Introduction to Deep Learning

Arijit Mondal

Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

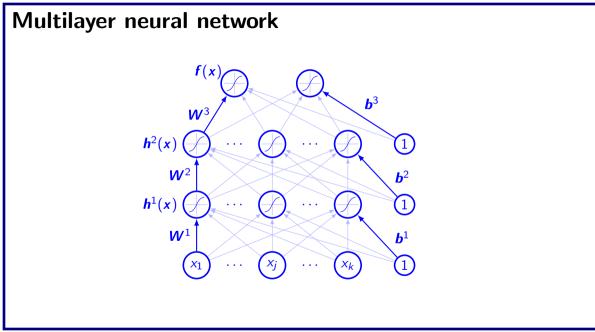
• Also known as feedforward neural network or multilayer perceptron

- Also known as feedforward neural network or multilayer perceptron
- Goal of such network is to approximate some function f*
 - For classifier, **x** is mapped to category **y** ie. $y = f^*(x)$
 - A feedforward network maps $y = f(x; \theta)$ and learns θ for which the result is the best function approximation

- Also known as feedforward neural network or multilayer perceptron
- Goal of such network is to approximate some function f*
 - For classifier, **x** is mapped to category **y** ie. $y = f^*(x)$
 - A feedforward network maps $y = f(x; \theta)$ and learns θ for which the result is the best function approximation
- Information flows from input to intermediate to output
 - No feedback, directed acyclic graph
 - For general model, it can have feedback and known as recurrent neural network

- Also known as feedforward neural network or multilayer perceptron
- Goal of such network is to approximate some function f*
 - For classifier, **x** is mapped to category **y** ie. $y = f^*(x)$
 - A feedforward network maps $y = f(x; \theta)$ and learns θ for which the result is the best function approximation
- Information flows from input to intermediate to output
 - No feedback, directed acyclic graph
 - For general model, it can have feedback and known as recurrent neural network
- Typically it represents composition of functions
 - Three functions $f^{(1)}, f^{(2)}, f^{(3)}$ are connected in chain
 - Overall function realized is $f(x) = f^{(3)}(f^{(2)}(f^{(1)}(x)))$
 - The number of layers provides the depth of the model

- Also known as feedforward neural network or multilayer perceptron
- Goal of such network is to approximate some function f*
 - For classifier, **x** is mapped to category **y** ie. $y = f^*(x)$
 - A feedforward network maps $y = f(x; \theta)$ and learns θ for which the result is the best function approximation
- Information flows from input to intermediate to output
 - No feedback, directed acyclic graph
 - For general model, it can have feedback and known as recurrent neural network
- Typically it represents composition of functions
 - Three functions $f^{(1)}, f^{(2)}, f^{(3)}$ are connected in chain
 - Overall function realized is $f(x) = f^{(3)}(f^{(2)}(f^{(1)}(x)))$
 - The number of layers provides the depth of the model
- Goal of NN is not to accurately model brain!



Issues with linear FFN

- Fit well for linear and logistic regression
- Convex optimization technique may be used
- Capacity of such function is limited
- Model cannot understand interaction between any two variables

• Transform x (input) into $\phi(x)$ where ϕ is nonlinear transformation

- Transform x (input) into $\phi(x)$ where ϕ is nonlinear transformation
- How to choose ϕ ?

- Transform x (input) into $\phi(x)$ where ϕ is nonlinear transformation
- How to choose ϕ ?
 - Use a very generic ϕ of high dimension
 - Enough capacity but may result in poor generalization
 - Very generic feature mapping usually based on principle of local smoothness
 - Do not encode enough prior information

- Transform x (input) into $\phi(x)$ where ϕ is nonlinear transformation
- How to choose ϕ ?
 - Use a very generic ϕ of high dimension
 - Enough capacity but may result in poor generalization
 - Very generic feature mapping usually based on principle of local smoothness
 - Do not encode enough prior information
 - Manually design ϕ
 - Require domain knowledge

- Transform x (input) into $\phi(x)$ where ϕ is nonlinear transformation
- How to choose ϕ ?
 - Use a very generic ϕ of high dimension
 - Enough capacity but may result in poor generalization
 - Very generic feature mapping usually based on principle of local smoothness
 - Do not encode enough prior information
 - Manually design ϕ
 - Require domain knowledge
 - Strategy of deep learning is to learn ϕ

