is based preemptive scheduler enables high priority task
• Using mutual exclusion, a task may become blocked
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Priority inheritance protocol

• When a task blocks attempting to acquire a lock, then the task that holds the lock
inherits the priority of the blocked task
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Priority ceiling protocol

• Every lock is assigned a priority ceiling equal to the priority of the highest priority task
that can lock it
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Multiprocessor scheduling

• Scheduling on a single processor is hard, scheduling on multiprocessor is harder

• Scheduling of fixed finite set of tasks with precedence on a finite number of processors
with goal to minimize makespan

• NP-Hard problem

• Hu level scheduling algorithm

• Assigns priority to each task based on the level
• Greatest sum of execution times of tasks on a path in the precedence graph from τ to

another task with no dependents
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Scheduling anomalies

• Multiprocessor scheduling are non-monotone

• Improvement in local performance can degrade over all performance

• Richard’s anomalies

• If a task set with fixed priorities, execution times, and precedence constraints is scheduled
on a fixed number of processors in accordance with the priorities, then increasing the
number of processors, reducing execution times, or weakening precedence constraints can
increase the schedule length.
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Multiprocessor scheduling
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Richard’s anomalies: Reducing execution time
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Richard’s anomalies: More processor
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Richard’s anomalies:: Removing precedence
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Anomaly due to mutex
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