
IIT Patna 1

Introduction to Deep Learning

Arijit Mondal
Dept. of Computer Science & Engineering

Indian Institute of Technology Patna

arijit@iitp.ac.in

IIT Patna 2

Deep Feedforward Networks

IIT Patna 3

Deep feedforward networks

• Also known as feedforward neural network or multilayer perceptron

• Goal of such network is to approximate some function f ∗

• For classifier, x is mapped to category y ie. y = f ∗(x)
• A feedforward network maps y = f (x ;θ) and learns θ for which the result is the best

function approximation

• Information flows from input to intermediate to output

• No feedback, directed acyclic graph
• For general model, it can have feedback and known as recurrent neural network

• Typically it represents composition of functions

• Three functions f (1), f (2), f (3) are connected in chain
• Overall function realized is f (x) = f (3)(f (2)(f (1)(x)))
• The number of layers provides the depth of the model

• Goal of NN is not to accurately model brain!

IIT Patna 3

Deep feedforward networks

• Also known as feedforward neural network or multilayer perceptron

• Goal of such network is to approximate some function f ∗

• For classifier, x is mapped to category y ie. y = f ∗(x)
• A feedforward network maps y = f (x ;θ) and learns θ for which the result is the best

function approximation

• Information flows from input to intermediate to output

• No feedback, directed acyclic graph
• For general model, it can have feedback and known as recurrent neural network

• Typically it represents composition of functions

• Three functions f (1), f (2), f (3) are connected in chain
• Overall function realized is f (x) = f (3)(f (2)(f (1)(x)))
• The number of layers provides the depth of the model

• Goal of NN is not to accurately model brain!

IIT Patna 3

Deep feedforward networks

• Also known as feedforward neural network or multilayer perceptron

• Goal of such network is to approximate some function f ∗

• For classifier, x is mapped to category y ie. y = f ∗(x)
• A feedforward network maps y = f (x ;θ) and learns θ for which the result is the best

function approximation

• Information flows from input to intermediate to output

• No feedback, directed acyclic graph
• For general model, it can have feedback and known as recurrent neural network

• Typically it represents composition of functions

• Three functions f (1), f (2), f (3) are connected in chain
• Overall function realized is f (x) = f (3)(f (2)(f (1)(x)))
• The number of layers provides the depth of the model

• Goal of NN is not to accurately model brain!

IIT Patna 3

Deep feedforward networks

• Also known as feedforward neural network or multilayer perceptron

• Goal of such network is to approximate some function f ∗

• For classifier, x is mapped to category y ie. y = f ∗(x)
• A feedforward network maps y = f (x ;θ) and learns θ for which the result is the best

function approximation

• Information flows from input to intermediate to output

• No feedback, directed acyclic graph
• For general model, it can have feedback and known as recurrent neural network

• Typically it represents composition of functions

• Three functions f (1), f (2), f (3) are connected in chain
• Overall function realized is f (x) = f (3)(f (2)(f (1)(x)))
• The number of layers provides the depth of the model

• Goal of NN is not to accurately model brain!

IIT Patna 3

Deep feedforward networks

• Also known as feedforward neural network or multilayer perceptron

• Goal of such network is to approximate some function f ∗

• For classifier, x is mapped to category y ie. y = f ∗(x)
• A feedforward network maps y = f (x ;θ) and learns θ for which the result is the best

function approximation

• Information flows from input to intermediate to output

• No feedback, directed acyclic graph
• For general model, it can have feedback and known as recurrent neural network

• Typically it represents composition of functions

• Three functions f (1), f (2), f (3) are connected in chain
• Overall function realized is f (x) = f (3)(f (2)(f (1)(x)))
• The number of layers provides the depth of the model

• Goal of NN is not to accurately model brain!

x1 . . . xj . . . xk 1

h1(x) 1

W 1
b1

h2(x) 1

W 2
b2

f (x)

W 3 b3

IIT Patna 4

Multilayer neural network

IIT Patna 5

Issues with linear FFN

• Fit well for linear and logistic regression

• Convex optimization technique may be used

• Capacity of such function is limited

• Model cannot understand interaction between any two variables

IIT Patna 6

Overcome issues of linear FFN

• Transform x (input) into φ(x) where φ is nonlinear transformation

• How to choose φ?
• Use a very generic φ of high dimension

• Enough capacity but may result in poor generalization
• Very generic feature mapping usually based on principle of local smoothness
• Do not encode enough prior information

• Manually design φ

• Require domain knowledge

• Strategy of deep learning is to learn φ

IIT Patna 6

Overcome issues of linear FFN

• Transform x (input) into φ(x) where φ is nonlinear transformation

• How to choose φ?

• Use a very generic φ of high dimension

• Enough capacity but may result in poor generalization
• Very generic feature mapping usually based on principle of local smoothness
• Do not encode enough prior information

• Manually design φ

• Require domain knowledge

• Strategy of deep learning is to learn φ

IIT Patna 6

Overcome issues of linear FFN

• Transform x (input) into φ(x) where φ is nonlinear transformation

• How to choose φ?
• Use a very generic φ of high dimension

• Enough capacity but may result in poor generalization
• Very generic feature mapping usually based on principle of local smoothness
• Do not encode enough prior information

• Manually design φ

• Require domain knowledge

• Strategy of deep learning is to learn φ

IIT Patna 6

Overcome issues of linear FFN

• Transform x (input) into φ(x) where φ is nonlinear transformation

• How to choose φ?
• Use a very generic φ of high dimension

• Enough capacity but may result in poor generalization
• Very generic feature mapping usually based on principle of local smoothness
• Do not encode enough prior information

• Manually design φ

• Require domain knowledge

• Strategy of deep learning is to learn φ

IIT Patna 6

Overcome issues of linear FFN

• Transform x (input) into φ(x) where φ is nonlinear transformation

• How to choose φ?
• Use a very generic φ of high dimension

• Enough capacity but may result in poor generalization
• Very generic feature mapping usually based on principle of local smoothness
• Do not encode enough prior information

• Manually design φ

• Require domain knowledge

• Strategy of deep learning is to learn φ

IIT Patna 7

Goal of deep learning

• We have a model y = f (x ;θ,w) = φ(x ;θ)Tw

• We use θ to learn φ

• w and φ determines the output. φ defines the hidden layer

• It looses the convexity of the training problem but benefits a lot

• Representation is parameterized as φ(x ,θ)

• θ can be determined by solving optimization problem

• Advantages

• φ can be very generic
• Human practitioner can encode their knowledge to designing φ(x ;θ)