Goal of deep learning

- We have a model $y = f(x; \theta, w) = \phi(x; \theta)^T w$
- We use $\boldsymbol{\theta}$ to learn ϕ
- w and ϕ determines the output. ϕ defines the hidden layer
- It looses the convexity of the training problem but benefits a lot
- Representation is parameterized as $\phi(\mathbf{x}, \boldsymbol{\theta})$
 - $\boldsymbol{\theta}$ can be determined by solving optimization problem
- Advantages
 - ϕ can be very generic
 - Human practitioner can encode their knowledge to designing $\phi(\mathbf{x}; \boldsymbol{\theta})$

Design issues of feedforward network

- Choice of optimizer
- Cost function
- The form of output unit
- Choice of activation function
- Design of architecture number of layers, number of units in each layer
- Computation of gradients

Example

- Let us choose XOR function
- Target function is $y = f^*(x)$ and our model provides $y = f(x; \theta)$
- Learning algorithm will choose the parameters $\boldsymbol{\theta}$ to make f close to f^*

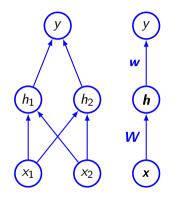
Example

- Let us choose XOR function
- Target function is $y = f^*(x)$ and our model provides $y = f(x; \theta)$
- Learning algorithm will choose the parameters θ to make f close to f^*
- Target is to fit output for $\mathbf{X} = \{[0,0]^T, [0,1]^T, [1,0]^T, [1,1]^T\}$
- This can be treated as regression problem and MSE error can be chosen as loss function
- MSE loss function $J(\theta) = \frac{1}{4} \sum_{x \in X} (f^*(x) f(x; \theta))^2$
- We need to choose $f(x; \theta)$ where θ depends on w and b
- Let us consider a linear model $f(x; w, b) = x^T w + b$

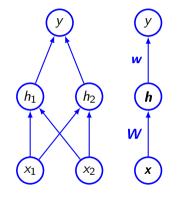
Example

- Let us choose XOR function
- Target function is $y = f^*(x)$ and our model provides $y = f(x; \theta)$
- Learning algorithm will choose the parameters θ to make f close to f^*
- Target is to fit output for $X = \{[0,0]^T, [0,1]^T, [1,0]^T, [1,1]^T\}$
- This can be treated as regression problem and MSE error can be chosen as loss function
- MSE loss function $J(\theta) = \frac{1}{4} \sum_{x \in \mathbf{X}} (f^*(x) f(x; \theta))^2$
- We need to choose $f(x; \theta)$ where θ depends on w and b
- Let us consider a linear model $f(x; w, b) = x^T w + b$
- Solving these, we get w = 0 and $b = \frac{1}{2}$

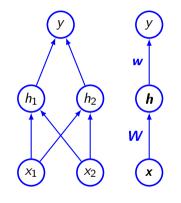
• Let us assume that the hidden unit h computes $f^{(1)}(x; W, c)$



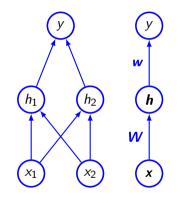
- Let us assume that the hidden unit h computes $f^{(1)}(x; W, c)$
- In the next layer $y = f^{(2)}(h; w, b)$ is computed



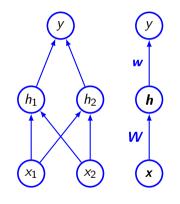
- Let us assume that the hidden unit **h** computes $f^{(1)}(x; W, c)$
- In the next layer $y = f^{(2)}(h; w, b)$ is computed
- Complete model $f(x; W, c, w, b) = f^{(2)}(f^{(1)}(x))$



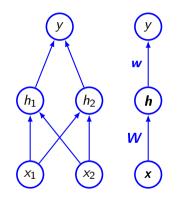
- Let us assume that the hidden unit **h** computes $f^{(1)}(x; W, c)$
- In the next layer $y = f^{(2)}(h; w, b)$ is computed
- Complete model $f(x; W, c, w, b) = f^{(2)}(f^{(1)}(x))$
- Suppose $f^{(1)}(x) = W^T x$ and $f^2(h) = h^T w$



- Let us assume that the hidden unit *h* computes $f^{(1)}(x; W, c)$
- In the next layer $y = f^{(2)}(h; w, b)$ is computed
- Complete model $f(x; W, c, w, b) = f^{(2)}(f^{(1)}(x))$
- Suppose $f^{(1)}(x) = W^T x$ and $f^2(h) = h^T w$ then $f(x) = w^T W^T x$



- Let us assume that the hidden unit h computes $f^{(1)}(x; W, c)$
- In the next layer $y = f^{(2)}(h; w, b)$ is computed
- Complete model $f(x; W, c, w, b) = f^{(2)}(f^{(1)}(x))$
- Suppose $f^{(1)}(x) = W^T x$ and $f^2(h) = h^T w$ then $f(x) = w^T W^T x$
- We need to have nonlinear function to describe the features
- Usually NN have affine transformation of learned parameters followed by nonlinear activation function
- Let us use $h = g(W^T x + c)$
- Let us use ReLU as activation function g(z) = max{0, z}
- g is chosen element wise $h_i = g(x^T W_{:,i} + c_i)$



