Embedded Processors

Arijit Mondal

Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

Processor

- General purpose computing
 - Processor is capable of doing different kind of computations
- Embedded computing
 - Typically used for a dedicated function
 - More customizations are possible
 - Can reduce power, size, etc.
- Instruction set architecture X86, ARM, etc.
- Processor realization

Types of processor

- Microcontrollers
- DSP processors
- Graphics processor
- Need to choose appropriate processor depending on application domain
 - Small,Slow
 - 310W
 - Inexpensive
 - Low power
 - High performance
 - Special purpose, etc.

Microcontrollers

- Small computer on a single integrated circuit
- Usually have single CPU
- Have peripheral devices such as memories, input/output devices, timers, etc.

DSP processor

- Typically many applications read different parameters in a certain interval
 - Motion control few hertz to few hundred hertz
 - Audio 8KHz to 44.1KHz
 - Video 25-30 Hz for common devices
 - and many other applications
- Processor designed for numerical intensive signal processing

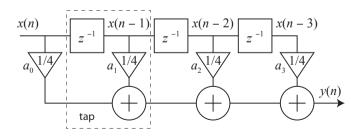


image source: Introduction to Embedded Systems book

Graphics processor unit (GPU)

- Specialized processor designed to perform the calculation requires in graphics rendering
- Usage:
 - Rendering text and Graphics
 - Combining multiple patterns
 - 3D graphics, shading
 - Digital video games, etc.
- Usually power hungry

Parallelism

- Affect significantly the execution time of a program
- Concurrent if different parts of program conceptually execute simultaneously
- Parallel if different parts of the program physically execute simultaneously on distinct hardware
- Non-concurrent programs specify a sequence of instruction to execute • Imperative program - C
 - Thread library

```
Example:
```

piCubed = piSquared * pi:

pi = 3.14159;pi = 3.14159;piSquared = pi * pi ; piSquared = pi * pi ; piCubed = pi * pi * pi;

Parallelism (contd.)

- Compiler may analyze the dependencies between operations in a program and produce parallel code
 - It does data flow analysis
- Parallel execution using multi issue streams VLIW (very large instruction word) architecture
- Independent instructions can be executed in parallel
- Goal is to improve performance
 Timeliness is important for any average and are also as a supply of the content of the
- Timeliness is important for concurrent program

Multitasking program

Pipelining

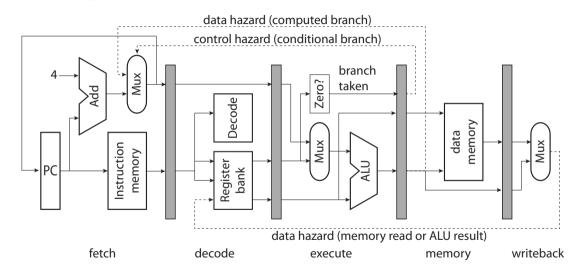
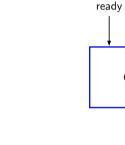


image source: Introduction to Embedded Systems book

Instruction level parallelism

- CISC Complex instruction set computer
 - Usually DSP processor supports FIR filtering, FFT etc.
 - All instruction may not have same length
 - Code optimization is difficult
- Subword parallelism Enables simultaneous arithmetic or logical operations on smaller words
- Superscalar Hardware dispatches multiple instructions to distinct hardware when there is no issue
- VLIW Combines multiple independent operations into single instruction


Multicore architecture

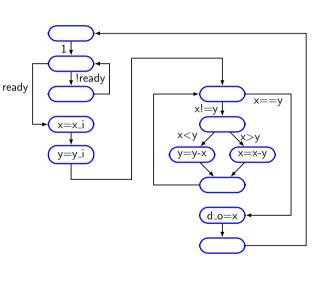
- Combination of several processor on a single chip
 - Heterogeneous in nature
 - Cell phone radio and speech processing
- FPGA

Custom processor design

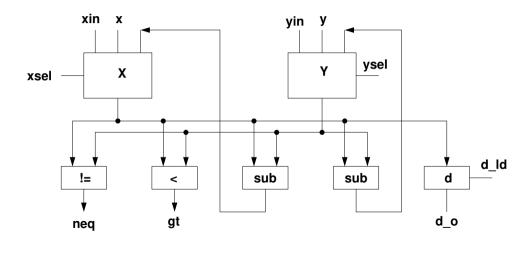
```
int x, y;
  while(1){
    while(!ready);
    x=x_i;
    y=y_i;
```

if(x<y) y=y-x;
else x=x-y;</pre>

GCD


 d_0

while(x!=y){


 $d_o=x$

Custom processor design

```
int x, y;
  while(1){
    while(!ready);
    x=x_i:
    y=y_i;
    while(x!=y){
      if (x < y) y = y - x;
      else x=x-y;
    d_o=x
```


Custom processor design

