Introduction to Deep Learning

Arijit Mondal
Dept. of Computer Science \& Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

Convolutional Neural Network

Introduction

- Specialized neural network for processing data that has grid like topology
- Time series data (one dimensional)
- Image (two dimensional)
- Found to be reasonably suitable for certain class of problems eg. computer vision
- Instead of matrix multiplication, it uses convolution in at least one of the layers

Convolution operation

- Consider the scenario of locating a spaceship with a laser sensor
- Suppose, the sensor is noisy
- Accurate estimation is not possible
- Weighted average of location can provide a good estimate $s(t)=$ $\int x(a) w(t-a) d a$
- $x(a)$ - Location at age a by the sensor, t - current time, $w-$ weight
- This is known as convolution
- Usually denoted as $s(t)=(x * w)(t)$
- In neural network terminology x is input, w is kernel and output is referred as feature map

Convolution operation (contd)

- Discrete convolution can be represented as

$$
s(t)=(x * w)(t)=\sum_{a=\infty}^{\infty} x(a) w(t-a)
$$

- In neural network input is multidimensional and so is kernel
- These will be referred as tensor
- Two dimensional convolution can be defined as

$$
s(i, j)=(I * K)(i, j)=\sum_{m, n} l(m, n) k(i-m, j-n)=\sum_{m, n} l(i-m, j-n) k(m, n)
$$

- Commutative
- In many neural network, it implements as cross-correlation

$$
\begin{aligned}
& s(i, j)=(I * K)(i, j)=\sum_{m} \sum_{n} l(i+m, j+n) k(m, n) \\
& \text { spossible }
\end{aligned}
$$

- No kernel flip is possible

2D convolution

Advantages

- Convolution can exploit the following properties
- Sparse interaction (Also known as sparse connectivity or sparse weights)
- Parameter sharing
- Equivariant representation

Sparse interaction

- Traditional neural network layers use matrix multiplication to describe how outputs and inputs are related
- Convolution uses a smaller kernel
- Significant reduction in number of parameters
- Computing output require few comparison
- For example, if there is m inputs and n outputs, traditional neural network will require $m \times n$ parameters
- If each of the output is connected to at most k units, the number of parameters will be $k \times n$

Sparse connectivity

Sparse connectivity

Sparse connectivity

Sparse connectivity

Receptive field

Receptive field

Parameter sharing

- Same parameters are used for more than one function model
- In tradition neural network, weight is used only once
- Each member of kernel is used at every position of the inputs
- As $k \ll m$, the number of parameters will reduced significantly
- Also, require less memory

Edge detection

Image source: Deep Learning Book

Equivariance

- If the input changes, the output changes in the same
- Specifically, a function $f(x)$ is equivariant to function g if $f(g(x))=$ $g(f(x))$
- Example, g is a linear translation
- Let B be a function giving image brightness at some integer coordinates and g be a function mapping from one image to another image function such that $I^{\prime}=g(I)$ with $I^{\prime}(x, y)=I(x-1, y)$
- There are cases sharing of parameters across the entire image is not a good idea

Pooling

- Typical convolutional network has three stages
- Convolution - several convolution to produce linear activation
- Detector stage - linear activation runs through the non-linear unit such as ReLU
- Pooling - Output is updated with a summary of statistics of nearby inputs
- Maxpooling reports the maximum output within a rectangular neighbourhood
- Average of rectangular neighbourhood
- Weighted average using central pixel
- Pooling helps to make representation invariant to small translation
- Feature is more important than where it is present
- Pooling helps in case of variable size of inputs

Typical CNN

Invariance of maxpooling

Learned invariances

Image source: Deep Learning Book

Pooling with downsampling

Strided convolution

Strided convolution (contd)

Zero padding

Connections

Local convolution

Recurrent convolution network

AlexNet

Image source: https://worksheets.codalab.org

GoogleNet

Image source: http://joelouismarino.github.io

Naive inception

Inception

