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Syllabus

• Introduction to computer architecture

• Instruction set architecture

• CPU design
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Books to be followed

• Computer Organization and Design: The Hardware/Software Interface – David A.
Patterson, John L. Hennessy

• Computer Organization and Architecture – William Stallings

• Computer Architecture: A Quantitative approach – David A. Patterson, John L.
Hennessy
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Evaluation policy

• Midsem: 30%

• Endsem: 50%

• Assignments/Quiz: 20%
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Introduction



CS541 6

Abstraction of computing systems

Application

Physics



CS541 7

Abstraction of computing systems

Application

Algorithms

Physics



CS541 8

Abstraction of computing systems

Application

Algorithms

Programming language

Physics



CS541 9

Abstraction of computing systems

Application

Algorithms

Programming language

Operating systems

Physics



CS541 10

Abstraction of computing systems

Application

Algorithms

Programming language

Operating systems

Instruction set architecture

Physics



CS541 11

Abstraction of computing systems

Application

Algorithms

Programming language

Operating systems

Instruction set architecture

Microarchitecture

Physics



CS541 12

Abstraction of computing systems

Application

Algorithms

Programming language

Operating systems

Instruction set architecture

Microarchitecture

Physics

Register transfer level



CS541 13

Abstraction of computing systems

Application

Algorithms

Programming language

Operating systems

Instruction set architecture

Microarchitecture

Gates

Physics

Register transfer level



CS541 14

Abstraction of computing systems

Application

Algorithms

Programming language

Operating systems

Instruction set architecture

Microarchitecture

Gates

Physics

Register transfer level

Circuits



CS541 15

Abstraction of computing systems

Application

Algorithms

Programming language

Operating systems

Instruction set architecture

Microarchitecture

Gates

Physics

Register transfer level

Circuits



CS541 16

Abstraction of computing systems

Application

Algorithms

Programming language

Operating systems

Instruction set architecture

Microarchitecture

Gates

Physics

Register transfer level

Circuits

• Application Requirements:

� Suggest how to improve architecture
� Provide revenue to fund development

• Architecture provides feedback to guide applica-
tion and technology research directions

• Technology Constraints:

� Restrict what can be done efficiently
� New technologies make new arch possible
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Abstraction

• Abstraction helps us to deal with complexity

� Hide lower level details

• Instruction set architecture

� Hardware/Software interface

• Application binary interface

� ISA plus system software

• Implementation

� The details underlying and interface
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Architecture vs Microarchitecture

• Architecture / Instruction Set Architecture

� Programmer visible state (Memory & Register)
� Operations (Instructions and how they work)
� Execution Semantics (interrupts)
� Input/Output
� Data Types/Sizes

• Microarchitecture / Organization

� Microarchitecture/Organization: Tradeoffs on how to implement ISA for some metric
(Speed, Energy, Cost)

� Examples: Pipeline depth, number of pipelines, cache size, silicon area, peak power,
execution ordering, bus widths, ALU widths
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Levels of Program Code

• High level language

� Easy to code & debug
� Close to problem domain
� Provides productivity

g = h * i ;
k = j + i ;
g = h[1] ;

compiler

• Assembly language

� Textual representation of instructions

MUL R0, R1, R2 ;
ADD R3, R4, R2
LDR R3, [R0,#4]

assembler

• Hardware language

� Binary data
� Encoded instruction and data

0000101101000010101
1010101111100101010
1010101011110000011
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Components of a Computer

• Same components for all kind of computers

� Server, Desktop, Embedded systems

• Input-Output support

� User interface devices – Keyboard, mouse, display
� Storage devices – Hard disk, CD/DVD, Flash
� Network adapters for communicating with others

• Inside the computer

� Arithmetic logic unit (ALU)
� Program control unit
� Memory
� Datapath
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IAS Computer

Arithmetic Logic

Unit
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Expanded structure of IAS Computer
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Top level view of computer
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Basic instruction cycle

Fetch next
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Instruction
Start Halt

Fetch cyle Execute cycle
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Machine Model
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Understanding Performance

• Algorithms

� Determines number of operation executed

• Programing language, compiler, architecture

� Determine number of machine instructions is executed per operation

• Processor and memory systems

� Determines how fast instructions are executed

• I/O systems

� Determines how fast I/O operations are performed
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Performance

• Response time

� How long it takes to finish a task

• Throughput

� Total workdone per unit time (eg. task/transaction/per hour)

• Dependency of response time and throughput

� Replacing the processor with a faster version?
� Adding more processors?
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Relative performance

• Performance is defined as 1/Execution time

• X is n times faster than Y

� PerformanceX/PerformanceY = Execution timeY /Execution timeX = n

• Example: Time taken to run a program

� 10ns in machine X and 15ns in machine Y
� Execution timeY /Execution timeX = 15/10 = 1.5
� So, X is 1.5 times faster than Y
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Measuring performance

• Elapsed time (Wall clock time)

� Total time to complete a task including I/O, memory access, disk access, OS overhead,
etc.