• Complete network is $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$

- Complete network is $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows

•
$$\boldsymbol{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \boldsymbol{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}, \boldsymbol{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \boldsymbol{b} = 0$$

- Complete network is $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows

•
$$\boldsymbol{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\boldsymbol{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $\boldsymbol{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, $\boldsymbol{b} = 0$

- Complete network is $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows

•
$$\boldsymbol{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\boldsymbol{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $\boldsymbol{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, $b = 0$

•
$$\boldsymbol{X} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$

- Complete network is $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows

•
$$\boldsymbol{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\boldsymbol{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $\boldsymbol{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, $b = 0$

• Now we have
•
$$\boldsymbol{X} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\boldsymbol{X}\boldsymbol{W}$

- Complete network is $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows

•
$$\boldsymbol{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\boldsymbol{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $\boldsymbol{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, $\boldsymbol{b} = 0$

•
$$\boldsymbol{X} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}, \ \boldsymbol{X} \boldsymbol{W} = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$$

- Complete network is $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows

•
$$\boldsymbol{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\boldsymbol{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $\boldsymbol{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, $\boldsymbol{b} = 0$

•
$$\boldsymbol{X} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\boldsymbol{X} \boldsymbol{W} = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$, add bias \boldsymbol{c}

- Complete network is $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows

•
$$\boldsymbol{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\boldsymbol{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $\boldsymbol{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, $\boldsymbol{b} = 0$

•
$$\mathbf{X} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\mathbf{XW} = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$, add bias $\mathbf{c} \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$

- Complete network is $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows

•
$$\boldsymbol{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\boldsymbol{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $\boldsymbol{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, $b = 0$

•
$$\mathbf{X} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\mathbf{XW} = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$, add bias $\mathbf{c} \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$, apply \mathbf{h}

- Complete network is $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows

•
$$\boldsymbol{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\boldsymbol{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $\boldsymbol{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, $b = 0$

•
$$\mathbf{X} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\mathbf{XW} = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$, add bias $\mathbf{c} \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$, apply $\mathbf{h} \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$,

- Complete network is $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows

•
$$\boldsymbol{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\boldsymbol{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $\boldsymbol{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, $\boldsymbol{b} = 0$

• Now we have

•
$$\mathbf{X} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\mathbf{XW} = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 2 \\ 2 & 2 \end{bmatrix}$, add bias $\mathbf{c} \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$, apply $\mathbf{h} \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$, multiply

with w

Simple feedforward network with hidden layer

- Complete network is $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows

•
$$\boldsymbol{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\boldsymbol{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $\boldsymbol{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, $\boldsymbol{b} = 0$

• Now we have

•
$$\mathbf{X} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\mathbf{XW} = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$, add bias $\mathbf{c} \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$, apply $\mathbf{h} \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$, multiply with $\mathbf{w} \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$

Gradient based learning

- Similar to machine learning tasks, gradient descent based learning is used
 - Need to specify optimization procedure, cost function and model family
- For NN, model is nonlinear and function becomes nonconvex
 - Usually trained by iterative, gradient based optimizer
- Solved by using gradient descent or stochastic gradient descent (SGD)

Gradient descent

- Suppose we have a function y = f(x), derivative (slope at point x) of it is $f'(x) = \frac{dy}{dx}$
- A small change in the input can cause output to move to a value given by $f(x + \epsilon) \approx f(x) + \epsilon f'(x)$
- We need to take a jump so that *y* reduces (assuming minimization problem)
- We can say that $f(x \epsilon \operatorname{sign}(f'(x)))$ is less than f(x)
- For multiple inputs partial derivatives are used ie. $\frac{\partial}{\partial x_i} f(x)$
- Gradient vector is represented as $\nabla_x f(x)$
- Gradient descent proposes a new point as x' = x − ε∇_xf(x) where ε is the learning rate

Stochastic gradient descent

- Large training set are necessary for good generalization
- Typical cost function used for optimization is $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} L(x^{(i)}, y^{(i)}, \theta)$

• Gradient descent requires computing of $\nabla_{\theta} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(x^{(i)}, y^{(i)}, \theta)$

Stochastic gradient descent

- Large training set are necessary for good generalization
- Typical cost function used for optimization is $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} L(x^{(i)}, y^{(i)}, \theta)$