IIT Patna 8

Design issues of feedforward network

• Choice of optimizer

• Cost function

• The form of output unit

• Choice of activation function

• Design of architecture - number of layers, number of units in each layer

• Computation of gradients

IIT Patna 9

Example

• Let us choose XOR function

• Target function is y = f ∗(x) and our model provides y = f (x ;θ)

• Learning algorithm will choose the parameters θ to make f close to f ∗

• Target is to fit output for X = {[0, 0]T , [0, 1]T , [1, 0]T , [1, 1]T}
• This can be treated as regression problem and MSE error can be chosen as loss

function

• MSE loss function J(θ) =
1

4

∑
x∈X

(f ∗(x)− f (x ;θ))2

• We need to choose f (x ;θ) where θ depends on w and b

• Let us consider a linear model f (x ;w , b) = xTw + b

• Solving these, we get w = 0 and b = 1
2

IIT Patna 9

Example

• Let us choose XOR function

• Target function is y = f ∗(x) and our model provides y = f (x ;θ)

• Learning algorithm will choose the parameters θ to make f close to f ∗

• Target is to fit output for X = {[0, 0]T , [0, 1]T , [1, 0]T , [1, 1]T}
• This can be treated as regression problem and MSE error can be chosen as loss

function

• MSE loss function J(θ) =
1

4

∑
x∈X

(f ∗(x)− f (x ;θ))2

• We need to choose f (x ;θ) where θ depends on w and b

• Let us consider a linear model f (x ;w , b) = xTw + b

• Solving these, we get w = 0 and b = 1
2

IIT Patna 9

Example

• Let us choose XOR function

• Target function is y = f ∗(x) and our model provides y = f (x ;θ)

• Learning algorithm will choose the parameters θ to make f close to f ∗

• Target is to fit output for X = {[0, 0]T , [0, 1]T , [1, 0]T , [1, 1]T}
• This can be treated as regression problem and MSE error can be chosen as loss

function

• MSE loss function J(θ) =
1

4

∑
x∈X

(f ∗(x)− f (x ;θ))2

• We need to choose f (x ;θ) where θ depends on w and b

• Let us consider a linear model f (x ;w , b) = xTw + b

• Solving these, we get w = 0 and b = 1
2

x1 x2

h1 h2

y

x

h

y

W

w

IIT Patna 10

Simple feedforward network with hidden layer

• Let us assume that the hidden unit h computes
f (1)(x ;W , c)

• In the next layer y = f (2)(h;w , b) is computed

• Complete model f (x ;W , c ,w , b) = f (2)(f (1)(x))

• Suppose f (1)(x) = W Tx and f 2(h) = hTw then f (x) =
wTW Tx

• We need to have nonlinear function to describe the fea-
tures

• Usually NN have affine transformation of learned param-
eters followed by nonlinear activation function

• Let us use h = g(W Tx + c)

• Let us use ReLU as activation function g(z) = max{0, z}
• g is chosen element wise hi = g(xTW:,i + ci)

x1 x2

h1 h2

y

x

h

y

W

w

IIT Patna 10

Simple feedforward network with hidden layer

• Let us assume that the hidden unit h computes
f (1)(x ;W , c)

• In the next layer y = f (2)(h;w , b) is computed

• Complete model f (x ;W , c ,w , b) = f (2)(f (1)(x))

• Suppose f (1)(x) = W Tx and f 2(h) = hTw then f (x) =
wTW Tx

• We need to have nonlinear function to describe the fea-
tures

• Usually NN have affine transformation of learned param-
eters followed by nonlinear activation function

• Let us use h = g(W Tx + c)

• Let us use ReLU as activation function g(z) = max{0, z}
• g is chosen element wise hi = g(xTW:,i + ci)

x1 x2

h1 h2

y

x

h

y

W

w

IIT Patna 10

Simple feedforward network with hidden layer

• Let us assume that the hidden unit h computes
f (1)(x ;W , c)

• In the next layer y = f (2)(h;w , b) is computed

• Complete model f (x ;W , c ,w , b) = f (2)(f (1)(x))

• Suppose f (1)(x) = W Tx and f 2(h) = hTw then f (x) =
wTW Tx

• We need to have nonlinear function to describe the fea-
tures

• Usually NN have affine transformation of learned param-
eters followed by nonlinear activation function

• Let us use h = g(W Tx + c)

• Let us use ReLU as activation function g(z) = max{0, z}
• g is chosen element wise hi = g(xTW:,i + ci)

x1 x2

h1 h2

y

x

h

y

W

w

IIT Patna 10

Simple feedforward network with hidden layer

• Let us assume that the hidden unit h computes
f (1)(x ;W , c)

• In the next layer y = f (2)(h;w , b) is computed

• Complete model f (x ;W , c ,w , b) = f (2)(f (1)(x))

• Suppose f (1)(x) = W Tx and f 2(h) = hTw

then f (x) =
wTW Tx

• We need to have nonlinear function to describe the fea-
tures

• Usually NN have affine transformation of learned param-
eters followed by nonlinear activation function

• Let us use h = g(W Tx + c)

• Let us use ReLU as activation function g(z) = max{0, z}
• g is chosen element wise hi = g(xTW:,i + ci)

x1 x2

h1 h2

y

x

h

y

W

w

IIT Patna 10

Simple feedforward network with hidden layer

• Let us assume that the hidden unit h computes
f (1)(x ;W , c)

• In the next layer y = f (2)(h;w , b) is computed

• Complete model f (x ;W , c ,w , b) = f (2)(f (1)(x))

• Suppose f (1)(x) = W Tx and f 2(h) = hTw then f (x) =
wTW Tx

• We need to have nonlinear function to describe the fea-
tures

• Usually NN have affine transformation of learned param-
eters followed by nonlinear activation function

• Let us use h = g(W Tx + c)

• Let us use ReLU as activation function g(z) = max{0, z}
• g is chosen element wise hi = g(xTW:,i + ci)

x1 x2

h1 h2

y

x

h

y

W

w

IIT Patna 10

Simple feedforward network with hidden layer

• Let us assume that the hidden unit h computes
f (1)(x ;W , c)

• In the next layer y = f (2)(h;w , b) is computed

• Complete model f (x ;W , c ,w , b) = f (2)(f (1)(x))

• Suppose f (1)(x) = W Tx and f 2(h) = hTw then f (x) =
wTW Tx

• We need to have nonlinear function to describe the fea-
tures

• Usually NN have affine transformation of learned param-
eters followed by nonlinear activation function

• Let us use h = g(W Tx + c)

• Let us use ReLU as activation function g(z) = max{0, z}
• g is chosen element wise hi = g(xTW:,i + ci)

