
IIT Patna 1

Introduc�on to Deep Learning

Arijit Mondal
Dept. of Computer Science & Engineering
Indian Ins�tute of Technology Patna
arijit@iitp.ac.in



IIT Patna 2

Op�miza�on for Training DeepModels



Image source: Deep Learning Book

IIT Patna 3

Minimiza�on of cost func�on



Image source: Deep Learning Book

IIT Patna 4

Curvature



IIT Patna 5

Problem of op�miza�on
• Differs from tradi�onal pure op�miza�on problem
• Performance of a task is op�mized indirectly
• We op�mize J(θ) = E(x,y)∼p̂dataL(f(x,θ), y) where p̂ is the empirical dis-
tribu�on
• Wewould like to op�mize J∗(θ) = E(x,y)∼pdataL(f(x,θ), y) where p is the
data genera�ng distribu�on
• Also known as risk

• We hope minimizing J will minimize J∗



IIT Patna 6

Empirical risk minimiza�on
• Target is to reduce risk
• If the true distribu�on is known, risk minimiza�on is an op�miza�on
problem
• When pdata(x, y) is unknown, it becomes machine learning problem
• Simplest way to convert machine learning problem to op�miza�on
problem is to minimize expected cost of training set



IIT Patna 7

Empirical risk minimiza�on (contd.)
• Weminimize empirical risk

E(x,y)∼p̂data[L(f(x,θ), y)] =
1
m

∑
i

L(f(x(i),θ), y(i))

• We can hope empirical risk minimizes the risk as well
• Empirical risk minimiza�on is prone to overfi�ng
• Gradient based solu�on approach may lead to problem with 0-1 loss cost func�on



IIT Patna 8

Surrogate loss func�on
• Loss func�on may not be op�mized efficiently
• Exact minimiza�on of 0-1 loss is typically intractable
• Surrogate loss func�on is used
• Proxy func�on for the actual loss func�on
• Nega�ve log likelihood of correct class used as surrogate func�on
• There are cases when surrogate loss func�on results in be�er learning
• 0-1 loss of test set o�en con�nues to decrease for a long �me a�er training set 0-1
loss has reached to 0

• A training algorithm does not halt at local minima usually
• Tries to minimize surrogate loss func�on but halts when valida�on loss starts to
increase

• Training func�on can halt when surrogate func�on has huge deriva�ve



IIT Patna 9

Batch
• Objec�ve func�on usually decomposes as a sum over training example
• Typically in machine learning update of parameters is done based on an
expected value of the cost func�on es�mated using only a subset of the
terms of full cost func�on

• Maximum likelihood problem θML = argmax
θ

m∑
i=1

log pmodel(x(i), y(i),θ)

• Maximizing this sum is equivalent to maximizing the expecta�on over
empirical distribu�on J(θ) = E(x,y)∼p̂data log pmodel(x, y,θ)



IIT Patna 10

Batch (contd.)
• Common gradient is given by∇θ = E(x,y)∼p̂data∇θ log pmodel(x, y,θ)
• It becomes expensive as we need to compute for all examples
• Random sample is chosen, then average of the same is taken
• Error in es�ma�ng the variance is σ√

n where σ is the true standard devia�on
• Redundancy in training examples is an issue

• Op�miza�on algorithm that uses en�re training set is called batch of
determinis�c gradient descent
• Op�miza�on algorithm that uses single example at a �me is known as
stochas�c gradient descent or online method



IIT Patna 11

Minibatch
• Larger batch provides more accurate es�mate of the gradient but with
lesser than linear returns
• Mul�core architecture are usually underu�lized by small batches
• If all examples are to beprocessedparallely then the amount ofmemory
scales with batch size
• Some�me, be�er run �me is observed with specific size of the array
• Small batch can add regulariza�on effect due to noise they add in learn-
ing process
• Methods that update the parameters based on g only are usually robust
and can handle small batch size∼ 100



IIT Patna 12

Minibatch (contd.)
• With Hessianmatrix batch size becomes∼ 10,000 (Require tominimize
H−1g)
• SGD minimizes generaliza�on error on minibatches drawn from a
stream of data



IIT Patna 13

Issues in op�miza�on

• Ill condi�oning
• Local minima
• Plateaus
• Saddle points
• Flat region

• Cliffs
• Exploding gradients
• Vanishing gradients
• Long term dependencies
• Inexact gradients