• CPU time

� The time the CPU spends computing this task
� Does not include I/O time, other jobs’ share
� Can be further subdivided – user CPU time and system CPU time

• Different programs are affected differently by CPU and system performance
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CPU clocking

• Operation is controlled by a constant rate clock

� Clock period is duration of clock cycle. (eg. 300ns = 300× 10−9s)
� Clock frequency is cycles per second. (eg. 4GHz = 4× 109Hz)
� Clock period = 1/Clock frequency
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CPU Time

• CPU time = CPU clock cycles × Clock period =
CPU clock cycle

Clock frequency
• Performance can be improved by

� Reducing number of clock cycle
� Increasing clock frequency
� Hardware designer must trade off clock frequency against cycle count
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Example

• Machine A: Run time 10s, Clock speed 2GHz

• Design a new machine (B say)

� Run time is 6s
� Faster clock require 1.2 times more clock cycles compared to A

• Clock frequency for machine B?
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Instruction count and CPI

• Clock cycles = Instruction count × Cycles per instruction

• CPU time = Instruction count × CPI × Clock period =
Instruction count× CPI

Clock frequency
• Instruction count for a program

� Depends on ISA, compiler, program

• Average cycles per instruction

� Determined by CPU hardware
� Different instruction have different CPI
� Average CPI is affected by instruction mix
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CPI example

• Machine A: Clock period - 250ps, CPI - 2.0

• Machine B: Clock period - 500ps, CPI - 1.2

• Same set of instructions

• Which is faster?
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CPI in more detail

• Different instructions take different cycles

• Clock cycles =
n∑

i=1

(CPIi × Instruction counti)

• Weighted average CPI =

Clock cycle

Instruction count
=

n∑
i=1

(
CPIi ×

Instruction counti
Instruction count

)
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CPI example

Instruction A B C
CPI for instruction 1 2 3
IC in Sequence 1 2 1 2
IC in Sequence 2 4 1 1

• Which code sequence executes the most instructions?

• Compute average CPI for each sequence.
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Performance summary

• CPU Time =
Instructions

Program
× Clock cycles

Instruction
× second

Clock cycle
• Performance depends on

� Algorithm - Affects IC, possibly CPI
� Programming language - Affects IC, CPI
� Compiler - Affects IC, CPI
� Instruction set architecture - Affects IC, CPI, Clock period
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Performance: Power

• Power ∝ Capacitive load × Voltage2 × Frequency

• Suppose a new CPU has the following

� 85% of capacitive load of old CPU
� 15% reduction in voltage, 15% reduction in frequency

◦ Pnew

Pold
=

0.85× Cold × (Vold × 0.85)2 × Fold × 0.85

Cold × (Vold)2 × Fold
= 0.854 = 0.52

� Constraints

◦ Further reduction in voltage may not be possible
◦ Dissipation of heat
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MIPS as performance metric

• MIPS: Millions of Instruction Per Second
� Does not account for

◦ Differences in ISAs in computers
◦ Differences in complexity between instructions

• MIPS =
Instruction count

Execution time× 106
=

Instruction count
Instruction count×CPI

Clock frequency
× 106

=
Clock frequency

CPI× 106

• CPI varies between programs on a given CPU



CS541 44

Multiprocessors

• Multicore multiprocessors

� More than one processor per chip

• Requires explicit parallel programming
� Instruction level parallelism

◦ Hardware executes multiple instructions simultaneously
◦ Hidden from programmer

� Hard to do

◦ Programming for performance
◦ Load balancing
◦ Optimizing communication and synchronization
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Conclusion

• Cost/performance is improving

� Due to underlying technology development

• Hierarchical layer of abstraction

� In both hardware and software

• Instruction set architecture

� The Hardware/Software interface

• Execution time – measure of performance

• Power is a limiting factor

� Use parallelism to improve performance