IIT Patna 11

Simple feedforward network with hidden layer

• Complete network is f (x ;W , c ,w , b) = wT max{0,W Tx + c}+ b

• A solution for XOR problem can be as follows

• W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

• Now we have

• X =

0 0
1 0
0 1
1 1

, XW =

0 0
1 1
1 1
2 2

, add bias c

0 −1
1 0
1 0
2 1

, apply h

0 0
1 0
1 0
2 1

, multiply

with w

0
1
1
0

IIT Patna 11

Simple feedforward network with hidden layer

• Complete network is f (x ;W , c ,w , b) = wT max{0,W Tx + c}+ b

• A solution for XOR problem can be as follows

• W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

• Now we have

• X =

0 0
1 0
0 1
1 1

, XW =

0 0
1 1
1 1
2 2

, add bias c

0 −1
1 0
1 0
2 1

, apply h

0 0
1 0
1 0
2 1

, multiply

with w

0
1
1
0

IIT Patna 11

Simple feedforward network with hidden layer

• Complete network is f (x ;W , c ,w , b) = wT max{0,W Tx + c}+ b

• A solution for XOR problem can be as follows

• W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

• Now we have

• X

=

0 0
1 0
0 1
1 1

, XW =

0 0
1 1
1 1
2 2

, add bias c

0 −1
1 0
1 0
2 1

, apply h

0 0
1 0
1 0
2 1

, multiply

with w

0
1
1
0

IIT Patna 11

Simple feedforward network with hidden layer

• Complete network is f (x ;W , c ,w , b) = wT max{0,W Tx + c}+ b

• A solution for XOR problem can be as follows

• W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

• Now we have

• X =

0 0
1 0
0 1
1 1

,

XW =

0 0
1 1
1 1
2 2

, add bias c

0 −1
1 0
1 0
2 1

, apply h

0 0
1 0
1 0
2 1

, multiply

with w

0
1
1
0

IIT Patna 11

Simple feedforward network with hidden layer

• Complete network is f (x ;W , c ,w , b) = wT max{0,W Tx + c}+ b

• A solution for XOR problem can be as follows

• W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

• Now we have

• X =

0 0
1 0
0 1
1 1

, XW

=

0 0
1 1
1 1
2 2

, add bias c

0 −1
1 0
1 0
2 1

, apply h

0 0
1 0
1 0
2 1

, multiply

with w

0
1
1
0

IIT Patna 11

Simple feedforward network with hidden layer

• Complete network is f (x ;W , c ,w , b) = wT max{0,W Tx + c}+ b

• A solution for XOR problem can be as follows

• W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

• Now we have

• X =

0 0
1 0
0 1
1 1

, XW =

0 0
1 1
1 1
2 2

,

add bias c

0 −1
1 0
1 0
2 1

, apply h

0 0
1 0
1 0
2 1

, multiply

with w

0
1
1
0

IIT Patna 11

Simple feedforward network with hidden layer

• Complete network is f (x ;W , c ,w , b) = wT max{0,W Tx + c}+ b

• A solution for XOR problem can be as follows

• W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

• Now we have

• X =

0 0
1 0
0 1
1 1

, XW =

0 0
1 1
1 1
2 2

, add bias c

0 −1
1 0
1 0
2 1

, apply h

0 0
1 0
1 0
2 1

, multiply

with w

0
1
1
0

IIT Patna 11

Simple feedforward network with hidden layer

• Complete network is f (x ;W , c ,w , b) = wT max{0,W Tx + c}+ b

• A solution for XOR problem can be as follows

• W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

• Now we have

• X =

0 0
1 0
0 1
1 1

, XW =

0 0
1 1
1 1
2 2

, add bias c

0 −1
1 0
1 0
2 1

,

apply h

0 0
1 0
1 0
2 1

, multiply

with w

0
1
1
0

IIT Patna 11

Simple feedforward network with hidden layer

• Complete network is f (x ;W , c ,w , b) = wT max{0,W Tx + c}+ b

• A solution for XOR problem can be as follows

• W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

• Now we have

• X =

0 0
1 0
0 1
1 1

, XW =

0 0
1 1
1 1
2 2

, add bias c

0 −1
1 0
1 0
2 1

, apply h

0 0
1 0
1 0
2 1

, multiply

with w

0
1
1
0

IIT Patna 11

Simple feedforward network with hidden layer

• Complete network is f (x ;W , c ,w , b) = wT max{0,W Tx + c}+ b

• A solution for XOR problem can be as follows

• W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

• Now we have

• X =

0 0
1 0
0 1
1 1

, XW =

0 0
1 1
1 1
2 2

, add bias c

0 −1
1 0
1 0
2 1

, apply h

0 0
1 0
1 0
2 1

,

multiply

with w

0
1
1
0

IIT Patna 11

Simple feedforward network with hidden layer

• Complete network is f (x ;W , c ,w , b) = wT max{0,W Tx + c}+ b

• A solution for XOR problem can be as follows

• W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

• Now we have

• X =

0 0
1 0
0 1
1 1

, XW =

0 0
1 1
1 1
2 2

, add bias c

0 −1
1 0
1 0
2 1

, apply h

0 0
1 0
1 0
2 1

, multiply

with w

0
1
1
0

IIT Patna 11

Simple feedforward network with hidden layer

• Complete network is f (x ;W , c ,w , b) = wT max{0,W Tx + c}+ b

• A solution for XOR problem can be as follows

• W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

• Now we have

• X =

0 0
1 0
0 1
1 1

, XW =

0 0
1 1
1 1
2 2

, add bias c

0 −1
1 0
1 0
2 1

, apply h

0 0
1 0
1 0
2 1

, multiply

with w

0
1
1
0

IIT Patna 12

Gradient based learning

• Similar to machine learning tasks, gradient descent based learning is used

• Need to specify optimization procedure, cost function and model family

• For NN, model is nonlinear and function becomes nonconvex

• Usually trained by iterative, gradient based optimizer

• Solved by using gradient descent or stochastic gradient descent (SGD)

IIT Patna 13

Gradient descent

• Suppose we have a function y = f (x), derivative (slope at point x) of it is f ′(x) = dy
dx

• A small change in the input can cause output to move to a value given by f (x + ε) ≈
f (x) + εf ′(x)

• We need to take a jump so that y reduces (assuming minimization problem)

• We can say that f (x − εsign(f ′(x))) is less than f (x)

• For multiple inputs partial derivatives are used ie. ∂
∂xi

f (x)

• Gradient vector is represented as ∇x f (x)

• Gradient descent proposes a new point as x ′ = x − ε∇x f (x) where ε is the learning
rate

IIT Patna 14

Stochastic gradient descent

• Large training set are necessary for good generalization

• Typical cost function used for optimization is J(θ) =
1

m

m∑
i=1

L(x (i), y (i),θ)

