Verification

Arijit Mondal

Dept. of Computer Science \& Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

Introduction

- The goal of verification
- To ensure 100% correct in functionality and timing
- Spend $50 \sim 70 \%$ of time to verify a design
- Functional verification
- Simulation
- Formal proof
- Timing verification
- Dynamic timing simulation (DTS)
- Static timing analysis (STA)

Verification vs Test

Verification

- Verifies correctness of design i.e., check if the design meets the specifications.
- Simulation or formal methods.
- Performed once prior to manufacturing.
- Required for reliability of design.

Test

- Checks correctness of manufactured hardware.
- Two-stage process:
- Test generation: CAD tools executed once during design for ATPG
- Test application: TPs tests applied to ALL hardware samples
- Test application performed on every manufactured device.
- Responsible for reliability of devices.

Simulation

- Need to drive the circuit with the stimulus
- Exhaustive simulation
- Drive the circuit with all possible stimulus
- Non-exhaustive simulations
- Drive the circuit with selected stimulus
- To find appropriate subset is a complex problem
- May not cover all cases
- Number of test cases may be exponential

Verification of Combinational Circuits

- Are Y 1 and Y 2 equivalent?
- $\mathrm{Y} 1=\overline{\overline{(\mathrm{a} \wedge \neg \mathrm{sel})} \wedge \overline{(\mathrm{b} \wedge \mathrm{sel})}}$
- $\mathrm{Y} 2=(\mathrm{a} \wedge \neg \mathrm{sel}) \vee(\mathrm{b} \wedge$ sel $)$
- Canonical structure of Binary Decision Diagram can be exploited to compare Boolean functions like Y1 \& Y2

Verification of Sequential Circuits

- Properties span across cycle boundaries
- Example: Two way round robin arbiter
- If the request bit r 1 is true in a cycle then the grant bit g 1 has to be true within the next two clock cycles

Verification of Sequential Circuits

- Properties span across cycle boundaries
- Example: Two way round robin arbiter
- If the request bit r 1 is true in a cycle then the grant bit g 1 has to be true within the next two clock cycles
- Need temporal logic to specify the behavior

Verification of Sequential Circuits

- If the request bit $r 1$ is true in a cycle then the grant bit $g 1$ has to be true within the next two clock cycles
- $\forall t[r 1(t) \rightarrow g 1(t+1) \vee g 1(t+2)]$
- In propositional temporal logic time (t) is implicit
- always $\mathrm{r} 1 \rightarrow($ next g1) \vee (next next g1)

Temporal logic

- The truth value of a temporal logic is defined with respect to a model.
- Temporal logic formula is not statically true or false in a model.
- The models of temporal logic contain several states and a formula can be true in some states and false in others.
- Example:
- I am always happy.
- I will eventually be happy.
- I will be happy until I do something wrong.
- I am happy.

Kripke Structure

- $M=\left(A P, S, S_{0}, T, L\right)$
- $A P$ - Set of atomic proposition
- S - Set of states
- S_{0} - Set of initial states
- T - Total transition relation $(T \subseteq S \times S)$
- L-Labeling function $\left(S \rightarrow 2^{A P}\right)$

Path

- A path $\pi=s_{0}, s_{1}, \ldots$ in a Kripke structure is a sequence of states such that $\forall i,\left(s_{i}, s_{i+1}\right) \in T$
- Sample paths
- $S 0, S 1, S 2, S 4, S 1, \ldots$
- S0, S3, S4, S0,
- S0, S1, S4, S1,
- $\pi=\underbrace{s_{0}, s_{1}, \ldots, s_{k}}, s_{k+1} \cdots$
prefix of π_{k} in π
$\cdots=s_{0}, s_{1}, \ldots, \underbrace{s_{k}, s_{k+1} \cdots}_{\text {suffix of } \pi^{k} \text { in } \pi}$

Temporal operators

- Two fundamental path operators
- Next operator
- Xp - property p holds in the next state
- Until operator
- pUq - property p holds in all states upto the state where property q holds
- Derived operators
- Eventual/Future operator
- Fp - property p holds eventually (in some future states)
- Always/Globally operator
- Gp - property p holds always (at all states)
- All these operators are interpreted over the paths in Kripke structure under consideration
- All Boolean operators are supported by the temporal logics

