Introduction to Deep Learning

Arijit Mondal
Dept. of Computer Science \& Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

Recurrent Neural Network

Introduction

- Recurrent neural networks are used for processing sequential data in general - Convolution neural network is specialized for image
- Capable of processing variable length input
- Shares parameters across different part of the model
- Example: "I went to IIT in 2017" or "In 2017, I went to IIT"
- For traditional machine learning models require to learn rules for different positions

Types of applications

Types of applications

Types of applications

Types of applications

Types of applications

Example

Computational graph

- Formal way to represent the computation
- Unfolding the graph results in sharing of parameters
- Consider a system $\boldsymbol{s}^{(t)}=f\left(\boldsymbol{s}^{(t-1)}, \boldsymbol{\theta}\right)$ where $\boldsymbol{s}^{(t)}$ denotes the state of the system - It is recurrent
- For finite number of steps, it can be unfolded
- Example: $s^{(3)}=f\left(s^{(2)}, \theta\right)=f\left(f\left(s^{(1)}, \theta\right), \theta\right)$

System with inputs

- A system will be represented as $\boldsymbol{s}^{(t)}=f\left(\boldsymbol{s}^{(t-1)}, \boldsymbol{x}^{(t)}, \boldsymbol{\theta}\right)$
- A state contains information of whole past sequence
- Usually state is indicated as hidden units such that $\boldsymbol{h}^{(t)}=f\left(\boldsymbol{h}^{(t-1)}, \boldsymbol{x}^{(t)}, \boldsymbol{\theta}\right)$
- While predicting, network learn $\boldsymbol{h}^{(t)}$ as a kind of lossy summary of past sequence upto t
- $\boldsymbol{h}^{(t)}$ depends on $\left(\boldsymbol{x}^{(t)}, \boldsymbol{x}^{(t-1)}, \ldots, \boldsymbol{x}^{(1)}\right)$

System with inputs (contd.)

- Unfolded recursion after t steps will be $\boldsymbol{h}^{(t)}=\boldsymbol{g}^{(t)}\left(\boldsymbol{x}^{(t)}, \boldsymbol{x}^{(t-1)}, \ldots, \boldsymbol{x}^{(1)}\right)=$ $f\left(\boldsymbol{h}^{(t-1)}, \boldsymbol{x}^{(t)}, \boldsymbol{\theta}\right)$
- Unfolding process has some advantages
- Regardless of sequence length, learned model has same input size
- Uses the same transition function f with the same parameters at every time steps
- Can be trained with fewer examples
- Recurrent graph is succinct
- Unfolded graph illustrates the information flow

Recurrent connection in hidden units

Output to hidden unit connection

IT Patna

Sequence processing

Recurrent neural network

- Function computable by a Turing machine can be computed by such recurrent network of finite size
- Hyperbolic tangent is usually chosen as activation function for hidden units
- Output can considered as discrete, so o gives unnormalized log probabilities
- Forward propagation begins with initial state \boldsymbol{h}^{0}
- So we have,
- $\boldsymbol{a}^{(t)}=\boldsymbol{b}+\boldsymbol{W} \boldsymbol{h}^{(t-1)}+\boldsymbol{U} \boldsymbol{x}$
- $\boldsymbol{h}^{(t)}=\tanh \left(\boldsymbol{a}^{(t)}\right)$
- $\boldsymbol{o}^{(t)}=\boldsymbol{c}+\boldsymbol{V} \boldsymbol{h}^{(t)}$
- $\hat{\boldsymbol{y}}^{(t)}=\operatorname{softmax}\left(\boldsymbol{o}^{(t)}\right)$
- Input and output have the same length

Backpropagation through time

- The network will be unfolded and gradient will be back propagated
- Number of stages need to be decided
- Issue in gradient computation
- Vanishing gradients
- Exploding gradients

Backpropagation through time

- The network will be unfolded and gradient will be back propagated
- Number of stages need to be decided
- Issue in gradient computation
- Vanishing gradients
- Exploding gradients
- Loss function
- $E_{t}=\frac{1}{2} \sum_{k=1}^{\text {out }}\left(\hat{y}_{k}-y_{k}\right)^{2}$,