IIT Patna 14

Ill condi�oning
• Ill condi�oning of Hessian matrix
• Common problem in most of the numerical op�miza�on
• The ra�o of smallest to largest eigen value determines the condi�on number
• We have the following

f(x) = f(x(0)) + (x − x(0))Tg +
1
2

(x − x(0))TH(x − x(0))

f(x − εg) = f(x(0))− εgTg +
1
2
εgTHεg

• It becomes a problem when 1
2ε

2gTHg− εgTg > 0
• In many cases gradient norm does not shrink much during learning and gTHg
grows more rapidly
• Makes the learning process slow



IIT Patna 15

Local minima
• For convex op�miza�on problem local minima is o�en acceptable
• For nonconvex func�on like neural networkmany local minima are pos-
sible
• This is not a major problem



IIT Patna 16

Local minima (contd.)
• Neural network and any models with mul�ple equivalently parameter-
ized latent variables results in local minima
• This is due to model iden�fiability
• Model is iden�fiable if sufficiently large training set can rule out all but one se�ng
of model parameters
• Modelwith latent variables are o�en not iden�fiable as exchanging of two variables
does not change the model
• m layers with n unit each can result in (n!)m arrangements
• This non-iden�fiability is known as weight space symmetry
• Neural network has other non-iden�fiability scenario
• ReLU or MaxOut — weight is scaled by α and output is scaled by 1

α



IIT Patna 17

Local minima (contd.)
• Model iden�fiability issuesmean that there can be uncountably infinite
number of local minima
• Non-iden�fiability results in local minima and are equivalent to each
other in cost func�on
• Local minima can be problema�c if they have high cost compared to
global minima



IIT Patna 18

Other issues
• Saddle points
• Gradient is 0 but some have higher and some have lower value around the point
• Hessian matrix has both posi�ve and nega�ve eigen value
• In high dimension local minima are rare, saddle points are common
• For a func�on f : Rn → R, the expected ra�o of number of saddle points to local
minima grows exponen�ally with n
• Eigenvalue of Hessian matrix

• Cliffs - uses gradient clipping
• Long term dependency - mostly applicable for RNN
• wt = Vdiag(λ)tV−1
• vanishing and exploding gradient

• Inexact gradients — bias in es�ma�on of gradient



IIT Patna 19

Stochas�c gradient descent
• Inputs — Learning rate (εk), weight parameters (θ)
• Algorithm for SGD:
while stopping criteria not met

Sample a minibatch {x(1), x(2), . . . , x(m)} with labels {y(i)}

Es�mate of gradient ĝ =
1
m

m∑
i=1

∇θL(f(x(i),θ), y(i))

Update parameters θ = θ − εkĝ
end while



IIT Patna 20

Stochas�c gradient descent
• Learning rate is a crucial parameter
• Learning rate εk is used in the kth itera�on
• Gradient does not vanishes even when we reach minima as minibatch
can introduce noise
• True gradient becomes small and then 0 when batch gradient descent
is used
• Sufficient condi�on on learning rate for convergence of SGD

•
∞∑
k=1

εk =∞,
∞∑
k=1

ε2k <∞

• Common way is to decay the learning rate εk = (1 − α)ε0 + αετ with
α = k

τ



IIT Patna 21

Stochas�c gradient descent
• Choosing learning rate is an art than science!
• Typically ετ is 1% of ε0
• SGD usually performs well for most of the cases
• For large task set SGDmay convergewithin the fixed tolerance of final
error before it has processed all training examples



IIT Patna 22

Momentum
• SGD is the most popular. However, learning may be slow some�me
• Idea is to accelerate learning especially in high curvature, small but
consistent gradients
• Accumulates an exponen�al decaying moving average of past gradi-
ents and con�nue to move in that direc�on
• Introduces a parameter v that play the role of velocity
• The velocity is set to an exponen�ally decaying average of nega�ve gradients

• Update is given by

v = αv − ε∇θ

(
1
m

m∑
i=1

L(f(x(i),θ), y(i))

)
• α— hyperparameter, denotes the decay rate



Image source: Deep Learning Book

IIT Patna 23

Momentum



IIT Patna 24

SGD with momentum
• Inputs— Learning rate (ε), weight parameters (θ), momentumparam-
eter (α), ini�al velocity (v)
• Algorithm:
while stopping criteria not met