The next operator (X)

- p holds in the next state of the path
- Formally
- $\pi \models \mathrm{Xp}$ iff $\pi^{1} \models \mathrm{p}$

The until operator (U)

q holds

- q holds eventually and p holds until q holds
- Formally
- $\pi \models \mathrm{p}$ U q iff $\exists \mathrm{k}$ such that $\pi^{\mathrm{k}} \models \mathrm{q}$ and $\forall \mathrm{j}, 0 \leq \mathrm{j}<\mathrm{k}$ we have $\pi^{\mathrm{j}} \models \mathrm{p}$

The eventual operator (F)

p holds

- p holds eventually (in future)
- Formally
- $\pi \models$ Fp iff $\exists \mathrm{k}$ such that $\pi^{\mathrm{k}} \models \mathrm{p}$
- This can be written as true Up

The always operator (G)

p holds

- p holds always (globally)
- Formally
- $\pi \models \mathrm{Gp}$ iff $\forall \mathrm{k}$ we have $\pi^{\mathrm{k}} \models \mathrm{p}$
- This can be written as $\neg($ true $U \neg p)$ or $\neg F \neg p$

Branching Time Logic

- Interpreted over computation tree

Path Quantifier

- A: "For all paths

- E: "There exists a path

Universal Path Quantification

In all the next states p holds.

Along all the paths p holds forever.

Universal Path Quantification

Along all the paths p holds eventually.

Along all the paths p holds until q holds.

Existential Path Quantification

There exists a next state where p holds.

there exists a path along which p holds forever.

Existential Path Quantification

There exists a path along which p holds eventually.

There exists a path along which p holds until q holds.

Duality between Always \& Eventual operators

- $G p=p \wedge($ next $p) \wedge(\operatorname{next} \operatorname{next} p) \wedge($ next next next $p) \ldots$ $=\neg(\neg(p \wedge($ next $p) \wedge($ next next $p) \wedge($ next next next $p) \wedge \ldots))$ applying De Morgan's law
$=\neg(\neg p \vee($ next $\neg p) \vee($ next next $\neg p) \vee($ next next next $\neg p) \vee \ldots)$
$=\neg(F \neg p)$
- Therefore we have
- $G p=\neg F \neg p$
- $F p=\neg G \neg p$

Computation Tree Logic (CTL)

- Syntax:
- Given a set of Atomic Propositions (AP):
- All Boolean formulas of over AP are CTL properties
- If f and g are CTL properties then so are $\neg f, A X f, A(f U g), E X f$ and $E(f U g)$,
- Properties like $A F p, A G p, E G p, E F p$ can be derived from the above
- Semantics:
- The property $A f$ is true at a state s of the Kripke structure iff the path property f holds on all paths starting from s
- The property $E f$ is true at a state s of the Kripke structure iff the path property f holds on some path starting from s

Nested properties in CTL

- $A X A G p$
- From all the next state p holds forever along all paths
- EX EFp
- There exist a next state from where there exist a path to a state where p holds
- $A G E F p$
- From any state there exist a path to a state where p holds

CTL example

- From S the system always makes a request in future:

CTL example

- From S the system always makes a request in future: $A F$ req

CTL example

- From S the system always makes a request in future: $A F$ req
- All requests are eventually granted:

CTL example

- From S the system always makes a request in future: $A F$ req
- All requests are eventually granted: $A G(r e q \rightarrow E F$ gr $)$

CTL example

- From S the system always makes a request in future: $A F$ req
- All requests are eventually granted: $A G(r e q \rightarrow E F$ gr $)$
- Sometimes requests are immediately granted:

CTL example

- From S the system always makes a request in future: $A F$ req
- All requests are eventually granted: $A G(r e q \rightarrow E F$ gr $)$
- Sometimes requests are immediately granted: $E F(r e q \rightarrow E X$ gr $)$

CTL example

- From S the system always makes a request in future: $A F$ req
- All requests are eventually granted: $A G(r e q \rightarrow E F$ gr $)$
- Sometimes requests are immediately granted: $E F(r e q \rightarrow E X$ gr $)$
- Requests are held till grant is received:

CTL example

- From S the system always makes a request in future: $A F$ req
- All requests are eventually granted: $A G(r e q \rightarrow E F$ gr $)$
- Sometimes requests are immediately granted: $E F(r e q \rightarrow E X$ gr)
- Requests are held till grant is received: $A G($ req $\rightarrow A($ req U gr $))$

Real Time properties

- Real time systems
- Predictable response time are necessary for correct operation
- Safety critical systems like controller for aircraft, industrial machinery are a few examples
- It is difficult to express complex timing properties
- Simple: "event p will happen in future"
- Fp
- Complex: "event p will happen within at most n time units"
- $p \vee(X p) \vee(X X p) \vee \ldots([X X \ldots n$ times $] p)$

Bounded Temporal Operators

- Specify real-time constraints
- Over bounded traces
- Various bounded temporal operators
- $G_{[m, n]} p-p$ always holds between $\mathrm{m}^{\text {th }}$ and $\mathrm{n}^{\text {th }}$ time step
- $F_{[m, n]} p-p$ eventually holds between $\mathrm{m}^{\text {th }}$ and $\mathrm{n}^{\text {th }}$ time step
- $X_{[m]} p-p$ holds at the $\mathrm{m}^{\text {th }}$ time step
- $p U_{[m, n]} q-q$ eventually holds between $\mathrm{m}^{\text {th }}$ and $\mathrm{n}^{\text {th }}$ time step and p holds until that point of time

Examples

- p holds always between 2nd and 4th time step

Examples

- p holds eventually between 2nd and 4th time step

Examples

- p holds in the 3rd time step

Examples

- q holds eventually between 2 nd and 4th time step and p holds until q holds

Timing properties

- Whenever request is recorded grant should take place within 4 time units
- $A G\left(\right.$ posedge $(r e q) \rightarrow A F_{[0,4]}$ posedge $\left.(g r)\right)$
- The arbiter will provide exactly 64 time units to high priority user in each grant
- AG(posedge(hpusing) \rightarrow

$$
\left.\left.A\left(\neg \text { negedge(hpusing) } U_{[64,64]} \text { negedge(hpusing }\right)\right)\right)
$$

Formal Verification

Formal Property Verification

- The formal method is called "Model Checking"
- The algorithm has two inputs
- A finite state state machine (FSM) that represents the implementation
- A formal property that represent the specification
- The algorithm checks whether the FSM "models" the property
- This is an exhaustive search of the FSM to see whether it has any path / state that refutes the property

Example: Explicit State Model

Example: EX

EXa

Example: AX

Example: AX

Example: AX

$$
A X_{a}
$$

Example: AX

$$
\mathrm{AX}
$$

Example: EG

Example: EG

Example: EG

Example: EG

Example: AG

Example: AG

Example: AU

Example: AU

Example: AU

Example: AU

$$
A(a \cup b)
$$

Symbolic Representation

- Represents set of transition as function δ (old, new)
- Yields 1 if there is a transition from old to new
- Can be represented as Boolean function by encoding the states with Boolean variables

Symbolic Representation

- Represents set of transition as function δ (old, new)
- Yields 1 if there is a transition from old to new
- Can be represented as Boolean function by encoding the states with Boolean variables

Symbolic Representation

- Represents set of transition as function δ (old, new)
- Yields 1 if there is a transition from old to new
- Can be represented as Boolean function by encoding the states with Boolean variables

- $\mathrm{o}_{1}, \mathrm{o}_{2}$ - Old state variables
- $\mathrm{n}_{1}, \mathrm{n}_{2}$ - New state variables

Symbolic Representation

- Represents set of transition as function δ (old, new)
- Yields 1 if there is a transition from old to new
- Can be represented as Boolean function by encoding the states with Boolean variables