Backpropagation through time

- The network will be unfolded and gradient will be back propagated
- Number of stages need to be decided
- Issue in gradient computation
- Vanishing gradients
- Exploding gradients
- Loss function
- $E_{t}=\frac{1}{2} \sum_{k=1}^{\text {out }}\left(\hat{y}_{k}-y_{k}\right)^{2}, E=\frac{1}{2} \sum_{t=1}^{\tau} \sum_{k=1}^{\text {out }}\left(\hat{y}_{t k}-y_{t k}\right)^{2}$

Backpropagation through time

- The network will be unfolded and gradient will be back propagated
- Number of stages need to be decided
- Issue in gradient computation
- Vanishing gradients
- Exploding gradients
- Loss function
- $E_{t}=\frac{1}{2} \sum_{k=1}^{\text {out }}\left(\hat{y}_{k}-y_{k}\right)^{2}, E=\frac{1}{2} \sum_{t=1}^{\tau} \sum_{k=1}^{\text {out }}\left(\hat{y}_{t k}-y_{t k}\right)^{2}$

- $E=-\sum_{t=1}^{\tau} \sum_{k=1}^{\text {out }}\left[\hat{y}_{t k} \ln y_{t k}+\left(1-\hat{y}_{t k}\right) \ln \left(1-y_{t k}\right)\right]$

Backpropagation through time

- Basic equations
$\boldsymbol{h}_{t}=\boldsymbol{U} x_{t}+\boldsymbol{W} \phi\left(\boldsymbol{h}_{t-1}\right)$
$\boldsymbol{y}_{t}=\boldsymbol{V} \phi\left(\boldsymbol{h}_{t}\right)$

Backpropagation through time

- Basic equations
$\boldsymbol{h}_{t}=\boldsymbol{U} \boldsymbol{x}_{t}+\boldsymbol{W} \phi\left(\boldsymbol{h}_{t-1}\right)$
$\boldsymbol{y}_{t}=\boldsymbol{V} \phi\left(\boldsymbol{h}_{t}\right)$
- Gradient
$\frac{\partial E}{\partial W}$

Backpropagation through time

- Basic equations

$$
\begin{aligned}
\boldsymbol{h}_{t} & =\boldsymbol{U} \boldsymbol{x}_{t}+\boldsymbol{W} \phi\left(\boldsymbol{h}_{t-1}\right) \\
\boldsymbol{y}_{t} & =\boldsymbol{V} \phi\left(\boldsymbol{h}_{t}\right)
\end{aligned}
$$

- Gradient

$$
\frac{\partial E}{\partial W}=\sum_{t=1}^{\tau} \frac{\partial E_{t}}{\partial W}
$$

Backpropagation through time

- Basic equations

$$
\begin{aligned}
& \boldsymbol{h}_{t}=\boldsymbol{U} \boldsymbol{x}_{t}+\boldsymbol{W} \phi\left(\boldsymbol{h}_{t-1}\right) \\
& \boldsymbol{y}_{t}=\boldsymbol{V} \phi\left(\boldsymbol{h}_{t}\right)
\end{aligned}
$$

- Gradient

$$
\frac{\partial E}{\partial \boldsymbol{W}}=\sum_{t=1}^{\tau} \frac{\partial E_{t}}{\partial \boldsymbol{W}}=\sum_{t=1}^{\tau} \sum_{k=1}^{t} \frac{\partial E_{t}}{\partial \boldsymbol{y}_{t}}
$$

Backpropagation through time

- Basic equations

$$
\begin{aligned}
\boldsymbol{h}_{t} & =\boldsymbol{U} \boldsymbol{x}_{t}+\boldsymbol{W} \phi\left(\boldsymbol{h}_{t-1}\right) \\
\boldsymbol{y}_{t} & =\boldsymbol{V} \phi\left(\boldsymbol{h}_{t}\right)
\end{aligned}
$$

- Gradient

$$
\frac{\partial E}{\partial \boldsymbol{W}}=\sum_{t=1}^{\tau} \frac{\partial E_{t}}{\partial \boldsymbol{W}}=\sum_{t=1}^{\tau} \sum_{k=1}^{t} \frac{\partial E_{t}}{\partial \boldsymbol{y}_{t}} \frac{\partial \boldsymbol{y}_{t}}{\partial \boldsymbol{h}_{t}}
$$