• Gradient descent requires computing of ∇θJ(θ) =
1

m

m∑
i=1

∇θL(x (i), y (i),θ)

• Computation cost is O(m)

• For SGD, gradient is an expectation estimated from a small sample known as mini-
batch (B = {x (1), . . . , x (m′)})

• Estimated gradient is g =
1

m′

m′∑
i=1

∇θL(x (i), y (i),θ)

• New point will be θ = θ − εg

IIT Patna 14

Stochastic gradient descent

• Large training set are necessary for good generalization

• Typical cost function used for optimization is J(θ) =
1

m

m∑
i=1

L(x (i), y (i),θ)

• Gradient descent requires computing of ∇θJ(θ) =
1

m

m∑
i=1

∇θL(x (i), y (i),θ)

• Computation cost is O(m)

• For SGD, gradient is an expectation estimated from a small sample known as mini-
batch (B = {x (1), . . . , x (m′)})

• Estimated gradient is g =
1

m′

m′∑
i=1

∇θL(x (i), y (i),θ)

• New point will be θ = θ − εg

IIT Patna 14

Stochastic gradient descent

• Large training set are necessary for good generalization

• Typical cost function used for optimization is J(θ) =
1

m

m∑
i=1

L(x (i), y (i),θ)

• Gradient descent requires computing of ∇θJ(θ) =
1

m

m∑
i=1

∇θL(x (i), y (i),θ)

• Computation cost is O(m)

• For SGD, gradient is an expectation estimated from a small sample known as mini-
batch (B = {x (1), . . . , x (m′)})

• Estimated gradient is g =
1

m′

m′∑
i=1

∇θL(x (i), y (i),θ)

• New point will be θ = θ − εg

IIT Patna 15

Cost function

• Similar to other parametric model like linear models

• Parametric model defines distribution p(y |x ;θ)

• Principle of maximum likelihood is used (cross entropy between training data and
model prediction)

• Instead of predicting the whole distribution of y , some statistic of y conditioned on
x is predicted

• It can also contain regularization term

IIT Patna 16

Maximum likelihood estimation

• Consider a set of m examples X = {x (1), . . . , x (m)} drawn independently from the
true but unknown data generating distribution pdata(x)

• Let pmodel(x ;θ) be a parametric family of probability distribution

• Maximum likelihood estimator for θ is defined as

θML = arg max
θ

pmodel(X;θ) = arg max
θ

m∏
i=1

pmodel(x
(i);θ)

• It can be written as θML = arg max
θ

m∑
i=1

log pmodel(x
(i);θ)

• By dividing m we get θML = arg max
θ

EX∼p̂data log pmodel(x ;θ)

• We need to minimize − arg max
θ

EX∼p̂data log pmodel(x ;θ)

IIT Patna 16

Maximum likelihood estimation

• Consider a set of m examples X = {x (1), . . . , x (m)} drawn independently from the
true but unknown data generating distribution pdata(x)

• Let pmodel(x ;θ) be a parametric family of probability distribution

• Maximum likelihood estimator for θ is defined as

θML = arg max
θ

pmodel(X;θ) = arg max
θ

m∏
i=1

pmodel(x
(i);θ)

• It can be written as θML = arg max
θ

m∑
i=1

log pmodel(x
(i);θ)

• By dividing m we get θML = arg max
θ

EX∼p̂data log pmodel(x ;θ)

• We need to minimize − arg max
θ

EX∼p̂data log pmodel(x ;θ)

IIT Patna 16

Maximum likelihood estimation

• Consider a set of m examples X = {x (1), . . . , x (m)} drawn independently from the
true but unknown data generating distribution pdata(x)

• Let pmodel(x ;θ) be a parametric family of probability distribution

• Maximum likelihood estimator for θ is defined as

θML = arg max
θ

pmodel(X;θ) = arg max
θ

m∏
i=1

pmodel(x
(i);θ)

• It can be written as θML = arg max
θ

m∑
i=1

log pmodel(x
(i);θ)

• By dividing m we get θML = arg max
θ

EX∼p̂data log pmodel(x ;θ)

• We need to minimize − arg max
θ

EX∼p̂data log pmodel(x ;θ)

IIT Patna 16

Maximum likelihood estimation

• Consider a set of m examples X = {x (1), . . . , x (m)} drawn independently from the
true but unknown data generating distribution pdata(x)

• Let pmodel(x ;θ) be a parametric family of probability distribution

• Maximum likelihood estimator for θ is defined as

θML = arg max
θ

pmodel(X;θ) = arg max
θ

m∏
i=1

pmodel(x
(i);θ)

• It can be written as θML = arg max
θ

m∑
i=1

log pmodel(x
(i);θ)

• By dividing m we get θML = arg max
θ

EX∼p̂data log pmodel(x ;θ)

• We need to minimize − arg max
θ

EX∼p̂data log pmodel(x ;θ)

IIT Patna 16

Maximum likelihood estimation

• Consider a set of m examples X = {x (1), . . . , x (m)} drawn independently from the
true but unknown data generating distribution pdata(x)

• Let pmodel(x ;θ) be a parametric family of probability distribution

• Maximum likelihood estimator for θ is defined as

θML = arg max
θ

pmodel(X;θ) = arg max
θ

m∏
i=1

pmodel(x
(i);θ)

• It can be written as θML = arg max
θ

m∑
i=1

log pmodel(x
(i);θ)

• By dividing m we get θML = arg max
θ

EX∼p̂data log pmodel(x ;θ)

• We need to minimize − arg max
θ

EX∼p̂data log pmodel(x ;θ)

IIT Patna 17

Conditional log-likelihood

• In most of the supervised learning we estimate P(y |x ;θ)

• If X be the all inputs and Y be observed targets then conditional maximum likelihood
estimator is θML = arg max

θ
P(Y |X ;θ)

• If the examples are assumed to be i.i.d then we can say

θML = arg max
θ

m∑
i=1

logP(y (i)|x (i);θ)

IIT Patna 18

Linear regression as maximum likelihood

• Instead of producing single prediction ŷ for a given x , we assume the model produces
conditional distribution p(y |x)

• For infinitely large training set, we can observe multiple examples having the same x
but different values of y

• Goal is to fit the distribution p(y |x)

• Let us assume, p(y |x) = N (y ; ŷ(x ;w), σ2)

• Since the examples are assumed to be i.i.d, conditional log-likelihood is given by

m∑
i=1

log p(y (i)|x (i);θ) = −m log σ − m

2
log(2π)−

m∑
i=1

‖ŷ (i) − y (i)‖2

2σ2

IIT Patna 18

Linear regression as maximum likelihood

• Instead of producing single prediction ŷ for a given x , we assume the model produces
conditional distribution p(y |x)