Sample a minibatch from set {x(1), x(2), . . . , x(m)} with labels {y(i)}

Es�mate of gradient: g =
1
m

m∑
i=1

∇θL(f(x(i),θ), y(i))

Update of velocity: v = αv − εg
Update parameters: θ = θ + v

end while



IIT Patna 25

Momentum
• The step size depends on how large and how aligned a sequence gra-
dients are
• Largest when many successive gradients are in same direc�on
• If it observes g always, then it will accelerate in−g with terminal ve-

locity
ε|g|
1− α

• Typical values for α is 0.5, 0.9, 0.99. However this parameter can be
adapted.



IIT Patna 26

Nesternov momentum
• Inputs— Learning rate (ε), weight parameters (θ), momentumparam-
eter (α), ini�al velocity (v)
• Algorithm:
while stopping criteria not met

Sample a minibatch from set {x(1), x(2), . . . , x(m)} with labels {y(i)}
Interim update: θ̃ = θ + αv
Gradient at interim point: g = 1

m
∑m

i=1∇θL(f(x(i), θ̃), y(i))
Update of velocity: v = αv − εg
Update parameters: θ = θ + v

end while



IIT Patna 27

Parameter ini�aliza�on
• Training algorithms are itera�ve in nature
• Require to specify ini�al point
• Training deep model is difficult task and affected by ini�al choice
• Convergence
• Computa�on �me
• Numerical instability

• Need to break symmetry while ini�alizing the parameters



IIT Patna 28

Adap�ve learning rate
• Learning rate can affect the performance of the model
• Cost may be sensi�ve in one direc�on and insensi�ve in the other
direc�ons
• If par�al deriva�ve of loss with respect to model remains the same
sign then the learning rate should decrease
• Applicable for full batch op�miza�on



IIT Patna 29

AdaGrad
• Adapts the learning rate of all parameters by scaling them inversely pro-
por�onal to the square root of the sum of all historical squared values
of the gradient
• Parameters with largest par�al deriva�ve of the loss will have rapid decrease in
learning rate and vice-versa
• Net effect is greater progress

• It performs well on some models



IIT Patna 30

Steps for AdaGrad
• Inputs — Global learning rate (ε), weight parameters (θ), small con-
stant (δ), gradient accumula�on (r)
• Algorithm:
while stopping criteria not met

Sample a minibatch from set {x(1), x(2), . . . , x(m)} with labels {y(i)}
Gradient: g = 1

m
∑m

i=1∇θL(f(x(i),θ), y(i))
Accumulated squared gradient: r = r + g� g
Update: ∆θ = − ε

δ+
√
r � g

Apply update: θ = θ + ∆θ

end while



IIT Patna 31

RMSProp
• Gradient is accumulated using an exponen�ally weighted moving av-
erage
• Usually, AdaGrad converges rapidly in case of convex func�on
• AdaGrad reduces the learning rate based on en�re history

• RMSProp tries to discard history from extreme past
• This can be combined with momentum



IIT Patna 32

Steps for RMSProp
• Inputs — Global learning rate (ε), weight parameters (θ), small con-
stant (δ), gradient accumula�on (r), decay rate (ρ)
• Algorithm:
while stopping criteria not met

Sample a minibatch from set {x(1), x(2), . . . , x(m)} with labels {y(i)}
Gradient: g = 1

m
∑m

i=1∇θL(f(x(i),θ), y(i))
Accumulated squared gradient: r = ρr + (1− ρ)g� g
Update: ∆θ = − ε√

δ+r � g
Apply update: θ = θ + ∆θ

end while



IIT Patna 33

Steps for RMSProp with Nesternov
• Inputs—Global learning rate (ε), weight parameters (θ), small constant
(δ), gradient accumula�on (r), decay rate (ρ), ini�al velocity (v), momen-
tum coefficient (α)
• Algorithm:
while stopping criteria not met

Sample a minibatch from set {x(1), x(2), . . . , x(m)} with labels {y(i)}
Interim update: θ̃ = θ + αv
Gradient: g = 1

m
∑m

i=1∇θL(f(x(i), θ̃), y(i))
Accumulated squared gradient: r = ρr + (1− ρ)g� g
Update of velocity: v = αv − ε√

r � g
Apply update: θ = θ + v

end while



IIT Patna 34

Approximate 2nd order method
• Taking 2nd order term to train deep neural network
• The cost func�on at θ near the point θ0 is given by