• Gradient descent requires computing of $\nabla_{\theta} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(x^{(i)}, y^{(i)}, \theta)$

• Computation cost is O(m)

Stochastic gradient descent

- Large training set are necessary for good generalization
- Typical cost function used for optimization is $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} L(x^{(i)}, y^{(i)}, \theta)$

• Gradient descent requires computing of $\nabla_{\theta} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(x^{(i)}, y^{(i)}, \theta)$

- Computation cost is O(m)
- For SGD, gradient is an expectation estimated from a small sample known as minibatch (B = {x⁽¹⁾,...,x^(m')})
- Estimated gradient is $\boldsymbol{g} = \frac{1}{m'} \sum_{i=1}^{m'} \nabla_{\boldsymbol{\theta}} L(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)}, \boldsymbol{\theta})$
- New point will be $\theta = \theta \epsilon g$

Cost function

- Similar to other parametric model like linear models
- Parametric model defines distribution $p(y|x; \theta)$
- Principle of maximum likelihood is used (cross entropy between training data and model prediction)
- Instead of predicting the whole distribution of y, some statistic of y conditioned on x is predicted
- It can also contain regularization term

- Consider a set of *m* examples $\mathbb{X} = \{x^{(1)}, \dots, x^{(m)}\}\$ drawn independently from the true but unknown data generating distribution $p_{data}(x)$
- Let $p_{model}(x; \theta)$ be a parametric family of probability distribution

- Consider a set of *m* examples $\mathbb{X} = \{x^{(1)}, \dots, x^{(m)}\}\$ drawn independently from the true but unknown data generating distribution $p_{data}(x)$
- Let $p_{model}(x; \theta)$ be a parametric family of probability distribution
- Maximum likelihood estimator for θ is defined as

$$oldsymbol{ heta}_{ML} = rg\max_{oldsymbol{ heta}} p_{model}(\mathbb{X};oldsymbol{ heta}) = rg\max_{oldsymbol{ heta}} \prod_{i=1}^m p_{model}(oldsymbol{x}^{(i)};oldsymbol{ heta})$$

• Consider a set of *m* examples $\mathbb{X} = \{x^{(1)}, \dots, x^{(m)}\}\$ drawn independently from the true but unknown data generating distribution $p_{data}(x)$

i=1

- Let $p_{model}(x; \theta)$ be a parametric family of probability distribution
- Maximum likelihood estimator for θ is defined as

$$\theta_{ML} = \arg \max_{\theta} p_{model}(X; \theta) = \arg \max_{\theta} \prod_{i=1}^{m} p_{model}(x^{(i)}; \theta)$$

It can be written as $\theta_{ML} = \arg \max_{\theta} \sum_{i=1}^{m} \log p_{model}(x^{(i)}; \theta)$

- Consider a set of *m* examples $\mathbb{X} = \{x^{(1)}, \dots, x^{(m)}\}\$ drawn independently from the true but unknown data generating distribution $p_{data}(x)$
- Let $p_{model}(x; \theta)$ be a parametric family of probability distribution
- Maximum likelihood estimator for θ is defined as

$$oldsymbol{ heta}_{\textit{ML}} = rg\max_{oldsymbol{ heta}} p_{\textit{model}}(\mathbb{X};oldsymbol{ heta}) = rg\max_{oldsymbol{ heta}} \prod_{i=1} p_{\textit{model}}(oldsymbol{x}^{(i)};oldsymbol{ heta})$$

• It can be written as
$$oldsymbol{ heta}_{ML} = rg\max_{oldsymbol{ heta}} \sum_{i=1} \log p_{model}(oldsymbol{x}^{(i)};oldsymbol{ heta})$$

• By dividing *m* we get $\theta_{ML} = \arg \max_{\theta} \mathbb{E}_{\boldsymbol{X} \sim \hat{p}_{data}} \log p_{model}(x; \theta)$

- Consider a set of *m* examples $\mathbb{X} = \{x^{(1)}, \dots, x^{(m)}\}\$ drawn independently from the true but unknown data generating distribution $p_{data}(x)$
- Let $p_{model}(x; \theta)$ be a parametric family of probability distribution
- Maximum likelihood estimator for $\boldsymbol{\theta}$ is defined as

$$oldsymbol{ heta}_{ML} = rg\max_{oldsymbol{ heta}} p_{model}(\mathbb{X};oldsymbol{ heta}) = rg\max_{oldsymbol{ heta}} \prod_{i=1} p_{model}(oldsymbol{x}^{(i)};oldsymbol{ heta})$$

• It can be written as
$$oldsymbol{ heta}_{ML} = rg\max_{oldsymbol{ heta}} \sum_{i=1} \log p_{model}(oldsymbol{x}^{(i)};oldsymbol{ heta})$$