• For infinitely large training set, we can observe multiple examples having the same x
but different values of y

• Goal is to fit the distribution p(y |x)

• Let us assume, p(y |x) = N (y ; ŷ(x ;w), σ2)

• Since the examples are assumed to be i.i.d, conditional log-likelihood is given by

m∑
i=1

log p(y (i)|x (i);θ) = −m log σ − m

2
log(2π)−

m∑
i=1

‖ŷ (i) − y (i)‖2

2σ2

IIT Patna 18

Linear regression as maximum likelihood

• Instead of producing single prediction ŷ for a given x , we assume the model produces
conditional distribution p(y |x)

• For infinitely large training set, we can observe multiple examples having the same x
but different values of y

• Goal is to fit the distribution p(y |x)

• Let us assume, p(y |x) = N (y ; ŷ(x ;w), σ2)

• Since the examples are assumed to be i.i.d, conditional log-likelihood is given by

m∑
i=1

log p(y (i)|x (i);θ)

= −m log σ − m

2
log(2π)−

m∑
i=1

‖ŷ (i) − y (i)‖2

2σ2

IIT Patna 18

Linear regression as maximum likelihood

• Instead of producing single prediction ŷ for a given x , we assume the model produces
conditional distribution p(y |x)

• For infinitely large training set, we can observe multiple examples having the same x
but different values of y

• Goal is to fit the distribution p(y |x)

• Let us assume, p(y |x) = N (y ; ŷ(x ;w), σ2)

• Since the examples are assumed to be i.i.d, conditional log-likelihood is given by

m∑
i=1

log p(y (i)|x (i);θ) = −m log σ − m

2
log(2π)−

m∑
i=1

‖ŷ (i) − y (i)‖2

2σ2

IIT Patna 19

Learning conditional distributions with max likelihood

• Usually neural networks are trained using maximum likelihood. Therefore the cost
function is negative log-likelihood. Also known as cross entropy between training
data and model distribution

• Cost function J(θ) = −EX ,Y∼p̂data log pmodel(y |x)

• Uniform across different models

• Gradient of cost function is very much crucial

• Large and predictable gradient can serve good guide for learning process
• Function that saturates will have small gradient

• Activation function usually produces values in a bounded zone (saturates)

• Negative log-likelihood can overcome some of the problems

• Output unit having exp function can saturate for high negative value
• Log-likelihood cost function undoes the exp of some output functions

IIT Patna 20

Learning conditional statistics

• Instead of learning the whole distribution p(y |x ;θ), we want to learn one conditional
statistics of y given x

• For a predicting function f (x ;θ), we would like to predict the mean of y

• Neural network can represent any function f from a very wide range of functions

• Range of function is limited by features like continuity, boundedness, etc.

• Cost function becomes functional rather than a function

• Need to solve the optimization problem f ∗ = arg min
f

EX ,Y∼pdata‖y − f (x)‖2

• Using calculus of variation, it gives f ∗(x) = EY∼pdata(y |x)[y]

• Mean of y for each value of x

• Using a different cost function f ∗ = arg min
f

EX ,Y∼pdata‖y − f (x)‖1
• Median of y for each value of x

IIT Patna 20

Learning conditional statistics

• Instead of learning the whole distribution p(y |x ;θ), we want to learn one conditional
statistics of y given x

• For a predicting function f (x ;θ), we would like to predict the mean of y

• Neural network can represent any function f from a very wide range of functions

• Range of function is limited by features like continuity, boundedness, etc.

• Cost function becomes functional rather than a function

• Need to solve the optimization problem f ∗ = arg min
f

EX ,Y∼pdata‖y − f (x)‖2

• Using calculus of variation, it gives f ∗(x) = EY∼pdata(y |x)[y]

• Mean of y for each value of x

• Using a different cost function f ∗ = arg min
f

EX ,Y∼pdata‖y − f (x)‖1
• Median of y for each value of x

IIT Patna 20

Learning conditional statistics

• Instead of learning the whole distribution p(y |x ;θ), we want to learn one conditional
statistics of y given x

• For a predicting function f (x ;θ), we would like to predict the mean of y

• Neural network can represent any function f from a very wide range of functions

• Range of function is limited by features like continuity, boundedness, etc.

• Cost function becomes functional rather than a function

• Need to solve the optimization problem f ∗ = arg min
f

EX ,Y∼pdata‖y − f (x)‖2

• Using calculus of variation, it gives f ∗(x) = EY∼pdata(y |x)[y]

• Mean of y for each value of x

• Using a different cost function f ∗ = arg min
f

EX ,Y∼pdata‖y − f (x)‖1
• Median of y for each value of x

IIT Patna 20

Learning conditional statistics

• Instead of learning the whole distribution p(y |x ;θ), we want to learn one conditional
statistics of y given x

• For a predicting function f (x ;θ), we would like to predict the mean of y

• Neural network can represent any function f from a very wide range of functions

• Range of function is limited by features like continuity, boundedness, etc.

• Cost function becomes functional rather than a function

• Need to solve the optimization problem f ∗ = arg min
f

EX ,Y∼pdata‖y − f (x)‖2

• Using calculus of variation, it gives f ∗(x) = EY∼pdata(y |x)[y]

• Mean of y for each value of x

• Using a different cost function f ∗ = arg min
f

EX ,Y∼pdata‖y − f (x)‖1

• Median of y for each value of x

IIT Patna 20

Learning conditional statistics

• Instead of learning the whole distribution p(y |x ;θ), we want to learn one conditional
statistics of y given x

• For a predicting function f (x ;θ), we would like to predict the mean of y

• Neural network can represent any function f from a very wide range of functions

• Range of function is limited by features like continuity, boundedness, etc.

