
Tackling Black Box Learning using Neural Networks

Titas Nandi
Supervisor: Dr. Arijit Mondal

1 Abstract of the project

The project aims at developing a neural network architecture to tackle the problem of representation
learning. We train a classifier to predict labels on a dataset that is not human readable, without the
knowledge of what the data consists of. We create a deep learning model that can learn from both la-
beled and unlabeled data, to take advantage of the large amount of unannotated data available. The
system will be tested on 10,000 instances from a data distribution whose source is again unknown.
The idea is inspired from the Black Box Challenge on Kaggle as part of ICML 2013 Challenges in
Representation Learning and the training and test data is obtained from there.
Some of the interesting approaches used for solving this problem include using a sparse filtering tech-
nique [1] and an autoencoder architecture using ensemble learning [2].

2 Introduction

2.1 Literature survey

We looked into the major approaches used by the top performing teams in the challenge to get an
idea about possible methodologies and benchmark results. The major issue was to envisage methods
to extract information from the unsupervised data to support supervised classification. Lee [3] used
an interesting method of assigning pseudo labels to the unsupervised data and train and update
the pseudo labels every weight update of the neural network. Lukasz [1] used a method in which the
unsupervised data was not directly used in training, but used in a pre-training step for feature
selection. They used a method of unsupervised feature selection called sparse filtering, and used the
reduced set of features for supervised classification. Xie [2] stacked horizontal and vertical voting
along with deep learning to attain good results on the task.

3 Resources

We used the data provided by the organizers of this challenge. It consists of:

Train Test Unannotated Classes
1000 10000 135735 9

Table 1: Data ICML Black Box Challenge

For sparse filtering, we referred the famous paper written by Ngiam [4] and the code available on github
1.This is a very generic version which we had to modify for our problem. For sparse filtering method,
we also took help from code written by the best performing team in the contest 2. For training neural
nets, we used Keras 3 and we used both Matlab and Python for programming.

1https://github.com/jngiam/sparseFiltering
2https://bitbucket.org/dthal/blackbox-challenge-code
3https://keras.io/

1

https://github.com/jngiam/sparseFiltering
https://bitbucket.org/dthal/blackbox-challenge-code
https://keras.io/

3.1 Work done

We focused on both the methodologies for using the unsupervised data to our help. We used sparse
filtering for dimensionality reduction, and then trained a Multi Layer Perceptron model on the
supervised data using the selected features. In a separate approach, we also trained a neural network
on both supervised and unsupervised data together, using the concept of pseudo labels. We present
all our experimentations and architectural details in the following sections, along with baseline and
benchmark results.

3.1.1 Baselines

The following baselines have been proposed by the organizers of the task:

• Random Baseline - 11.1%

• Logistic Regression - 21.1%

• ZCA + 1 layer net - 41%

• ZCA + 3 layer net - 51.5%

It is evident that the last baseline is quite a strong one and tough to beat. This was reflected in the
competition where only one-third of the participating teams could beat this baseline.

3.1.2 Benchmark Results

• Sparse Filtering + Feature Selection + SVM with linear kernel - 70.22 %

• Pseudo Labels + Denoising Autoencoder + Dropout - 69.58 % [3]

• Horizontal and Vertical Ensemble for Classification - 69.14 %

3.1.3 Sparse Filtering

Sparse filtering is a method for unsupervised feature learning. The beauty of the algorithm lies in
its simplicity - it works as a method for producing an alternate (reduced dimensionality) representation
of the features by optimizing a simple cost function - the sparsity of L2-normalized features.
This is in contrast to other popular unsupervised methods like sparse RBMs and autoencoders, which
essentially try to approximate the distribution of the data and thus require a lot of hyperparameter
tuning. Sparse filtering works on optimization of:

• Population sparsity - Only a few non-zero features are essential for a given training example

• Lifetime sparsity - Only a few training examples are essential for a given feature

• High dispersal - The distribution of features for any training example must be similar to that
of any other example, this ensures uniform activation of features

Sparse filtering introduces competition among features by reducing them to their L2 norms, and retains
only the non-redundant ones.

3.1.4 Sparse Filtering + Supervised Training

The approach towards solving this challenge using this method is detailed below:

• Break the large unsupervised data into 5000 example chunks for faster training

• Train a feedforward Sparse Filter on these chunks, where each chunk will be pulled in for
training in data batches of given count, and produce 10 feature sets having revised weights

2

minimized when the features are sparse (Fig. 1-Left), which corresponds to being close to the axes.
Conversely, an example which has similar values for every feature would incur a high penalty.

f2

f1

Column-Normalized
Features, f

Row-Normalized
Features, f

~

^

f2

f1

Increase
only in f1

~

Decrease in f2
^

Figure 1: Left: Sparse filtering showing two features (f1, f2) and two examples (red and green).
Each example is first projected onto the `2-ball and then optimized for sparseness. The `2-ball is
shown together with level sets of the `1-norm. Notice that the sparseness of the features (in the `1
sense) is maximized when the examples are on the axes. Right: Competition between features due
to normalization. We show one example where only f1 is increased. Notice that even though only
f1 is increased, the normalized value of the second feature, f̂2 decreases.