- $\mathrm{o}_{1}, \mathrm{o}_{2}$ - Old state variables
- $\mathrm{n}_{1}, \mathrm{n}_{2}$ - New state variables
- $\delta=\bar{o}_{1} \bar{o}_{2} \bar{n}_{1} \mathrm{n}_{2} \vee \bar{o}_{1} \bar{o}_{2} \bar{n}_{1} \overline{\mathrm{n}}_{2} \vee \overline{\mathrm{o}}_{1} \mathrm{O}_{2} \mathrm{n}_{1} \mathrm{n}_{2} \vee \mathrm{o}_{1} \overline{\mathrm{o}}_{2} \mathrm{n}_{1} \overline{\mathrm{n}}_{2}$

$$
\vee o_{1} \bar{o}_{2} n_{1} n_{2} \vee o_{1} \mathrm{o}_{2} \overline{\mathrm{n}}_{1} \overline{\mathrm{n}}_{2} \vee \mathrm{o}_{1} \mathrm{o}_{2} \overline{\mathrm{n}}_{1} \mathrm{n}_{2}
$$

Symbolic Representation

- Represents set of transition as function δ (old, new)
- Yields 1 if there is a transition from old to new
- Can be represented as Boolean function by encoding the states with Boolean variables

- $\mathrm{o}_{1}, \mathrm{o}_{2}$ - Old state variables
- $\mathrm{n}_{1}, \mathrm{n}_{2}$ - New state variables
- $\delta=\bar{o}_{1} \bar{o}_{2} \bar{n}_{1} \mathrm{n}_{2} \vee \bar{o}_{1} \bar{o}_{2} \bar{n}_{1} \bar{n}_{2} \vee \bar{o}_{1} \mathrm{O}_{2} \mathrm{n}_{1} \mathrm{n}_{2} \vee \mathrm{o}_{1} \overline{\mathrm{o}}_{2} \mathrm{n}_{1} \overline{\mathrm{n}}_{2}$
$\vee \mathrm{o}_{1} \overline{\mathrm{O}}_{2} \mathrm{n}_{1} \mathrm{n}_{2} \vee \mathrm{o}_{1} \mathrm{O}_{2} \overline{\mathrm{n}}_{1} \overline{\mathrm{n}}_{2} \vee \mathrm{o}_{1} \mathrm{O}_{2} \overline{\mathrm{n}}_{1} \mathrm{n}_{2}$
- New states $=\exists\left\langle\mathrm{o}_{1} \mathrm{o}_{2}\right\rangle\left[\mathrm{S}\left(\left\langle\mathrm{o}_{1} \mathrm{O}_{2}\right\rangle\right) \wedge \delta\left(\left\langle\mathrm{o}_{1} \mathrm{O}_{2}\right\rangle,\left\langle\mathrm{n}_{1} \mathrm{n}_{2}\right\rangle\right)\right]$

Breadth First Reachability

- R_{i} is the set of states that can be reached in i transitions
- Reaches fix point when $R_{n}=R_{n+1}$
- Fix point always exists as it has finite number of states

Breadth First Reachability

- R_{i} is the set of states that can be reached in i transitions
- Reaches fix point when $R_{n}=R_{n+1}$
- Fix point always exists as it has finite number of states

Breadth First Reachability

- R_{i} is the set of states that can be reached in i transitions
- Reaches fix point when $R_{n}=R_{n+1}$
- Fix point always exists as it has finite number of states

Breadth First Reachability

- R_{i} is the set of states that can be reached in i transitions
- Reaches fix point when $R_{n}=R_{n+1}$
- Fix point always exists as it has finite number of states

Breadth First Reachability

- R_{i} is the set of states that can be reached in i transitions
- Reaches fix point when $R_{n}=R_{n+1}$
- Fix point always exists as it has finite number of states

Breadth First Reachability

- R_{i} is the set of states that can be reached in i transitions
- Reaches fix point when $R_{n}=R_{n+1}$
- Fix point always exists as it has finite number of states

Breadth First Reachability

- R_{i} is the set of states that can be reached in i transitions
- Reaches fix point when $R_{n}=R_{n+1}$
- Fix point always exists as it has finite number of states

Breadth First Reachability

- R_{i} is the set of states that can be reached in i transitions
- Reaches fix point when $R_{n}=R_{n+1}$
- Fix point always exists as it has finite number of states