- By dividing *m* we get $\theta_{ML} = \arg \max_{a} \mathbb{E}_{\boldsymbol{X} \sim \hat{p}_{data}} \log p_{model}(\boldsymbol{x}; \boldsymbol{\theta})$
- We need to minimize $-\arg\max_{\theta} \mathbb{E}_{\boldsymbol{X} \sim \hat{p}_{data}} \log p_{model}(\boldsymbol{x}; \boldsymbol{\theta})$

Conditional log-likelihood

- In most of the supervised learning we estimate $P(y|x; \theta)$
- If X be the all inputs and Y be observed targets then conditional maximum likelihood estimator is θ_{ML} = arg max P(Y|X; θ)
- If the examples are assumed to be i.i.d then we can say

$$oldsymbol{ heta}_{ML} = rg\max_{oldsymbol{ heta}} \sum_{i=1}^m \log P(oldsymbol{y}^{(i)} | oldsymbol{x}^{(i)}; oldsymbol{ heta})$$

- Instead of producing single prediction \hat{y} for a given x, we assume the model produces conditional distribution p(y|x)
- For infinitely large training set, we can observe multiple examples having the same x but different values of y
- Goal is to fit the distribution p(y|x)

- Instead of producing single prediction \hat{y} for a given x, we assume the model produces conditional distribution p(y|x)
- For infinitely large training set, we can observe multiple examples having the same x but different values of y
- Goal is to fit the distribution p(y|x)
- Let us assume, $p(y|x) = \mathcal{N}(y; \hat{y}(x; w), \sigma^2)$

- Instead of producing single prediction \hat{y} for a given x, we assume the model produces conditional distribution p(y|x)
- For infinitely large training set, we can observe multiple examples having the same x but different values of y
- Goal is to fit the distribution p(y|x)
- Let us assume, $p(y|x) = \mathcal{N}(y; \hat{y}(x; w), \sigma^2)$
- Since the examples are assumed to be i.i.d, conditional log-likelihood is given by

 $\sum_{i=1}^{m} \log p(\mathbf{y}^{(i)} | \mathbf{x}^{(i)}; \boldsymbol{\theta})$

- Instead of producing single prediction \hat{y} for a given x, we assume the model produces conditional distribution p(y|x)
- For infinitely large training set, we can observe multiple examples having the same x but different values of y
- Goal is to fit the distribution p(y|x)
- Let us assume, $p(y|x) = \mathcal{N}(y; \hat{y}(x; w), \sigma^2)$
- Since the examples are assumed to be i.i.d, conditional log-likelihood is given by

$$\sum_{i=1}^{m} \log p(\mathbf{y}^{(i)} | \mathbf{x}^{(i)}; \boldsymbol{\theta}) = -m \log \sigma - \frac{m}{2} \log(2\pi) - \sum_{i=1}^{m} \frac{\|\hat{\mathbf{y}}^{(i)} - \mathbf{y}^{(i)}\|^2}{2\sigma^2}$$

Learning conditional distributions with max likelihood

- Usually neural networks are trained using maximum likelihood. Therefore the cost function is negative log-likelihood. Also known as cross entropy between training data and model distribution
- Cost function $J(\theta) = -\mathbb{E}_{m{X}, m{Y} \sim \hat{p}_{data}} \log p_{model}(m{y}|m{x})$
- Uniform across different models
- Gradient of cost function is very much crucial
 - Large and predictable gradient can serve good guide for learning process
 - Function that saturates will have small gradient
 - Activation function usually produces values in a bounded zone (saturates)
 - Negative log-likelihood can overcome some of the problems
 - Output unit having exp function can saturate for high negative value
 - Log-likelihood cost function undoes the exp of some output functions

- Instead of learning the whole distribution $p(y|x; \theta)$, we want to learn one conditional statistics of y given x
 - For a predicting function $f(x; \theta)$, we would like to predict the mean of y

- Instead of learning the whole distribution $p(y|x; \theta)$, we want to learn one conditional statistics of y given x
 - For a predicting function $f(x; \theta)$, we would like to predict the mean of y
- Neural network can represent any function *f* from a very wide range of functions
- Range of function is limited by features like continuity, boundedness, etc.