• Cost function becomes functional rather than a function

• Need to solve the optimization problem f ∗ = arg min
f

EX ,Y∼pdata‖y − f (x)‖2

• Using calculus of variation, it gives f ∗(x) = EY∼pdata(y |x)[y]

• Mean of y for each value of x

• Using a different cost function f ∗ = arg min
f

EX ,Y∼pdata‖y − f (x)‖1
• Median of y for each value of x

IIT Patna 21

Calculus of variation

• Let us consider functional J[y] =

∫ x2

x1

L(x , y(x), y ′(x)) dx

• Let J[y] has local minima at f . Therefore, we can say J[f] ≤ J[f + εη]

• η is an arbitrary function of x such that η(x1) = η(x2) = 0 and differentiable

• Let us assume Φ(ε) = J[f + εη]. Therefore, Φ′(0) ≡ dΦ

dε

∣∣∣∣
ε=0

=

∫ x2

x1

dL

dε

∣∣∣∣
ε=0

dx = 0

• Now we can say,
dL

dε
=
∂L

∂y

dy

dε
+
∂L

∂y ′
dy ′

dε

• As we have y = f + εη and y ′ = f ′ + εη′, therefore,
dL

dε
=
∂L

∂y
η +

∂L

∂y ′
η′

IIT Patna 21

Calculus of variation

• Let us consider functional J[y] =

∫ x2

x1

L(x , y(x), y ′(x)) dx

• Let J[y] has local minima at f . Therefore, we can say J[f] ≤ J[f + εη]

• η is an arbitrary function of x such that η(x1) = η(x2) = 0 and differentiable

• Let us assume Φ(ε) = J[f + εη]. Therefore, Φ′(0) ≡ dΦ

dε

∣∣∣∣
ε=0

=

∫ x2

x1

dL

dε

∣∣∣∣
ε=0

dx = 0

• Now we can say,
dL

dε
=
∂L

∂y

dy

dε
+
∂L

∂y ′
dy ′

dε

• As we have y = f + εη and y ′ = f ′ + εη′, therefore,
dL

dε
=
∂L

∂y
η +

∂L

∂y ′
η′

IIT Patna 21

Calculus of variation

• Let us consider functional J[y] =

∫ x2

x1

L(x , y(x), y ′(x)) dx

• Let J[y] has local minima at f . Therefore, we can say J[f] ≤ J[f + εη]

• η is an arbitrary function of x such that η(x1) = η(x2) = 0 and differentiable

• Let us assume Φ(ε) = J[f + εη]. Therefore, Φ′(0) ≡ dΦ

dε

∣∣∣∣
ε=0

=

∫ x2

x1

dL

dε

∣∣∣∣
ε=0

dx

= 0

• Now we can say,
dL

dε
=
∂L

∂y

dy

dε
+
∂L

∂y ′
dy ′

dε

• As we have y = f + εη and y ′ = f ′ + εη′, therefore,
dL

dε
=
∂L

∂y
η +

∂L

∂y ′
η′

IIT Patna 21

Calculus of variation

• Let us consider functional J[y] =

∫ x2

x1

L(x , y(x), y ′(x)) dx

• Let J[y] has local minima at f . Therefore, we can say J[f] ≤ J[f + εη]

• η is an arbitrary function of x such that η(x1) = η(x2) = 0 and differentiable

• Let us assume Φ(ε) = J[f + εη]. Therefore, Φ′(0) ≡ dΦ

dε

∣∣∣∣
ε=0

=

∫ x2

x1

dL

dε

∣∣∣∣
ε=0

dx = 0

• Now we can say,
dL

dε
=
∂L

∂y

dy

dε
+
∂L

∂y ′
dy ′

dε

• As we have y = f + εη and y ′ = f ′ + εη′, therefore,
dL

dε
=
∂L

∂y
η +

∂L

∂y ′
η′

IIT Patna 21

Calculus of variation

• Let us consider functional J[y] =

∫ x2

x1

L(x , y(x), y ′(x)) dx

• Let J[y] has local minima at f . Therefore, we can say J[f] ≤ J[f + εη]

• η is an arbitrary function of x such that η(x1) = η(x2) = 0 and differentiable

• Let us assume Φ(ε) = J[f + εη]. Therefore, Φ′(0) ≡ dΦ

dε

∣∣∣∣
ε=0

=

∫ x2

x1

dL

dε

∣∣∣∣
ε=0

dx = 0

• Now we can say,
dL

dε
=
∂L

∂y

dy

dε
+
∂L

∂y ′
dy ′

dε

• As we have y = f + εη and y ′ = f ′ + εη′, therefore,
dL

dε
=
∂L

∂y
η +

∂L

∂y ′
η′

IIT Patna 21

Calculus of variation

• Let us consider functional J[y] =

∫ x2

x1

L(x , y(x), y ′(x)) dx

• Let J[y] has local minima at f . Therefore, we can say J[f] ≤ J[f + εη]

• η is an arbitrary function of x such that η(x1) = η(x2) = 0 and differentiable

• Let us assume Φ(ε) = J[f + εη]. Therefore, Φ′(0) ≡ dΦ

dε

∣∣∣∣
ε=0

=

∫ x2

x1

dL

dε

∣∣∣∣
ε=0

dx = 0

• Now we can say,
dL

dε
=
∂L

∂y

dy

dε
+
∂L

∂y ′
dy ′

dε

• As we have y = f + εη and y ′ = f ′ + εη′, therefore,
dL

dε

=
∂L

∂y
η +

∂L

∂y ′
η′

IIT Patna 21

Calculus of variation

• Let us consider functional J[y] =

∫ x2

x1

L(x , y(x), y ′(x)) dx

• Let J[y] has local minima at f . Therefore, we can say J[f] ≤ J[f + εη]

• η is an arbitrary function of x such that η(x1) = η(x2) = 0 and differentiable

• Let us assume Φ(ε) = J[f + εη]. Therefore, Φ′(0) ≡ dΦ

dε

∣∣∣∣
ε=0

=

∫ x2

x1

dL

dε

∣∣∣∣
ε=0

dx = 0

• Now we can say,
dL

dε
=
∂L

∂y

dy

dε
+
∂L

∂y ′
dy ′

dε

• As we have y = f + εη and y ′ = f ′ + εη′, therefore,
dL

dε
=
∂L

∂y
η +

∂L

∂y ′
η′

IIT Patna 22

Calculus of variation

• Now we have∫ x2

x1

dL

dε

∣∣∣∣
ε=0

dx =

∫ x2

x1

(
∂L

∂f
η +

∂L

∂f ′
η′
)

dx

=

∫ x2

x1

(
∂L

∂f
η − η d

dx

∂L

∂f ′

)
dx +

∂L

∂f ′
η

∣∣∣∣x2
x1

• Hence ∫ x2

x1

η

(
∂L

∂f
− d

dx

∂L

∂f ′

)
dx = 0

• Euler-Lagrange equation
∂L

∂f
− d

dx

∂L

∂f ′
= 0

IIT Patna 22

Calculus of variation

• Now we have∫ x2

x1

dL

dε

∣∣∣∣
ε=0

dx =

∫ x2

x1

(
∂L

∂f
η +

∂L

∂f ′
η′
)

dx =

∫ x2

x1

(
∂L

∂f
η − η d

dx

∂L

∂f ′

)
dx +

∂L

∂f ′
η

∣∣∣∣x2
x1

• Hence ∫ x2

x1

η

(
∂L

∂f
− d

dx

∂L

∂f ′

)
dx = 0

• Euler-Lagrange equation
∂L

∂f
− d

dx

∂L

∂f ′
= 0

IIT Patna 22

Calculus of variation

• Now we have∫ x2

x1

dL

dε

∣∣∣∣
ε=0

dx =

∫ x2

x1

(
∂L

∂f
η +

∂L

∂f ′
η′
)