CTL Model Checking

- It checks whether a given CTL formula f holds on a given Kripke structure M i.e., $M \models f$
- Need to have modalities for $E X, E U$ and $E G$
- Other modalities can be expressed using $E X, E U$ and $E G$
- $A F f \equiv \neg E G \neg f$
- $A G f \equiv \neg E F \neg f$
- $A(f U g) \equiv(\neg E G \neg g) \wedge(\neg E[\neg g U(\neg f \wedge \neg g)])$
- Basic procedure
- The set $\operatorname{Sat}(f)$ of all states satisfying f is computed recursively
- $M \models f$ if and only if $S_{0} \subseteq \operatorname{Sat}(f)$

CTL Model Checking: EXf

- $\operatorname{Post}(s)=\left\{s^{\prime} \in S \mid\left(s, s^{\prime}\right) \in T\right\}$
- $\operatorname{Sat}(E X f)=\{s \in S \mid \operatorname{Post}(s) \cap \operatorname{Sat}(f) \neq \emptyset\}$

CTL Model Checking: EXf

```
    function CheckEX(f)
    1. \(\mathrm{S}_{\mathrm{f}}=\{\mathrm{s} \in \mathrm{S} \mid \mathrm{f} \in \mathrm{L}(\mathrm{s})\}\)
    2. while \(\mathrm{S}_{\mathrm{f}} \neq \emptyset\)
    3. Choose \(s \in S_{f}\)
    4. \(\mathrm{S}_{\mathrm{f}}=\mathrm{S}_{\mathrm{f}}-\{\mathrm{s}\}\)
    5. for all \(t\) such that \((t, s) \in T\)
    6. if \(f \notin L(t)\)
    7. \(L(t)=L(t) \cup\{E X f\}\)
    8. endif
    9. end for
    10. end while
```


CTL Model Checking: EFp

CTL Model Checking: EFp

CTL Model Checking: EFp

CTL Model Checking: EFp

CTL Model Checking: EFp

CTL Model Checking: EFp

CTL Model Checking: EFp

CTL Model Checking: EFp

CTL Model Checking: EFp

CTL Model Checking: $f=E F p$

- Given a model $M=\left\langle A P, S, S_{0}, T, L\right\rangle$ and S_{p} the set of states satisfying p in M

```
function CheckEF(Sp)
    Q\leftarrow\phi;
    Q'\leftarrow Sp;
    while }Q\not=\mp@subsup{Q}{}{\prime}\mathrm{ do
        Q\leftarrow\mp@subsup{Q}{}{\prime}
        Q}\leftarrow\leftarrowQ\cup{s|\exists\mp@subsup{s}{}{\prime}[T(s,\mp@subsup{s}{}{\prime})\wedgeQ(\mp@subsup{s}{}{\prime})]
    end while
    Sf}\leftarrow\mp@subsup{Q}{}{\prime
    return Sf
```


CTL Model Checking: EFp

```
function CheckEF(p)
    1. }\mp@subsup{S}{p}{}={s\inS|p\inL(s)
    2. for all s\inS S do L(s)=L(s)\cup{EFp}
    3. while }\mp@subsup{S}{p}{}\not=
    4. Choose s\in Sp
    5. }\mp@subsup{S}{p}{}=\mp@subsup{S}{p}{}-{s
    6. for all t such that (t,s)\inT
    7. if {EFp} & L(t)
    8. L(t)=L(t)\cup{EFp}
    9. }\mp@subsup{S}{p}{}=\mp@subsup{S}{p}{}\cup
    10. endif
    11. end for
    12. end while
```

Example: $\mathbf{g}=\mathrm{EF}(\overline{(\mathbf{a} \oplus \mathbf{c})} \wedge(\mathbf{a} \oplus \mathbf{b}))$

CTL Model Checking: EGp

CTL Model Checking: EGp

CTL Model Checking: EGp

CTL Model Checking: EGp

CTL Model Checking: EGp

CTL Model Checking: EGp

CTL Model Checking: $f=E G p$

- Given a model $M=\left\langle A P, S, S_{0}, T, L\right\rangle$ and S_{p} the set of states satisfying p in M

```
function CheckEG(Sp)
    Q}\leftarrow\phi;\mp@subsup{Q}{}{\prime}\leftarrow\mp@subsup{S}{p}{}
    while }Q\not=\mp@subsup{Q}{}{\prime}\mathrm{ do
        Q\leftarrow\mp@subsup{Q}{}{\prime}
        Q'\leftarrowQ \cap{s|\exists\mp@subsup{s}{}{\prime}[T(s,\mp@subsup{s}{}{\prime})\wedgeQ(\mp@subsup{s}{}{\prime})]}
    end while
    Sf}\leftarrow\mp@subsup{Q}{}{\prime
    return Sf
```