- Instead of learning the whole distribution $p(y|x; \theta)$, we want to learn one conditional statistics of y given x
 - For a predicting function $f(x; \theta)$, we would like to predict the mean of y
- Neural network can represent any function f from a very wide range of functions
- Range of function is limited by features like continuity, boundedness, etc.
- Cost function becomes functional rather than a function

- Instead of learning the whole distribution $p(y|x; \theta)$, we want to learn one conditional statistics of y given x
 - For a predicting function $f(x; \theta)$, we would like to predict the mean of y
- Neural network can represent any function f from a very wide range of functions
- Range of function is limited by features like continuity, boundedness, etc.
- Cost function becomes functional rather than a function
- Need to solve the optimization problem $f^* = \arg\min_{x, \mathbf{Y} \sim p_{data}} \|\mathbf{y} f(x)\|^2$
- Using calculus of variation, it gives $f^*(x) = \mathbb{E}_{\mathbf{Y} \sim p_{data}(\mathbf{y}|\mathbf{x})}[y]$
 - Mean of **y** for each value of **x**
- Using a different cost function $f^* = \arg\min_{f} \mathbb{E}_{\mathbf{X}, \mathbf{Y} \sim p_{data}} \|\mathbf{y} f(\mathbf{x})\|_1$

- Instead of learning the whole distribution $p(y|x; \theta)$, we want to learn one conditional statistics of y given x
 - For a predicting function $f(x; \theta)$, we would like to predict the mean of y
- Neural network can represent any function f from a very wide range of functions
- Range of function is limited by features like continuity, boundedness, etc.
- Cost function becomes functional rather than a function
- Need to solve the optimization problem $f^* = \arg \min_{x, \mathbf{Y} \sim p_{data}} \|y f(x)\|^2$
- Using calculus of variation, it gives $f^*(x) = \mathbb{E}_{\mathbf{Y} \sim p_{data}(\mathbf{y}|x)}[y]$
 - Mean of **y** for each value of **x**
- Using a different cost function $f^* = \arg\min_{\epsilon} \mathbb{E}_{X, Y \sim p_{data}} \|y f(x)\|_1$
 - Median of y for each value of x

• Let us consider functional
$$J[y] = \int_{x_1}^{x_2} L(x, y(x), y'(x)) dx$$

- Let J[y] has local minima at f. Therefore, we can say $J[f] \leq J[f + \varepsilon \eta]$
 - η is an arbitrary function of **x** such that $\eta(x_1) = \eta(x_2) = 0$ and differentiable

- Let J[y] has local minima at f. Therefore, we can say $J[f] \leq J[f + \varepsilon \eta]$
 - η is an arbitrary function of **x** such that $\eta(x_1) = \eta(x_2) = 0$ and differentiable
- Let us assume $\Phi(\varepsilon) = J[f + \varepsilon \eta]$. Therefore, $\Phi'(0) \equiv \left. \frac{d\Phi}{d\varepsilon} \right|_{\varepsilon=0} = \int_{x_1}^{x_2} \left. \frac{dL}{d\varepsilon} \right|_{\varepsilon=0} dx$

- Let J[y] has local minima at f. Therefore, we can say $J[f] \leq J[f + \varepsilon \eta]$
 - η is an arbitrary function of **x** such that $\eta(x_1) = \eta(x_2) = 0$ and differentiable
- Let us assume $\Phi(\varepsilon) = J[f + \varepsilon \eta]$. Therefore, $\Phi'(0) \equiv \left. \frac{d\Phi}{d\varepsilon} \right|_{\varepsilon=0} = \int_{x_1}^{x_2} \left. \frac{dL}{d\varepsilon} \right|_{\varepsilon=0} dx = 0$

- Let J[y] has local minima at f. Therefore, we can say $J[f] \leq J[f + \varepsilon \eta]$
 - η is an arbitrary function of **x** such that $\eta(x_1) = \eta(x_2) = 0$ and differentiable
- Let us assume $\Phi(\varepsilon) = J[f + \varepsilon \eta]$. Therefore, $\Phi'(0) \equiv \left. \frac{d\Phi}{d\varepsilon} \right|_{\varepsilon=0} = \int_{x_1}^{x_2} \left. \frac{dL}{d\varepsilon} \right|_{\varepsilon=0} dx = 0$

• Now we can say,
$$\frac{dL}{d\varepsilon} = \frac{\partial L}{\partial y} \frac{dy}{d\varepsilon} + \frac{\partial L}{\partial y'} \frac{dy'}{d\varepsilon}$$

• Let us consider functional $J[y] = \int_{x_1}^{x_2} L(x, y(x), y'(x)) dx$

- Let J[y] has local minima at f. Therefore, we can say $J[f] \leq J[f + \varepsilon \eta]$
 - η is an arbitrary function of **x** such that $\eta(x_1) = \eta(x_2) = 0$ and differentiable
- Let us assume $\Phi(\varepsilon) = J[f + \varepsilon \eta]$. Therefore, $\Phi'(0) \equiv \left. \frac{d\Phi}{d\varepsilon} \right|_{\varepsilon=0} = \int_{x_1}^{x_2} \left. \frac{dL}{d\varepsilon} \right|_{\varepsilon=0} dx = 0$