One property of normalizing features is that it implicitly introduces competition between features.
Notice that if only one component of f (i) is increased, all the other components f̂ (i)j will decrease
because of the normalization (Fig. 1-Right). Similarly, if only one component of f (i) is decreased,
all other components will increase. Since we are minimizing ‖f̂ (i)‖1, the objective encourages
the normalized features, f̂ (i), to be sparse and mostly close to zero. Putting this together with the
normalization, this means that some features in f (i) have to be large while most of them are small
(close to zero). Therefore, the objective optimizes for population sparsity.

The formulation above is closely related to the Treves-Rolls [14, 18] measure of population/life-

time sparsity: s(i) =
[∑

j f̃
(i)
j /F

]2
/
[∑

j(f̃
(i)
j)2/F

]
, where F is the total number of features.

This measure is commonly used to characterize the sparsity of neuron activations in the brain. In
particular, our proposed formulation can be viewed as a re-scaling of the square-root of this measure.

4.2 Optimizing for high dispersal

Recall that for high dispersal we want every feature to be equally active. Specifically, we want the
mean squared activation of each feature to be roughly equal. In our formulation of sparse filtering,
we first normalize each feature so that they are equally active by dividing each feature by its norm
across the examples: f̃j = fj/‖fj‖2. This has the same effect as constraining each feature to have
the same expected squared value, Ex(i)∼D[(f

(i)
j)2] = 1, thus enforcing high dispersal.

4.3 Optimizing for lifetime sparsity

We found that optimizing for population sparsity and enforcing high dispersal led to lifetime sparsity
in our features. To understand how lifetime sparsity is achieved, first notice that a feature distribu-
tion which is population sparse must have many non-active (zero) entries in the feature distribution
matrix. Since these features are highly dispersed, these zero entries (and also the non-zero entries)
are approximately evenly distributed among all the features. Therefore, every feature must have a
significant number of zero entries and be lifetime sparse. This implies that optimizing for population
sparsity and high dispersal is sufficient to define a good feature distribution.

4

• We picked out the top performing 120 features out of 1875 initially

• Find the revised representation for the training and test (or development) data from these
learned weights

• Train a feedforward Neural Network on the supervised data using these revised weights

• Experiment with the Neural Network architecture to achieve the best possible results on the
public dataset

Table 2 illustrates the various experiments in neural network architecture that we did. Our best
performing architecture achieves an accuracy of 64.74% on the public set, at par with the best
performing systems.

Submission Neurons Layers Activation Dropout Optimizer Epoch Batch
Size

Accuracy

Best 1500 2 sigmoid 0.4 adam 200 128 64.74
1 1000 1 relu 0.4 adam 20 128 60.12
2 200 2 sigmoid 0.4 adam 20 128 51.22
3 1000 2 sigmoid 0.4 adam 100 128 64.02
4 1000 3 sigmoid 0.4 adam 100 128 63.86
5 1000 2 sigmoid 0.4 adam 1000 128 63.80
6 1500 2 sigmoid 0.5 adam 200 128 64.50
7 2000 2 sigmoid 0.4 adam 200 128 64.66
8 1500 2 sigmoid 0.3 adam 200 128 64.66
9 1500 2 sigmoid 0.4 adam 200 256 64.42
10 1500 2 sigmoid 0.4 sgd 200 128 39.50
11 1500 2 relu 0.4 adam 200 128 61.72

Table 2: Neural Network Experiments on sparsed features

3.1.5 Plots

Since we could not track the test labels for the competition, thus, here we present the plots of epochs
vs accuracy and loss vs accuracy on the validation set obtained by splitting the 1000 training
examples in 1:4 ratio. The results are obtained on our highest performing neural network model.

We can see there are significant improvements in accuracy due to sparse filtering.

3

Figure 1: Validation plots for original data - 1875 dimensions

Figure 2: Validation plots for sparse filtered and ensembled data - 1200 dimensions

4

Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks

Table 1. The Conditional Entropy (17) of the network out-
put of labeled(train) data, unlabeled data and test data
on MNIST. dropNN is the neural network trained with
only labeled data (corresponding to Figure 1 (a)) , +PL is
the network trained additionally with unlabeled data and
Pseudo-Label (corresponding to Figure 1 (b)).

train unlabeled test

dropNN 2.63 × 10−9 0.0349 0.0317
+PL 6.10 × 10−9 0.0067 0.0114

beled sample. The entropy is a measure of class over-
lap. As class overlap decreases, the density of data
points get lower at the decision boundary.