CTL Model Checking: EGp

```
function CheckEG(p)
    1. \(S_{p}=\{s \in S \mid p \in L(s)\}\)
    2. \(\operatorname{SCC}=\left\{C \mid C\right.\) is nontrivial SCC of \(\left.S_{p}\right\}\)
    3. \(R=\bigcup_{C \in S C C}\{s \mid s \in C\}\)
    4. for all \(s \in R\) do \(L(s)=L(s) \cup\{E G p\}\)
    5. while \(R \neq \emptyset\)
    6. Choose \(s \in R\)
    7. \(R=R-\{s\}\)
    8. for all \(t\) such that \((t, s) \in T\) and \(t \in S_{p}\)
    9. if \(\{E G p\} \notin L(t)\)
    10. \(L(t)=L(t) \cup\{E G p\}\)
    11. \(\quad \mathrm{R}=\mathrm{R} \cup\{\mathrm{t}\}\)
    12. endif
    13. end for
    14. end while
```

Example: $\mathrm{g}=\mathrm{EG} \mathrm{b}$

Example: $\mathrm{g}=\mathrm{EG} \mathrm{b}$

Find states satisfying b.

Example: $\mathrm{g}=\mathrm{EG} \mathrm{b}$

Find SCC using $S_{p} . \quad S_{p}=\{S 0, S 1, S 2, S 4\}$

Example: $\mathrm{g}=\mathrm{EG} \mathrm{b}$

Find SCC using $S_{p} . \quad S_{p}=\{S 0, S 1, S 2, S 4\}$

Example: $\mathrm{g}=\mathrm{EG} \mathrm{b}$

Nothing to explore.

$$
R=\{S 4\}
$$

$$
S_{g}=\{S 0, S 2, S 4\}
$$

Example: $\mathrm{g}=\mathrm{EG} \mathrm{b}$

Example: $\mathrm{g}=\mathrm{EG} \mathrm{b}$

Nothing to explore.

$$
R=\{ \}
$$

$$
S_{g}=\{S 0, S 2, S 4\}
$$

Example: $\mathrm{g}=\mathrm{EG} \mathrm{b}$

CTL Model Checking: E(p Uq)

$$
f_{0}=q \bigcirc
$$

CTL Model Checking: E(p Uq)

$$
\begin{aligned}
& f_{1}=q \vee \\
& \left(p \wedge E X f_{0}\right)
\end{aligned}
$$

$$
f_{0}=q
$$

CTL Model Checking: E(p Uq)

CTL Model Checking: E(p Uq)

$$
f_{3}=q \vee\left(p \wedge E X f_{2}\right)
$$

CTL Model Checking: E(p Uq)

Least Fix Point

CTL Model Checking: E(p Uq)

```
function CheckEU(p,q)
    1. \(\mathrm{S}_{\mathrm{q}}=\{\mathrm{s} \in \mathrm{S} \mid \mathrm{q} \in \mathrm{L}(\mathrm{s})\}\)
    2. for all \(s \in S_{q}\) do \(L(s)=L(s) \cup\{E(p \cup q)\}\)
    3. while \(S_{q} \neq \emptyset\)
    4. Choose \(s \in S_{q}\)
    5. \(\mathrm{S}_{\mathrm{q}}=\mathrm{S}_{\mathrm{q}}-\{\mathrm{s}\}\)
    6. for all \(t\) such that \((t, s) \in T\)
    7. if \(\{\mathrm{E}(\mathrm{p} \cup \mathrm{q})\} \notin \mathrm{L}(\mathrm{t})\) and \(\mathrm{p} \in \mathrm{L}(\mathrm{t})\)
    8. \(\mathrm{L}(\mathrm{t})=\mathrm{L}(\mathrm{t}) \cup\{\mathrm{E}(\mathrm{p} \cup \mathrm{q})\}\)
    9. \(\quad S_{q}=S_{q} \cup\{t\}\)
    10. endif
    11. end for
    12. end while
```