• Now we can say,
$$\frac{dL}{d\varepsilon} = \frac{\partial L}{\partial y} \frac{dy}{d\varepsilon} + \frac{\partial L}{\partial y'} \frac{dy'}{d\varepsilon}$$

• As we have $y = f + \varepsilon \eta$ and $y' = f' + \varepsilon \eta'$, therefore, $\frac{dL}{d\varepsilon}$

• Let us consider functional $J[y] = \int_{x_1}^{x_2} L(x, y(x), y'(x)) dx$

- Let J[y] has local minima at f. Therefore, we can say $J[f] \leq J[f + \varepsilon \eta]$
 - η is an arbitrary function of **x** such that $\eta(x_1) = \eta(x_2) = 0$ and differentiable
- Let us assume $\Phi(\varepsilon) = J[f + \varepsilon \eta]$. Therefore, $\Phi'(0) \equiv \left. \frac{d\Phi}{d\varepsilon} \right|_{\varepsilon=0} = \int_{x_1}^{x_2} \left. \frac{dL}{d\varepsilon} \right|_{\varepsilon=0} dx = 0$

• Now we can say,
$$\frac{dL}{d\varepsilon} = \frac{\partial L}{\partial y}\frac{dy}{d\varepsilon} + \frac{\partial L}{\partial y'}\frac{dy'}{d\varepsilon}$$

• As we have $y = f + \varepsilon \eta$ and $y' = f' + \varepsilon \eta'$, therefore, $\frac{dL}{d\varepsilon} = \frac{\partial L}{\partial v} \eta + \frac{\partial L}{\partial v'} \eta'$

• Now we have

$$\int_{x_1}^{x_2} \frac{dL}{d\varepsilon} \bigg|_{\varepsilon=0} dx = \int_{x_1}^{x_2} \left(\frac{\partial L}{\partial f} \eta + \frac{\partial L}{\partial f'} \eta' \right) dx$$

• Now we have

$$\int_{x_1}^{x_2} \frac{dL}{d\varepsilon} \bigg|_{\varepsilon=0} dx = \int_{x_1}^{x_2} \left(\frac{\partial L}{\partial f} \eta + \frac{\partial L}{\partial f'} \eta' \right) dx = \int_{x_1}^{x_2} \left(\frac{\partial L}{\partial f} \eta - \eta \frac{d}{dx} \frac{\partial L}{\partial f'} \right) dx + \frac{\partial L}{\partial f'} \eta \bigg|_{x_1}^{x_2} dx$$

• Now we have

$$\int_{x_1}^{x_2} \frac{dL}{d\varepsilon} \Big|_{\varepsilon=0} dx = \int_{x_1}^{x_2} \left(\frac{\partial L}{\partial f} \eta + \frac{\partial L}{\partial f'} \eta' \right) dx = \int_{x_1}^{x_2} \left(\frac{\partial L}{\partial f} \eta - \eta \frac{d}{dx} \frac{\partial L}{\partial f'} \right) dx + \frac{\partial L}{\partial f'} \eta \Big|_{x_1}^{x_2} dx$$

• Hence

$$\int_{x_1}^{x_2} \eta \left(\frac{\partial L}{\partial f} - \frac{d}{dx} \frac{\partial L}{\partial f'} \right) \, dx = 0$$

• Now we have

$$\int_{x_1}^{x_2} \frac{dL}{d\varepsilon} \bigg|_{\varepsilon=0} dx = \int_{x_1}^{x_2} \left(\frac{\partial L}{\partial f} \eta + \frac{\partial L}{\partial f'} \eta' \right) dx = \int_{x_1}^{x_2} \left(\frac{\partial L}{\partial f} \eta - \eta \frac{d}{dx} \frac{\partial L}{\partial f'} \right) dx + \frac{\partial L}{\partial f'} \eta \bigg|_{x_1}^{x_2} dx$$

• Hence

$$\int_{x_1}^{x_2} \eta \left(\frac{\partial L}{\partial f} - \frac{d}{dx} \frac{\partial L}{\partial f'} \right) \, dx = 0$$

• Euler-Lagrange equation

$$\frac{\partial L}{\partial f} - \frac{d}{dx}\frac{\partial L}{\partial f'} = 0$$

Example

• Let us consider distance between two points $A[y] = \int_{x_1}^{x_2} \sqrt{1 + [y'(x)]^2} dx$