The MAP estimate is defined as the maximizer of the
posterior distribution :

C(θ, λ) =

n∑
m=1

logP (ym|xm; θ)− λH(y|x′; θ) (18)

where n is the number of labeled data, xm is the mth
labeled sample, λ is a coefficient balancing two terms.
By maximizing of the conditional log-likelihood of la-
beled data (the first term) with minimizing the en-
tropy of unlabeled data (the second term), we can get
the better generalization performance using unlabeled
data.

3.3. Training with Pseudo-Label as Entropy
Regularization

Our method encourages the predicted class probabili-
ties to be near 1-of-K code via training with unlabeled
data and Pseudo-Labels, so the entropy of (17) is mini-
mized. Thus our method is equivalent to Entropy Reg-
ularization. The first term of (18) corresponds to the
first term of (15), The second term of (18) corresponds
to the second term of (15), α corresponds to λ.

Figure 1 shows t-SNE (Van der Maaten et al., 2008) 2-
D embedding results of the network output of MNIST
test data (not included in unlabeled data). The neural
network was trained with 600 labeled data and with
or without 60000 unlabeled data and Pseudo-Labels.
Though the train error is zero in the two cases, the net-
work outputs of test data is more condensed near 1-of-
K code by training with unlabeled data and Pseudo-
Labels, in other words, the entropy of (17) is mini-
mized.

Table 2 shows the estimated entropy of (17). Though
the entropy of labeled data is near zero in the two
cases, the entropy of unlabeled data get lower by

Pseudo-Label training, in addition, the entropy of test
data get lower along with that. This makes the clas-
sification problem easier even for test data and makes
the density of data points lower at the decision bound-
ary. According to cluster assumption, we can get the
better generalization performance.

(a) without unlabeled data (dropNN)

(b) with unlabeled data and Pseudo-Label (+PL)

Figure 1. t-SNE 2-D embedding of the network output of
MNIST test data.

4. Experiments

4.1. Handwritten Digit Recognition (MNIST)

MNIST is one of the most famous dataset in deep
learning literature. For comparison, we used the same
semi-supervised setting with (Weston et al., 2008; Ri-
fai et al., 2011b). We reduced the size of the labeled
training set to 100, 600, 1000 and 3000. The train-
ing set has the same number of samples on each label.
For validation set, we picked up 1000 labeled exam-

Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks

Table 1. The Conditional Entropy (17) of the network out-
put of labeled(train) data, unlabeled data and test data
on MNIST. dropNN is the neural network trained with
only labeled data (corresponding to Figure 1 (a)) , +PL is
the network trained additionally with unlabeled data and
Pseudo-Label (corresponding to Figure 1 (b)).

train unlabeled test

dropNN 2.63 × 10−9 0.0349 0.0317
+PL 6.10 × 10−9 0.0067 0.0114

beled sample. The entropy is a measure of class over-
lap. As class overlap decreases, the density of data
points get lower at the decision boundary.

The MAP estimate is defined as the maximizer of the
posterior distribution :

C(θ, λ) =

n∑
m=1

logP (ym|xm; θ)− λH(y|x′; θ) (18)

where n is the number of labeled data, xm is the mth
labeled sample, λ is a coefficient balancing two terms.
By maximizing of the conditional log-likelihood of la-
beled data (the first term) with minimizing the en-
tropy of unlabeled data (the second term), we can get
the better generalization performance using unlabeled
data.

3.3. Training with Pseudo-Label as Entropy
Regularization

Our method encourages the predicted class probabili-
ties to be near 1-of-K code via training with unlabeled
data and Pseudo-Labels, so the entropy of (17) is mini-
mized. Thus our method is equivalent to Entropy Reg-
ularization. The first term of (18) corresponds to the
first term of (15), The second term of (18) corresponds
to the second term of (15), α corresponds to λ.

Figure 1 shows t-SNE (Van der Maaten et al., 2008) 2-
D embedding results of the network output of MNIST
test data (not included in unlabeled data). The neural
network was trained with 600 labeled data and with
or without 60000 unlabeled data and Pseudo-Labels.
Though the train error is zero in the two cases, the net-
work outputs of test data is more condensed near 1-of-
K code by training with unlabeled data and Pseudo-
Labels, in other words, the entropy of (17) is mini-
mized.