J(θ) ≈ J(θ0) + (θ − θ0)T∇θJ(θ0) +
1
2

(θ − θ0)TH(θ − θ0)

• Solu�on for cri�cal point provides θ∗ = θ0 − H−1∇θJ(θ0)
• If the func�on is quadra�c then it jumps to minimum
• If the surface is not quadra�c but H is posi�ve definite then this approach is also
applicable

• This approach is known as Newton’s method



IIT Patna 35

Steps for Newton’s method
• Inputs — Ini�al parameters (θ0)
• Algorithm:
while stopping criteria not met

Sample a minibatch from set {x(1), x(2), . . . , x(m)} with labels {y(i)}
Compute gradient: g = 1

m
∑m

i=1∇θL(f(x(i),θ), y(i))
Compute Hessian: H = 1

m
∑m

i=1∇2
θL(f(x(i),θ), y(i))

Compute inverse Hessian: H−1

Compute update: ∆θ = −H−1g
Apply update: θ = θ + ∆θ

end while



IIT Patna 36

Batch normaliza�on
• Reduces internal covariate shi�
• Issues with deep neural network
• Vanishing gradients
• Use smaller learning rate
• Use proper ini�aliza�on
• Use ReLU or MaxOut which does not saturate

• This approach provides inputs that has zero mean and unit variance
to every layer of input in neural network



Reference: Batch normaliza�on: Accelera�ng Deep Network Training by Reducing Internal Covariate Shi�, S Ioffe, C Szegedy, 2015

IIT Patna 37

Batch normaliza�on transforma�on
• Applying to ac�va�on x over a mini-batch
• Input — values of x over a minibatch B = {x1...m}, parameters to be
learned — γ, β
• Output — {yi = BNγ,β(xi)}

• Minibatch mean: µB =
1
m

m∑
i=1

xi

• Minibatch variance: σ2
B =

1
m

m∑
i=1

(xi − µB)2

• Normalize: x̂i =
xi − µB√
σ2
B + ε

• Scale and shi�: yi = γx̂i + β ≡ BNγ,β(xi)



Image source:h�ps://kratzert.github.io

IIT Patna 38

Computa�onal graph for BN



Image source:h�ps://kratzert.github.io

IIT Patna 39

Back-propaga�on for BN (9)



Image source:h�ps://kratzert.github.io

IIT Patna 40

Back-propaga�on for BN (8)



Image source:h�ps://kratzert.github.io

IIT Patna 41

Back-propaga�on for BN (7)



Image source:h�ps://kratzert.github.io

IIT Patna 42

Back-propaga�on for BN (6)



Image source:h�ps://kratzert.github.io

IIT Patna 43

Back-propaga�on for BN (5)



Image source:h�ps://kratzert.github.io

IIT Patna 44

Back-propaga�on for BN (4)



Image source:h�ps://kratzert.github.io

IIT Patna 45

Back-propaga�on for BN (3)



Image source:h�ps://kratzert.github.io

IIT Patna 46

Back-propaga�on for BN (2)



Image source:h�ps://kratzert.github.io

IIT Patna 47

Back-propaga�on for BN (1)



Image source:h�ps://kratzert.github.io

IIT Patna 48

Back-propaga�on for BN (0)



IIT Patna 49

Training & inference using batch-norm
• Input — Network N with trainable parameters θ, subset of ac�va�ons
{x(k)}Kk=1, Output — Batch-normalized network for inference Ninf

BN
• Steps:
• Training BN network: Ntr

BN = N
• for k = 1, . . . , K
• Add transforma�on y(k) = BNγ(k),β(k)(x(k)) to Ntr

BN = N
• Modify each layer in Ntr

BN = N with input x(k) to take y(k) instead
• Train Ntr

BN and op�mize θ ∪ {γ(k), β(k)}Kk=1
• Ninf

BN = Ntr
BN

• for k = 1, . . . , K
• Process mul�ple training minibatches and determine E[x] = EB[µB] and V[x] =

m
m−1EB[σ2

B]

• In Ninf
BN replace the transform y = BNγ,β(x) with y = γ√

V[x]+ε
x + (β − γE[x]√

V[x]+ε
)


