
Recursion in Neural 
Programmer Interpreter

Ankit Kumar - 1301CS10
Arindam Banerjee - 1301CS12



NPA - Neural Programmer Architecture
● Aims to learn programs
● Traditional Seq2Seq models do not generalise well for even slightly larger 

models
● NPAs aims to generalise better than traditional Seq2Seq
● But even NPAs don’t generalise to very large inputs
● Reason – the network still doesn’t learn the actual program
● Recursion is a way to make simple nets that generalise completely



Neural Programmer 
Interpreters



Architecture

1. It generally consists of 
different LSTMs to do different 
tasks

2. Central LSTM core has 
environment variables, a 
program to run, and it’s 
arguments as input

3. It predicts the next program & 
arguments to execute and a 
probability wether to return or 
call another function

4. Has a scratchpad to read and 
write from



Algorithm



NPI Recursion - Addition
● The input is a full program trace
● The last step is a tail recursive 

step
● Meaning the hidden state is 

cleared
● Means no concept of length of 

number
● Multiple simple ADD1

TRACE

❖ ADD
➢ ADD1

■ ADDX
■ CARRY

➢ LSHIFT
■ PTR1 LEFT
■ PTR2 LEFT
■ PTRO LEFT

➢ ADD (Recursion)



Progress till last presentation
● Went through various implementations of NPA, NPI suits the task best

● Went through the single implementation of NPI from net - too complex

● Understood the various moving parts of the concept

● Made a rough idea what needs to be implemented where

● Need to implement the architecture



Overall Architecture - 1
● 3 LSTMs total for ADD program

○ To generate next program
○ To generate the next program’s arguments
○ To decide whether to call another function or to end the current stack

● Tail recursion - helps in case of the recursive call - not in Python
● Environment contains the inputs numbers and the generated output
● Used pointers to access various environment locations
● All the LSTMs trained separately, and used in the NPI core program
● Can add arbitrary length numbers with 100% accuracy



PLSTM - LSTM for next program
● Model trained to get series of program codes for execution 
● Different sub-programs are given separate IDs to train
● Architecture composed of LSTM layer and dense layer of 3 neurons
● Generated possible program sequences for training and replicated data to 

make neural net memorize the system
● Achieved accuracy = 100%



RLSTM - LSTM for terminating program
● r values need to be checked for terminating loop
● Trained model to learn “r” value from sequence of program codes
● Architecture composed of LSTM layer with fully connected Dense Layer
● Tuning of hyperparameters (number of neurons) for optimum accuracy
● Achieved accuracy close to 100%



ALSTM - LSTM for next Argument 
● Trained model to learn next argument values from present arguments
● Control shifting of pointers in addition
● Architecture composed of LSTM layer with fully connected Dense Layer
● Tuning of hyperparameters (number of neurons) for optimum accuracy
● Achieved accuracy close to 100%



Overall Architecture - 2
● Global variables are used as implicit environment
● 3 arrays to hold number1, number2 and output of addition
● 3 pointers to access memory locations of the numbers
● carryFlag - global variable to hold the previous carry
● Primitive functions are called by a separate “call” subroutine



Program Trace
● ADD -1

○ ADD1
○ LSHIFT
○ ADD

● ADD1 -2
○ ADDX
○ CARRY

● ADDX -4
○ (primitive)
○ Add numbers
○ Set Output variable

● CARRY -5
○ (primitive)
○ Find carry
○ Set environmental flag

● LSHIFT -3
○ PTR 1
○ PTR 2
○ PTR 3 (output)

● PTR (val) -6
○ (primitive)
○ Move “val” pointer left



Limitations in current implementation
● No common hidden state for r, p, and a
● Base condition of recursion hardcoded - in ideal case, the architecture should 

automatically handle it
● True “Tail Recursion” not implemented due to python not supporting it.


