
CS541 1

Foundations of Computer Systems
(CS541)

Arijit Mondal

CS541 2

Syllabus

• Introduction to computer architecture

• Instruction set architecture

• CPU design

CS541 3

Books to be followed

• Computer Organization and Design: The Hardware/Software Interface – David A.
Patterson, John L. Hennessy

• Computer Organization and Architecture – William Stallings

• Computer Architecture: A Quantitative approach – David A. Patterson, John L.
Hennessy

CS541 4

Evaluation policy

• Midsem: 30%

• Endsem: 50%

• Assignments/Quiz: 20%

CS541 5

Introduction

CS541 6

Abstraction of computing systems

Application

Physics

CS541 7

Abstraction of computing systems

Application

Algorithms

Physics

CS541 8

Abstraction of computing systems

Application

Algorithms

Programming language

Physics

CS541 9

Abstraction of computing systems

Application

Algorithms

Programming language

Operating systems

Physics

CS541 10

Abstraction of computing systems

Application

Algorithms

Programming language

Operating systems

Instruction set architecture

Physics

CS541 11

Abstraction of computing systems

Application

Algorithms

Programming language

Operating systems

Instruction set architecture

Microarchitecture

Physics

CS541 12

Abstraction of computing systems

Application

Algorithms

Programming language

Operating systems

Instruction set architecture

Microarchitecture

Physics

Register transfer level

CS541 13

Abstraction of computing systems

Application

Algorithms

Programming language

Operating systems

Instruction set architecture

Microarchitecture

Gates

Physics

Register transfer level

CS541 14

Abstraction of computing systems

Application

Algorithms

Programming language

Operating systems

Instruction set architecture

Microarchitecture

Gates

Physics

Register transfer level

Circuits

CS541 15

Abstraction of computing systems

Application

Algorithms

Programming language

Operating systems

Instruction set architecture

Microarchitecture

Gates

Physics

Register transfer level

Circuits

CS541 16

Abstraction of computing systems

Application

Algorithms

Programming language

Operating systems

Instruction set architecture

Microarchitecture

Gates

Physics

Register transfer level

Circuits

• Application Requirements:

� Suggest how to improve architecture
� Provide revenue to fund development

• Architecture provides feedback to guide applica-
tion and technology research directions

• Technology Constraints:

� Restrict what can be done efficiently
� New technologies make new arch possible

CS541 17

Abstraction

• Abstraction helps us to deal with complexity

� Hide lower level details

• Instruction set architecture

� Hardware/Software interface

• Application binary interface

� ISA plus system software

• Implementation

� The details underlying and interface

CS541 18

Architecture vs Microarchitecture

• Architecture / Instruction Set Architecture

� Programmer visible state (Memory & Register)
� Operations (Instructions and how they work)
� Execution Semantics (interrupts)
� Input/Output
� Data Types/Sizes

• Microarchitecture / Organization

� Microarchitecture/Organization: Tradeoffs on how to implement ISA for some metric
(Speed, Energy, Cost)

� Examples: Pipeline depth, number of pipelines, cache size, silicon area, peak power,
execution ordering, bus widths, ALU widths

CS541 19

Levels of Program Code

• High level language

� Easy to code & debug
� Close to problem domain
� Provides productivity

g = h * i ;
k = j + i ;
g = h[1] ;

compiler

• Assembly language

� Textual representation of instructions

MUL R0, R1, R2 ;
ADD R3, R4, R2
LDR R3, [R0,#4]

assembler

• Hardware language

� Binary data
� Encoded instruction and data

0000101101000010101
1010101111100101010
1010101011110000011

CS541 19

Levels of Program Code

• High level language

� Easy to code & debug
� Close to problem domain
� Provides productivity

g = h * i ;
k = j + i ;
g = h[1] ;

compiler

• Assembly language

� Textual representation of instructions

MUL R0, R1, R2 ;
ADD R3, R4, R2
LDR R3, [R0,#4]

assembler

• Hardware language

� Binary data
� Encoded instruction and data

0000101101000010101
1010101111100101010
1010101011110000011

CS541 19

Levels of Program Code

• High level language

� Easy to code & debug
� Close to problem domain
� Provides productivity

g = h * i ;
k = j + i ;
g = h[1] ;