dx =

∫ x2

x1

(
∂L

∂f
η − η d

dx

∂L

∂f ′

)
dx +

∂L

∂f ′
η

∣∣∣∣x2
x1

• Hence ∫ x2

x1

η

(
∂L

∂f
− d

dx

∂L

∂f ′

)
dx = 0

• Euler-Lagrange equation
∂L

∂f
− d

dx

∂L

∂f ′
= 0

IIT Patna 22

Calculus of variation

• Now we have∫ x2

x1

dL

dε

∣∣∣∣
ε=0

dx =

∫ x2

x1

(
∂L

∂f
η +

∂L

∂f ′
η′
)

dx =

∫ x2

x1

(
∂L

∂f
η − η d

dx

∂L

∂f ′

)
dx +

∂L

∂f ′
η

∣∣∣∣x2
x1

• Hence ∫ x2

x1

η

(
∂L

∂f
− d

dx

∂L

∂f ′

)
dx = 0

• Euler-Lagrange equation
∂L

∂f
− d

dx

∂L

∂f ′
= 0

IIT Patna 23

Example

• Let us consider distance between two points A[y] =

∫ x2

x1

√
1 + [y ′(x)]2 dx

• y ′(x) =
dy

dx
, y1 = f (x1) , y2 = f (x2)

• We have,
∂L

∂f
− d

dx

∂L

∂f ′
= 0 where L =

√
1 + [f ′(x)]2

• As f does not appear explicitly in L, hence
d

dx

∂L

∂f ′
= 0

• Now we have,
d

dx

f ′(x)√
1 + [f ′(x)]2

= 0

IIT Patna 23

Example

• Let us consider distance between two points A[y] =

∫ x2

x1

√
1 + [y ′(x)]2 dx

• y ′(x) =
dy

dx
, y1 = f (x1) , y2 = f (x2)

• We have,
∂L

∂f
− d

dx

∂L

∂f ′
= 0 where L =

√
1 + [f ′(x)]2

• As f does not appear explicitly in L, hence
d

dx

∂L

∂f ′
= 0

• Now we have,
d

dx

f ′(x)√
1 + [f ′(x)]2

= 0

IIT Patna 23

Example

• Let us consider distance between two points A[y] =

∫ x2

x1

√
1 + [y ′(x)]2 dx

• y ′(x) =
dy

dx
, y1 = f (x1) , y2 = f (x2)

• We have,
∂L

∂f
− d

dx

∂L

∂f ′
= 0 where L =

√
1 + [f ′(x)]2

• As f does not appear explicitly in L, hence
d

dx

∂L

∂f ′
= 0

• Now we have,
d

dx

f ′(x)√
1 + [f ′(x)]2

= 0

IIT Patna 23

Example

• Let us consider distance between two points A[y] =

∫ x2

x1

√
1 + [y ′(x)]2 dx

• y ′(x) =
dy

dx
, y1 = f (x1) , y2 = f (x2)

• We have,
∂L

∂f
− d

dx

∂L

∂f ′
= 0 where L =

√
1 + [f ′(x)]2

• As f does not appear explicitly in L, hence
d

dx

∂L

∂f ′
= 0

• Now we have,
d

dx

f ′(x)√
1 + [f ′(x)]2

= 0

IIT Patna 24

Example

• Taking derivative we get
d2f

dx2
· 1[√

1 + [f ′(x)]2
]3 = 0

• Therefore we have,
d2f

dx2
= 0

• Hence we have f (x) = mx + b with m =
y2 − y1
x2 − x1

and b =
x2y1 − x1y2
x2 − x1

IIT Patna 24

Example

• Taking derivative we get
d2f

dx2
· 1[√

1 + [f ′(x)]2
]3 = 0

• Therefore we have,
d2f

dx2
= 0

• Hence we have f (x) = mx + b with m =
y2 − y1
x2 − x1

and b =
x2y1 − x1y2
x2 − x1

IIT Patna 24

Example

• Taking derivative we get
d2f

dx2
· 1[√

1 + [f ′(x)]2
]3 = 0

• Therefore we have,
d2f

dx2
= 0

• Hence we have f (x) = mx + b with m =
y2 − y1
x2 − x1

and b =
x2y1 − x1y2
x2 − x1

IIT Patna 25

Output units

• Choice of cost function is directly related with the choice of output function

• In most cases cost function is determined by cross entropy between data and model
distribution

• Any kind of output unit can be used as hidden unit

IIT Patna 26

Linear units

• Suited for Gaussian output distribution

• Given features h, linear output unit produces ŷ = W Th + b

• This can be treated as conditional probability p(y |x) = N (y ; ŷ , I)

• Maximizing log-likelihood is equivalent to minimizing mean square error

IIT Patna 27

Sigmoid unit

• Mostly suited for binary classification problem that is Bernoulli output distribution

• The neural networks need to predict p(y = 1|x)

• If linear unit has been chosen, p(y = 1|x) = max
{

0,min{1,W Th + b}
}

• Gradient?

• Model should have strong gradient whenever the answer is wrong

• Let us assume unnormalized log probability is linear with z = W Th + b

• Therefore, log P̃(y) = yz ⇒ P̃(y) = exp(yz)⇒ P(y) =
exp(yz)∑

y ′∈{0,1} exp(y ′z)

• It can be written as P(y) = σ((2y − 1)z))

• The loss function for maximum likelihood is

J(θ) = − logP(y |x) = − log σ((2y − 1)z) = ζ((1− 2y)z)

IIT Patna 28

Softmax unit

• Similar to sigmoid. Mostly suited for multinoulli distribution

• We need to predict a vector ŷ such that ŷi = P(Y = i |x)

• A linear layer predicts unnormalized probabilities z = W Th+b that is zi = log P̃(y =
i |x)

• Formally, softmax(z)i =
exp zi∑
j exp(zj)

• Log in log-likelihood can undo exp log softmax(z)i = zi − log
∑
j

exp(zj)

• Does it saturate?
• What about incorrect prediction?