Nested CTL query

$E F(p \wedge A G \neg q)$

Nested CTL query

$E F(p \wedge A G \neg q)$
 $p \wedge A G \neg q$

Nested CTL query

Nested CTL query

$E F(p \wedge A G \neg q)$

$p \wedge A G \neg q$

Nested CTL query

Nested CTL query

Nested CTL query

Nested CTL query

Nested CTL query

Nested CTL query

Verification of RTCTL query

- $A\left(p U_{\leq k} q\right) \equiv q \vee\left(p \wedge A X A\left(p U_{\leq k-1} q\right)\right)$ if $k>1$
- $E\left(p U_{\leq k} q\right) \equiv q \vee\left(p \wedge E X E\left(p U_{\leq k-1} q\right)\right)$ if $k>1$
- $A\left(p U_{\leq 0} q\right) \equiv q \equiv E\left(p U_{\leq 0} q\right)$
- Similar fix point characterization of CTL modalities can be used
- For qualative CTL queries $k=|S|$

RTCTL Model Checking: $f=E\left(p U_{\leq k} q\right)$

```
function CheckEU(p,q,k)
    1. \(N_{f}^{0}=\{s \in S \mid q \in L(s)\}\)
    2. for all \(s \in N_{f}^{0}\) do \(L(s)=L(s) \cup\left\{E\left(p U_{\leq k} q\right)\right\}\)
    3. \(j=0\);
    4. while \(\mathrm{j}<\mathrm{k}\)
    5. \(\quad\) TEMP \(=N_{f}^{j}\)
    6. while \(N_{f}^{j} \neq \emptyset\)
    7. \(\quad\) Choose \(s \in\) TEMP; TEMP \(=\) TEMP \(-\{s\}\)
    8. for all \(t\) such that \((t, s) \in T\)
    9. if \(\left\{\mathrm{E}\left(\mathrm{p} \mathrm{U}_{\leq \mathrm{k}} \mathrm{q}\right)\right\} \notin \mathrm{L}(\mathrm{t})\) and \(\mathrm{p} \in \mathrm{L}(\mathrm{t})\)
    10. \(\mathrm{L}(\mathrm{t})=\mathrm{L}(\mathrm{t}) \cup\left\{\mathrm{E}\left(\mathrm{p} \mathrm{U}_{\leq \mathrm{k}} \mathrm{q}\right)\right\} ; \mathrm{N}_{\mathrm{f}}^{j+1}=\mathrm{N}_{\mathrm{f}}^{j+1} \cup\{\mathrm{t}\}\)
    11. endif
    12. end for
    13. end while
    14. \(j=j+1\);
    15. end while
```


Verification of RTCTL query

- $E\left(p U_{[a, b]} q\right) \equiv p \wedge\left(\operatorname{EXE}\left(p U_{[a-1, b-1]} q\right)\right)$ if $a>0$ and $b>0$
- $E\left(p U_{[0, b]} q\right) \equiv q \vee\left(p \wedge E X E\left(p U_{[0, b-1]} q\right)\right)$ if $b>0$
- $E\left(p U_{[0,0]} q\right) \equiv q$

Verification of RTCTL query

- $E\left(p U_{[a, b]} q\right) \equiv p \wedge\left(E X E\left(p U_{[a-1, b-1]} q\right)\right)$ if $a>0$ and $b>0$
- $E\left(p U_{[0, b]} q\right) \equiv q \vee\left(p \wedge E X E\left(p U_{[0, b-1]} q\right)\right) \quad$ if $b>0$
- $E\left(p U_{[0,0]} q\right) \equiv q$
- Steps:
- Compute set of states where p is true for a steps
- If fix point is reached before a steps, skip to the second case
- Compute set of states where $\mathrm{E}(\mathrm{p} \cup \mathrm{q})$ is true for b steps
- If fix point is reached before (b-a) steps, skip to the third case

Complexity

- Linear in the size of the model
- Linear in the size of the CTL formula
- Complexity is $\mathrm{O}(|\mathrm{F}| \times \mathrm{M})$
- Model size - M
- Formula size - $|F|$