Table 2 shows the estimated entropy of (17). Though
the entropy of labeled data is near zero in the two
cases, the entropy of unlabeled data get lower by

Pseudo-Label training, in addition, the entropy of test
data get lower along with that. This makes the clas-
sification problem easier even for test data and makes
the density of data points lower at the decision bound-
ary. According to cluster assumption, we can get the
better generalization performance.

(a) without unlabeled data (dropNN)

(b) with unlabeled data and Pseudo-Label (+PL)

Figure 1. t-SNE 2-D embedding of the network output of
MNIST test data.

4. Experiments

4.1. Handwritten Digit Recognition (MNIST)

MNIST is one of the most famous dataset in deep
learning literature. For comparison, we used the same
semi-supervised setting with (Weston et al., 2008; Ri-
fai et al., 2011b). We reduced the size of the labeled
training set to 100, 600, 1000 and 3000. The train-
ing set has the same number of samples on each label.
For validation set, we picked up 1000 labeled exam-

Figure 3: t-SNE 2-D embedding of the network output of MNIST test data

3.1.6 Pseudo Labels

This is a very interesting approach adopted by one of the teams, wherein we also use the unsupervised
data in a supervised learning framework by generating probable labels, or pseudo labels, for it. In
effect, this method works because it induces entropy regularization [5], that prefers low density
separation among classes. We train a neural network using both sets of data to improve the gener-
alization performance, the pseudo labels are expected to gradually improve (called self-training)
and finally converge towards their correct values after several runs of training. The approach is detailed
below:

• We train a feedforward neural net on the supervised examples

• We find probable labels of the unsupervised data

• Retrain the neural network with the combined data, i.e, supervised data with true labels and
the unsupervised data with pseudo labels

• At this point, the network might not have learnt the pseudo labels properly or might be over-
fitted

• Retrain the network until convergence (till there are no significant changes in predicted labels)

Table 3 illustrates the predicted accuracies after multiple runs of the pseudo labels for two different
neural network architectures

Iterations 1 hidden layer with 1000 neurons 2 hidden layers with 1500 neurons each
1 56.04 47.86
3 55.48 47.98
6 55.26 48.16
10 55.00 48.10
17 56.08 48.74

Table 3: Pseudo Labels training after certain iterations of the algorithm

We find irregular patterns in the pseudo labels training, which might be due to the same weigh-
tage given to supervised and unsupervised data in the error function. The error function must be
dominated by the supervised training examples (since their labels are definitely correct), and we
need to monitor the weight coefficients given to the unsupervised data in a time dependent manner
as presented in the paper [3]. But, still the labels must improve with growing number of iterations and
we are looking into the reason of this irregular behaviour and resultant low accuracy.

5

The code for our implementations or supporting codes used from other repositories or sources is
available here 4.

3.2 Future work

Semi-supervised learning is a highly interesting and important part of Machine Learning. Anno-
tation is expensive and more time taking than generating crude representations of data. Solving this
problem efficiently indicates that we can solve many real life problems with a small amount of super-
vised data.
Future work includes further delving into the pseudo labels approach and understanding its intricacies
to solve the issues in our present implementation. The sparse filtering method works well and we will
experiment with neural network architectures to improve the accuracy.
A careful hybrid of both these methods can incorporate the strengths of both models, and challenge
benchmark results. We also plan on applying this approach on data from cQA sites (where also we
have a lot of unannotated data) to solve the problem of good answer selection and ranking, which is a
project I have been working on for a long time.

References

[1] L. Romaszko, “A deep learning approach with an ensemble-based neural network classifier for black
box icml 2013 contest,” in Workshop on Challenges in Representation Learning, ICML, pp. 1–3,
2013.

[2] J. Xie, B. Xu, and Z. Chuang, “Horizontal and vertical ensemble with deep representation for
classification,” arXiv preprint arXiv:1306.2759, 2013.

[3] D.-H. Lee, “Pseudo-label: The simple and efficient semi-supervised learning method for deep neural
networks,” in Workshop on Challenges in Representation Learning, ICML, vol. 3, p. 2, 2013.

[4] J. Ngiam, Z. Chen, S. A. Bhaskar, P. W. Koh, and A. Y. Ng, “Sparse filtering,” in Advances in
neural information processing systems, pp. 1125–1133, 2011.

[5] Y. Grandvalet, Y. Bengio, et al., “Semi-supervised learning by entropy minimization.,” in NIPS,
vol. 17, pp. 529–536, 2004.

4https://github.com/TitasNandi/ICML-BlackBox-Challenge

6

https://github.com/TitasNandi/ICML-BlackBox-Challenge

	Abstract of the project
	Introduction
	Literature survey

	Resources
	Work done
	Baselines
	Benchmark Results
	Sparse Filtering
	Sparse Filtering + Supervised Training
	Plots
	Pseudo Labels

	Future work