Backpropagation through time

- Basic equations

$$
\begin{aligned}
\boldsymbol{h}_{t} & =\boldsymbol{U} \boldsymbol{x}_{t}+\boldsymbol{W} \phi\left(\boldsymbol{h}_{t-1}\right) \\
\boldsymbol{y}_{t} & =\boldsymbol{V} \phi\left(\boldsymbol{h}_{t}\right)
\end{aligned}
$$

- Gradient

$$
\frac{\partial E}{\partial \boldsymbol{W}}=\sum_{t=1}^{\tau} \frac{\partial E_{t}}{\partial \boldsymbol{W}}=\sum_{t=1}^{\tau} \sum_{k=1}^{t} \frac{\partial E_{t}}{\partial \boldsymbol{y}_{t}} \frac{\partial \boldsymbol{y}_{t}}{\partial \boldsymbol{h}_{t}} \frac{\partial \boldsymbol{h}_{t}}{\partial \boldsymbol{h}_{k}}
$$

Backpropagation through time

- Basic equations

$$
\begin{aligned}
\boldsymbol{h}_{t} & =\boldsymbol{U} \boldsymbol{x}_{t}+\boldsymbol{W} \phi\left(\boldsymbol{h}_{t-1}\right) \\
\boldsymbol{y}_{t} & =\boldsymbol{V} \phi\left(\boldsymbol{h}_{t}\right)
\end{aligned}
$$

- Gradient

$$
\frac{\partial E}{\partial \boldsymbol{W}}=\sum_{t=1}^{\tau} \frac{\partial E_{t}}{\partial \boldsymbol{W}}=\sum_{t=1}^{\tau} \sum_{k=1}^{t} \frac{\partial E_{t}}{\partial \boldsymbol{y}_{t}} \frac{\partial \boldsymbol{y}_{t}}{\partial \boldsymbol{h}_{t}} \frac{\partial \boldsymbol{h}_{t}}{\partial \boldsymbol{h}_{k}} \frac{\partial \boldsymbol{h}_{k}}{\partial \boldsymbol{W}}
$$

Backpropagation through time

- Basic equations

$$
\begin{aligned}
\boldsymbol{h}_{t} & =\boldsymbol{U} \boldsymbol{x}_{t}+\boldsymbol{W} \phi\left(\boldsymbol{h}_{t-1}\right) \\
\boldsymbol{y}_{t} & =\boldsymbol{V} \phi\left(\boldsymbol{h}_{t}\right)
\end{aligned}
$$

- Gradient

$$
\frac{\partial E}{\partial \boldsymbol{W}}=\sum_{t=1}^{\tau} \frac{\partial E_{t}}{\partial \boldsymbol{W}}=\sum_{t=1}^{\tau} \sum_{k=1}^{t} \frac{\partial E_{t}}{\partial \boldsymbol{y}_{t}} \frac{\partial \boldsymbol{y}_{t}}{\partial \boldsymbol{h}_{t}} \frac{\partial \boldsymbol{h}_{t}}{\partial \boldsymbol{h}_{k}} \frac{\partial \boldsymbol{h}_{k}}{\partial \boldsymbol{W}}
$$

- Now we have,

$$
\frac{\partial \boldsymbol{h}_{t}}{\partial \boldsymbol{h}_{k}}
$$

Backpropagation through time

- Basic equations

$$
\begin{aligned}
\boldsymbol{h}_{t} & =\boldsymbol{U} \boldsymbol{x}_{t}+\boldsymbol{W} \phi\left(\boldsymbol{h}_{t-1}\right) \\
\boldsymbol{y}_{t} & =\boldsymbol{V} \phi\left(\boldsymbol{h}_{t}\right)
\end{aligned}
$$

- Gradient

$$
\frac{\partial E}{\partial \boldsymbol{W}}=\sum_{t=1}^{\tau} \frac{\partial E_{t}}{\partial \boldsymbol{W}}=\sum_{t=1}^{\tau} \sum_{k=1}^{t} \frac{\partial E_{t}}{\partial \boldsymbol{y}_{t}} \frac{\partial \boldsymbol{y}_{t}}{\partial \boldsymbol{h}_{t}} \frac{\partial \boldsymbol{h}_{t}}{\partial \boldsymbol{h}_{k}} \frac{\partial \boldsymbol{h}_{k}}{\partial \boldsymbol{W}}
$$