compiler

• Assembly language

� Textual representation of instructions

MUL R0, R1, R2 ;
ADD R3, R4, R2
LDR R3, [R0,#4]

assembler

• Hardware language

� Binary data
� Encoded instruction and data

0000101101000010101
1010101111100101010
1010101011110000011

CS541 19

Levels of Program Code

• High level language

� Easy to code & debug
� Close to problem domain
� Provides productivity

g = h * i ;
k = j + i ;
g = h[1] ;

compiler

• Assembly language

� Textual representation of instructions

MUL R0, R1, R2 ;
ADD R3, R4, R2
LDR R3, [R0,#4]

assembler

• Hardware language

� Binary data
� Encoded instruction and data

0000101101000010101
1010101111100101010
1010101011110000011

CS541 19

Levels of Program Code

• High level language

� Easy to code & debug
� Close to problem domain
� Provides productivity

g = h * i ;
k = j + i ;
g = h[1] ;

compiler

• Assembly language

� Textual representation of instructions

MUL R0, R1, R2 ;
ADD R3, R4, R2
LDR R3, [R0,#4]

assembler

• Hardware language

� Binary data
� Encoded instruction and data

0000101101000010101
1010101111100101010
1010101011110000011

CS541 20

Components of a Computer

• Same components for all kind of computers

� Server, Desktop, Embedded systems

• Input-Output support

� User interface devices – Keyboard, mouse, display
� Storage devices – Hard disk, CD/DVD, Flash
� Network adapters for communicating with others

• Inside the computer

� Arithmetic logic unit (ALU)
� Program control unit
� Memory
� Datapath

CS541 20

Components of a Computer

• Same components for all kind of computers

� Server, Desktop, Embedded systems

• Input-Output support

� User interface devices – Keyboard, mouse, display
� Storage devices – Hard disk, CD/DVD, Flash
� Network adapters for communicating with others

• Inside the computer

� Arithmetic logic unit (ALU)
� Program control unit
� Memory
� Datapath

CS541 20

Components of a Computer

• Same components for all kind of computers

� Server, Desktop, Embedded systems

• Input-Output support

� User interface devices – Keyboard, mouse, display
� Storage devices – Hard disk, CD/DVD, Flash
� Network adapters for communicating with others

• Inside the computer

� Arithmetic logic unit (ALU)
� Program control unit
� Memory
� Datapath

CS541 20

Components of a Computer

• Same components for all kind of computers

� Server, Desktop, Embedded systems

• Input-Output support

� User interface devices – Keyboard, mouse, display
� Storage devices – Hard disk, CD/DVD, Flash
� Network adapters for communicating with others

• Inside the computer

� Arithmetic logic unit (ALU)
� Program control unit
� Memory
� Datapath

CS541 20

Components of a Computer

• Same components for all kind of computers

� Server, Desktop, Embedded systems

• Input-Output support

� User interface devices – Keyboard, mouse, display
� Storage devices – Hard disk, CD/DVD, Flash
� Network adapters for communicating with others

• Inside the computer

� Arithmetic logic unit (ALU)
� Program control unit
� Memory
� Datapath

CS541 21

IAS Computer

Arithmetic Logic

Unit

CS541 22

IAS Computer

Arithmetic Logic

Unit

Program control

Unit

CS541 23

IAS Computer

Arithmetic Logic

Unit

Program control

Unit

Main

Memory

CS541 24

IAS Computer

Arithmetic Logic

Unit

Program control

Unit

Main

Memory

Input

Output

CS541 25

IAS Computer

Arithmetic Logic

Unit

Program control

Unit

Main

Memory

Input

Output

CS541 26

Expanded structure of IAS Computer

Main

Memory

Input

Output

equipment

Control

Circuits

Control

signals

Arithmatic logic circuit

AC MQ

MBR

Arithmatic logic unit (ALU)

