Recursion in Neural
Programmer Interpreter

AnKkit Kumar - 1301CS10

Arindam Banerjee - 1301CS12

NPA - Neural Programmer Architecture

e Aimstolearn programs

Traditional Seq2Seq models do not generalise well for even slightly larger
models

NPAs aims to generalise better than traditional Seq2Seq

But even NPAs don'’t generalise to very large inputs

Reason - the network still doesn’t learn the actual program

Recursion is a way to make simple nets that generalise completely

Neural Programmer
Interpreters

It generally consists of
different LSTMs to do different
tasks

ArChite Cture . Central LSTM core has

environment variables, a

program to run, and it’s
arguments as input

sp= Fuales @) . It predicts the next program &
arguments to execute and a
probability wether to return or
v = fena(he): pict = foroglhi)y@ig1 = farglhi) call another function
Has a scratchpad to read and
write from

he = fistm {St s Pis h!-l}

Algorithm

Algorithm 1 Neural programming inference

1: Inputs: Environment observation e, program p, arguments «a, stop threshold o
2: function RUN(e, p. a)

3 h+—0,r«10

4 while r < o do

3 5§+ fenc{fi'- H,I:I:- h f!'.gtm{“"'- P, h’]

6: .l fend’{h}api — fprﬂg{h):'ﬂ'ﬂ — fu.rg(h]
T: if p is a primitive function then
8 e +— fenuv(e,p,a).
9 else
0

10: function RUN(e, pa. as)

NPI Recursion - Addition

The input is a full program trace TRACE

The last stepis a tail recursive & ADD

step > ADDT

Meaning the hidden state is m ADDX
cleared m CARRY
Means no concept of length of > LSHIFT

number m PTR1 LEFT
Multiple simple ADD1 = PTRZ LEFT

m PTRO LEFT
> ADD (Recursion)

Progress till last presentation

e Went through various implementations of NPA, NP1 suits the task best
e Went through the single implementation of NP| from net - too complex
e Understood the various moving parts of the concept

e Made arough idea what needs to be implemented where

e Need toimplement the architecture

Overall Architecture - 1

e 3LSTMs total for ADD program

o Togenerate next program

o Togenerate the next program’s arguments

o Todecide whether to call another function or to end the current stack
Tail recursion - helps in case of the recursive call - not in Python
Environment contains the inputs numbers and the generated output
Used pointers to access various environment locations
All the LSTMs trained separately, and used in the NPI core program
Can add arbitrary length numbers with 100% accuracy

PLSTM - LSTM for next program

Model trained to get series of program codes for execution

Different sub-programs are given separate IDs to train

Architecture composed of LSTM layer and dense layer of 3 neurons
Generated possible program sequences for training and replicated data to
make neural net memorize the system

e Achieved accuracy = 100%

RLSTM - LSTM for terminating program

r values need to be checked for terminating loop

Trained model to learn “r” value from sequence of program codes
Architecture composed of LSTM layer with fully connected Dense Layer
Tuning of hyperparameters (number of neurons) for optimum accuracy
Achieved accuracy close to 100%

ALSTM - LSTM for next Argument

Trained model to learn next argument values from present arguments
Control shifting of pointers in addition

Architecture composed of LSTM layer with fully connected Dense Layer
Tuning of hyperparameters (number of neurons) for optimum accuracy
Achieved accuracy close to 100%

Overall Architecture - 2

Global variables are used as implicit environment

3 arrays to hold number1, number2 and output of addition
3 pointers to access memory locations of the numbers
carryFlag - global variable to hold the previous carry
Primitive functions are called by a separate “call” subroutine

Program Trace

e ADD -1
o ADD1
o LSHIFT
o ADD
e ADD1 -2
o ADDX
o CARRY
e ADDX -4
o (primitive)
o Add numbers
o Set Output variable

e CARRY -5
o (primitive)
o Find carry

o Set environmental flag
e LSHIFT -3

o PTR 1
o PTR 2
o PTR 3 (output)
e PTR (val) -6
o (primitive)
o Move “val” pointer left

Limitations in current implementation

e Nocommon hidden state forr, p, anda
Base condition of recursion hardcoded - in ideal case, the architecture should

automatically handle it
e True “Tail Recursion” not implemented due to python not supporting it.