- Now we have,

$$
\frac{\partial \boldsymbol{h}_{t}}{\partial \boldsymbol{h}_{k}}=\prod_{i=k+1}^{t} \frac{\partial \boldsymbol{h}_{i}}{\partial \boldsymbol{h}_{i-1}}
$$

Backpropagation through time

- Basic equations

$$
\begin{aligned}
\boldsymbol{h}_{t} & =\boldsymbol{U} \boldsymbol{x}_{t}+\boldsymbol{W} \phi\left(\boldsymbol{h}_{t-1}\right) \\
\boldsymbol{y}_{t} & =\boldsymbol{V} \phi\left(\boldsymbol{h}_{t}\right)
\end{aligned}
$$

- Gradient

$$
\frac{\partial E}{\partial \boldsymbol{W}}=\sum_{t=1}^{\tau} \frac{\partial E_{t}}{\partial \boldsymbol{W}}=\sum_{t=1}^{\tau} \sum_{k=1}^{t} \frac{\partial E_{t}}{\partial \boldsymbol{y}_{t}} \frac{\partial \boldsymbol{y}_{t}}{\partial \boldsymbol{h}_{t}} \frac{\partial \boldsymbol{h}_{t}}{\partial \boldsymbol{h}_{k}} \frac{\partial \boldsymbol{h}_{k}}{\partial \boldsymbol{W}}
$$

- Now we have,

$$
\frac{\partial \boldsymbol{h}_{t}}{\partial \boldsymbol{h}_{k}}=\prod_{i=k+1}^{t} \frac{\partial \boldsymbol{h}_{i}}{\partial \boldsymbol{h}_{i-1}}=\prod_{i=k+1}^{t} \boldsymbol{W}^{\top} \operatorname{diag}\left[\phi^{\prime}\left(\boldsymbol{h}_{i-1}\right)\right]
$$

Backpropagation through time

- Issues in gradient

$$
\begin{aligned}
& \left\|\frac{\partial \boldsymbol{h}_{i}}{\partial \boldsymbol{h}_{i-1}}\right\| \leq\left\|\boldsymbol{W}^{T}\right\|\left\|\operatorname{diag}\left[\phi^{\prime}\left(\boldsymbol{h}_{i-1}\right)\right]\right\| \leq \lambda_{\boldsymbol{w}} \lambda_{\phi} \\
& \left\|\frac{\partial \boldsymbol{h}_{t}}{\partial \boldsymbol{h}_{k}}\right\| \leq\left(\lambda_{\boldsymbol{w}} \lambda_{\phi}\right)^{t-k}
\end{aligned}
$$

LSTM

LSTM

- Mathematical relation

$$
\begin{aligned}
& \boldsymbol{i}_{t}=\sigma\left(\boldsymbol{\theta}_{x i} \boldsymbol{x}_{t}+\boldsymbol{\theta}_{h i} \boldsymbol{h}_{t-1}+\boldsymbol{b}_{i}\right) \\
& \boldsymbol{f}_{t}=\sigma\left(\boldsymbol{\theta}_{\times f} \boldsymbol{x}_{t}+\boldsymbol{\theta}_{h f} \boldsymbol{h}_{t-1}+\boldsymbol{b}_{f}\right) \\
& \boldsymbol{o}_{t}=\sigma\left(\boldsymbol{\theta}_{\times 0} \boldsymbol{x}_{t}+\boldsymbol{\theta}_{h o} \boldsymbol{h}_{t-1}+\boldsymbol{b}_{o}\right) \\
& \boldsymbol{g}_{t}=\tanh \left(\boldsymbol{\theta}_{x g} \boldsymbol{x}_{t}+\boldsymbol{\theta}_{h g} \boldsymbol{h}_{t-1}+\boldsymbol{b}_{g}\right) \\
& \boldsymbol{c}_{t}=\boldsymbol{f}_{t} \odot \boldsymbol{c}_{t-1}+\boldsymbol{i}_{t} \odot \boldsymbol{g}_{t} \\
& \boldsymbol{h}_{t}=\boldsymbol{o}_{t} \odot \tanh \left(\boldsymbol{c}_{t}\right)
\end{aligned}
$$

LSTM

Image source:colah.github.io