IBR PC

IR MAR

Program control unit

CS541 27

Top level view of computer

Execution

Unit

PC

IR

MBR

MAR

IOAR

IOBR

Buffers

I/O Module

CPU Main memory

Instruction

Instruction

Data

Data

Data

CS541 28

Basic instruction cycle

Fetch next

instruction
Execute

Instruction
Start Halt

Fetch cyle Execute cycle

CS541 29

Machine Model

M
e

m
o

ry

load r1, A

add r3,r1, B

store r3, C

P
ro

c
e

s
s
o

r

Reg−Mem

M
e

m
o

ry

push A

push B

add

pop C

Stack

P
ro

c
e

s
s
o

r

M
e

m
o

ry

load A

add B

store C

Accumulator

P
ro

c
e

s
s
o

r

M
e

m
o

ry

load r1,A

load r2,B

add r3,r2,r1

store r3,c

P
ro

c
e

s
s
o

r

Reg−Reg

CS541 30

Understanding Performance

• Algorithms

� Determines number of operation executed

• Programing language, compiler, architecture

� Determine number of machine instructions is executed per operation

• Processor and memory systems

� Determines how fast instructions are executed

• I/O systems

� Determines how fast I/O operations are performed

CS541 31

Performance

• Response time

� How long it takes to finish a task

• Throughput

� Total workdone per unit time (eg. task/transaction/per hour)

• Dependency of response time and throughput

� Replacing the processor with a faster version?
� Adding more processors?

CS541 32

Relative performance

• Performance is defined as 1/Execution time

• X is n times faster than Y

� PerformanceX/PerformanceY = Execution timeY /Execution timeX = n

• Example: Time taken to run a program

� 10ns in machine X and 15ns in machine Y
� Execution timeY /Execution timeX = 15/10 = 1.5
� So, X is 1.5 times faster than Y

CS541 33

Measuring performance

• Elapsed time (Wall clock time)

� Total time to complete a task including I/O, memory access, disk access, OS overhead,
etc.

• CPU time

� The time the CPU spends computing this task
� Does not include I/O time, other jobs’ share
� Can be further subdivided – user CPU time and system CPU time

• Different programs are affected differently by CPU and system performance

CS541 34

CPU clocking

• Operation is controlled by a constant rate clock

� Clock period is duration of clock cycle. (eg. 300ns = 300× 10−9s)
� Clock frequency is cycles per second. (eg. 4GHz = 4× 109Hz)
� Clock period = 1/Clock frequency

CS541 35

CPU Time

• CPU time = CPU clock cycles × Clock period =
CPU clock cycle

Clock frequency
• Performance can be improved by

� Reducing number of clock cycle
� Increasing clock frequency
� Hardware designer must trade off clock frequency against cycle count

CS541 36

Example

• Machine A: Run time 10s, Clock speed 2GHz

• Design a new machine (B say)

� Run time is 6s
� Faster clock require 1.2 times more clock cycles compared to A

• Clock frequency for machine B?

CS541 37

Instruction count and CPI

• Clock cycles = Instruction count × Cycles per instruction

• CPU time = Instruction count × CPI × Clock period =
Instruction count× CPI

Clock frequency
• Instruction count for a program

� Depends on ISA, compiler, program

• Average cycles per instruction

� Determined by CPU hardware
� Different instruction have different CPI
� Average CPI is affected by instruction mix

CS541 38

CPI example

• Machine A: Clock period - 250ps, CPI - 2.0

• Machine B: Clock period - 500ps, CPI - 1.2

• Same set of instructions

• Which is faster?

CS541 39

CPI in more detail

• Different instructions take different cycles

• Clock cycles =
n∑

i=1

(CPIi × Instruction counti)

• Weighted average CPI =

Clock cycle

Instruction count
=

n∑
i=1

(
CPIi ×

Instruction counti
Instruction count

)

CS541 40

CPI example

Instruction A B C
CPI for instruction 1 2 3
IC in Sequence 1 2 1 2
IC in Sequence 2 4 1 1

• Which code sequence executes the most instructions?

• Compute average CPI for each sequence.