• Invariant to addition of some scalar to all input variables ie.

softmax(z) = softmax(z + c)

IIT Patna 29

Hidden units

• Active area of research and does not have good guiding theoretical principle

• Usually rectified linear unit (ReLU) is chosen in most of the cases

• Design process consists of trial and error, then the suitable one is chosen

• Some of the activation functions are not differentiable (eg. ReLU)

• Still gradient descent performs well
• Neural network does not converge to local minima but reduces the value of cost function

to a very small value

IIT Patna 30

Generalization of ReLU

• ReLU is defined as g(z) = max{0, z}
• Using non-zero slope, hi = g(z ,α)i = max(0, zi) + αi min(0, zi)

• Absolute value rectification will make αi = −1 and g(z) = |z |
• Leaky ReLU assumes very small values for αi

• Parametric ReLU tries to learn αi parameters

• Maxout unit g(z)i = max
j∈G(i)

zj

• Suitable for learning piecewise linear function

IIT Patna 31

Logistic sigmoid & hyperbolic tangent

• Logistic sigmoid g(z) = σ(z)

• Hyperbolic tangent g(z) = tanh(z)

• tanh(z) = 2σ(2z)− 1

• Widespread saturation of sigmoidal unit is an issue for gradient based learning

• Usually discouraged to use as hidden units

• Usually, hyperbolic tangent function performs better where sigmoidal function must
be used

• Behaves linearly at 0
• Sigmoidal activation function are more common in settings other than feedforward net-

work

IIT Patna 32

Other hidden units

• Differentiable functions are usually preferred

• Activation function h = cos(Wx + b) performs well for MNIST data set

• Sometimes no activation function helps in reducing the number of parameters

• Radial Basis Function - φ(x , c) = φ(‖x − c‖)
• Gaussian - exp(−(εr)2)

• Softplus - g(x) = ζ(x) = log(1 + exp(x))

• Hard tanh - g(x) = max(−1,min(1, x))

• Hidden unit design is an active area of research

IIT Patna 33

Architecture design

• Structure of neural network (chain based architecture)

• Number of layers
• Number of units in each layer
• Connectivity of those units

• Single hidden layer is sufficient to fit the training data

• Often deeper networks are preferred

• Fewer number of units
• Fewer number of parameters
• Difficult to optimize

IIT Patna 34

Back propagation

• In a feedforward network, an input x is read and produces an output ŷ

• This is forward propagation

• During training forward propagation continues until it produces cost J(θ)

• Back-propagation algorithm allows the information to flow backward in the network
to compute the gradient

• Computation of analytical expression for gradient is easy

• We need to find out gradient of the cost function with respect to the parameters ie.
∇θJ(θ)

X W b

U(1) U(2)

H

matmul

+

relu

IIT Patna 35

Computational graph

IIT Patna 36

Chain rule of calculus

• Back-propagation algorithm heavily depends on it

• Let x be a real number and y = g(x) and z = f (g(x)) = f (y)

• Chain rule says
dz

dx
=

dz

dy

dy

dx
• This can be generalized: Let x ∈ Rm, y ∈ Rn, g : Rm → Rn and f : R → R and
y = g(x) and z = f (y)

∂z

∂xi
=
∑
j

∂z

∂yj

∂yj
∂xi

• In vector notation it will be where ∂y
∂x

is the n ×m Jacobian matrix of g

∇xz =

(
∂y

∂x

)T

∇yz

IIT Patna 37

Application of chain rule

• Let us consider u(n) be the loss quantity. Need to find out the gradient for this.

• Let u(1) to u(ni) are the inputs

• Therefore, we wish to compute ∂u(n)

∂u(i)
where i = 1, 2, . . . , ni

• Let us assume the nodes are ordered so that we can compute one after another

• Each u(i) is associated with an operation f (i) ie. u(i) = f (A(i))

IIT Patna 38

Algorithm for forward pass

for i = 1, . . . , ni do

u(i) ← xi

end for

for i = ni + 1, . . . , n do

A(i) ← {u(j)|j ∈ Pa(u(i))}
u(i) ← f (i)(A(i))

end for

return u(n)

IIT Patna 39

Algorithm for backward pass

grad table[u(i)] ← 1

for j = n − 1 down to 1 do

grad table[u(j)] ←
∑

i :j∈Pa(u(i))

grad table[u(i)]
∂u(i)

∂u(j)

end for

return grad table

w

x

y

z

f

f

f

IIT Patna 40

Computational graph & subexpression

• We have x = f (w), y = f (x), z = f (y)

∂z

∂w

=
∂z

∂y

∂y

∂x

∂x

∂w

= f ′(y)f ′(x)f ′(w)

= f ′(f (f (w)))f ′(f (w))f ′(w)

IIT Patna 41

Forward propagation in MLP

• Input

• h(0) = x

• Computation for each layer k = 1, . . . , l

• a(k) = b(k) + W (k)h(k−1)

• h(k) = f (a(k))

• Computation of output and loss function

• ŷ = h(l)

• J = L(ŷ , y) + λΩ(θ)

IIT Patna 42

Backward computation in MLP

• Compute gradient at the output

• g ← ∇ŷJ = ∇ŷL(ŷ , y)

• Convert the gradient at output layer into gradient of pre-activation

• g ← ∇a(k)J = g � f ′(a(k))

• Compute gradient on weights and biases

• ∇b(k)J = g + λ∇b(k)Ω(θ)
• ∇W (k)J = gh(k−1)T + λ∇W (k)Ω(θ)

• Propagate the gradients wrt the next lower level activation

• g ← ∇h(k−1)J = W (k)Tg

IIT Patna 43

Computation of derivatives

• Takes a computational graph and a set of numerical values for the inputs, then return
a set of numerical values

• Symbol-to-number differentiation
• Torch, Caffe

• Takes computational graph and add additional nodes to the graph that provide sym-
bolic description of derivative

• Symbol-to-symbol derivative
• Theano, TensorFlow

w

x

y

z

f

f

f

w

x

y

z

f

f

f

dx
dw

dy
dx

dz
dy

dz
dw

dz
dx

f ′

f ′

f ′

×

×

IIT Patna 44

Example

IIT Patna 45

Back propagation

f’ f

s’ s1 +

IIT Patna 46

Back propagation

f’ fg’ gx

IIT Patna 47

Back propagation

f’ fg’ gx

g’(x) g f’(g(x)) fx

IIT Patna 48

Back propagation

1

1
+

f1’(x)

f2’(x)

f1

f2

x f1(x)+f2(x)

IIT Patna 49

Back propagation

1

1
+

f1’(x)

f2’(x)

f1

f2

1

f1’(x)+f2’(x)

x1

x2

h1

h2

o1

o2

1 1

w1

w2

w3

w4

b1

b2

w5

w6

w7

w8

b3

b4

IIT Patna 50

Example

x1

.05

x2

.10

h1

h2

o1

.01

o2

.99

1 1

w1 : .15

w2 : .20

w3 : .25

w4 : .30

b1 : .35

b2 : .35

w5 : .40

w6 : .45

w7 : .50

w8 : .55

b3 : .60

b4 : .60

IIT Patna 51

Example