CS541 41

Performance summary

• CPU Time =
Instructions

Program
× Clock cycles

Instruction
× second

Clock cycle
• Performance depends on

� Algorithm - Affects IC, possibly CPI
� Programming language - Affects IC, CPI
� Compiler - Affects IC, CPI
� Instruction set architecture - Affects IC, CPI, Clock period

CS541 41

Performance summary

• CPU Time =
Instructions

Program
× Clock cycles

Instruction
× second

Clock cycle
• Performance depends on

� Algorithm -

Affects IC, possibly CPI
� Programming language - Affects IC, CPI
� Compiler - Affects IC, CPI
� Instruction set architecture - Affects IC, CPI, Clock period

CS541 41

Performance summary

• CPU Time =
Instructions

Program
× Clock cycles

Instruction
× second

Clock cycle
• Performance depends on

� Algorithm - Affects IC, possibly CPI

� Programming language - Affects IC, CPI
� Compiler - Affects IC, CPI
� Instruction set architecture - Affects IC, CPI, Clock period

CS541 41

Performance summary

• CPU Time =
Instructions

Program
× Clock cycles

Instruction
× second

Clock cycle
• Performance depends on

� Algorithm - Affects IC, possibly CPI
� Programming language -

Affects IC, CPI
� Compiler - Affects IC, CPI
� Instruction set architecture - Affects IC, CPI, Clock period

CS541 41

Performance summary

• CPU Time =
Instructions

Program
× Clock cycles

Instruction
× second

Clock cycle
• Performance depends on

� Algorithm - Affects IC, possibly CPI
� Programming language - Affects IC, CPI

� Compiler - Affects IC, CPI
� Instruction set architecture - Affects IC, CPI, Clock period

CS541 41

Performance summary

• CPU Time =
Instructions

Program
× Clock cycles

Instruction
× second

Clock cycle
• Performance depends on

� Algorithm - Affects IC, possibly CPI
� Programming language - Affects IC, CPI
� Compiler -

Affects IC, CPI
� Instruction set architecture - Affects IC, CPI, Clock period

CS541 41

Performance summary

• CPU Time =
Instructions

Program
× Clock cycles

Instruction
× second

Clock cycle
• Performance depends on

� Algorithm - Affects IC, possibly CPI
� Programming language - Affects IC, CPI
� Compiler - Affects IC, CPI

� Instruction set architecture - Affects IC, CPI, Clock period

CS541 41

Performance summary

• CPU Time =
Instructions

Program
× Clock cycles

Instruction
× second

Clock cycle
• Performance depends on

� Algorithm - Affects IC, possibly CPI
� Programming language - Affects IC, CPI
� Compiler - Affects IC, CPI
� Instruction set architecture -

Affects IC, CPI, Clock period

CS541 41

Performance summary

• CPU Time =
Instructions

Program
× Clock cycles

Instruction
× second

Clock cycle
• Performance depends on

� Algorithm - Affects IC, possibly CPI
� Programming language - Affects IC, CPI
� Compiler - Affects IC, CPI
� Instruction set architecture - Affects IC, CPI, Clock period

CS541 42

Performance: Power

• Power ∝ Capacitive load × Voltage2 × Frequency

• Suppose a new CPU has the following

� 85% of capacitive load of old CPU
� 15% reduction in voltage, 15% reduction in frequency

◦ Pnew

Pold
=

0.85× Cold × (Vold × 0.85)2 × Fold × 0.85

Cold × (Vold)2 × Fold
= 0.854 = 0.52

� Constraints

◦ Further reduction in voltage may not be possible
◦ Dissipation of heat

CS541 43

MIPS as performance metric

• MIPS: Millions of Instruction Per Second
� Does not account for

◦ Differences in ISAs in computers
◦ Differences in complexity between instructions

• MIPS =
Instruction count

Execution time× 106
=

Instruction count
Instruction count×CPI

Clock frequency
× 106

=
Clock frequency

CPI× 106

• CPI varies between programs on a given CPU

CS541 44

Multiprocessors

• Multicore multiprocessors

� More than one processor per chip

• Requires explicit parallel programming
� Instruction level parallelism

◦ Hardware executes multiple instructions simultaneously
◦ Hidden from programmer

� Hard to do

◦ Programming for performance
◦ Load balancing
◦ Optimizing communication and synchronization

CS541 45

Conclusion

• Cost/performance is improving

� Due to underlying technology development

• Hierarchical layer of abstraction

� In both hardware and software

• Instruction set architecture

� The Hardware/Software interface

• Execution time – measure of performance

• Power is a limiting factor

� Use parallelism to improve performance