•
$$y'(x) = \frac{dy}{dx}$$
, $y_1 = f(x_1)$, $y_2 = f(x_2)$

Example

• Let us consider distance between two points $A[y] = \int_{x_1}^{x_2} \sqrt{1 + [y'(x)]^2} dx$

•
$$y'(x) = \frac{dy}{dx}$$
, $y_1 = f(x_1)$, $y_2 = f(x_2)$
• We have, $\frac{\partial L}{\partial f} - \frac{d}{dx}\frac{\partial L}{\partial f'} = 0$ where $L = \sqrt{1 + [f'(x)]^2}$

• Let us consider distance between two points $A[y] = \int_{x_1}^{x_2} \sqrt{1 + [y'(x)]^2} dx$

•
$$y'(x) = \frac{dy}{dx}$$
, $y_1 = f(x_1)$, $y_2 = f(x_2)$
• We have, $\frac{\partial L}{\partial f} - \frac{d}{dx}\frac{\partial L}{\partial f'} = 0$ where $L = \sqrt{1 + [f'(x)]^2}$
• As f does not appear explicitly in L , hence $\frac{d}{dx}\frac{\partial L}{\partial f'} = 0$

• Let us consider distance between two points $A[y] = \int_{x_1}^{x_2} \sqrt{1 + [y'(x)]^2} dx$

•
$$y'(x) = \frac{dy}{dx}$$
, $y_1 = f(x_1)$, $y_2 = f(x_2)$
• We have, $\frac{\partial L}{\partial f} - \frac{d}{dx}\frac{\partial L}{\partial f'} = 0$ where $L = \sqrt{1 + [f'(x)]^2}$
• As f does not appear explicitly in L , hence $\frac{d}{dx}\frac{\partial L}{\partial f'} = 0$
• Now we have, $\frac{d}{dx}\frac{f'(x)}{\sqrt{1 + [f'(x)]^2}} = 0$

• Taking derivative we get $\frac{d^2 f}{dx^2} \cdot \frac{1}{\left[\sqrt{1 + [f'(x)]^2}\right]^3} = 0$

• Taking derivative we get
$$\frac{d^2 f}{dx^2} \cdot \frac{1}{\left[\sqrt{1 + [f'(x)]^2}\right]^3} = 0$$

• Therefore we have, $\frac{d^2 f}{dx^2} = 0$

• Taking derivative we get
$$\frac{d^2 f}{dx^2} \cdot \frac{1}{\left[\sqrt{1 + [f'(x)]^2}\right]^3} = 0$$

• Therefore we have, $\frac{d^2f}{dx^2} = 0$

• Hence we have
$$f(x) = mx + b$$
 with $m = \frac{y_2 - y_1}{x_2 - x_1}$ and $b = \frac{x_2y_1 - x_1y_2}{x_2 - x_1}$

Output units

- Choice of cost function is directly related with the choice of output function
- In most cases cost function is determined by cross entropy between data and model distribution
- Any kind of output unit can be used as hidden unit

Linear units

- Suited for Gaussian output distribution
- Given features **h**, linear output unit produces $\hat{y} = W^T h + b$
- This can be treated as conditional probability $p(y|x) = \mathcal{N}(y; \hat{y}, I)$
- Maximizing log-likelihood is equivalent to minimizing mean square error

Sigmoid unit

- Mostly suited for binary classification problem that is Bernoulli output distribution
- The neural networks need to predict p(y = 1|x)
 - If linear unit has been chosen, $p(y = 1 | x) = \max \left\{ 0, \min\{1, W^T h + b\} \right\}$
 - Gradient?
- Model should have strong gradient whenever the answer is wrong
- Let us assume unnormalized log probability is linear with $z = W^T h + b$
- Therefore, $\log \tilde{P}(y) = yz \Rightarrow \tilde{P}(y) = \exp(yz) \Rightarrow P(y) = \frac{\exp(yz)}{\sum_{y' \in \{0,1\}} \exp(y'z)}$
 - It can be written as $P(y) = \sigma((2y-1)z))$
- The loss function for maximum likelihood is
 - $J(\boldsymbol{\theta}) = -\log P(y|\boldsymbol{x}) = -\log \sigma((2y-1)z) = \zeta((1-2y)z)$

Softmax unit

- Similar to sigmoid. Mostly suited for multinoulli distribution
- We need to predict a vector \hat{y} such that $\hat{y}_i = P(Y = i | x)$
- A linear layer predicts unnormalized probabilities $z = W^T h + b$ that is $z_i = \log \tilde{P}(y = i|x)$
- Formally, softmax $(z)_i = \frac{\exp z_i}{\sum_j \exp(z_j)}$
- Log in log-likelihood can undo exp log softmax $(z)_i = z_i \log \sum \exp(z_j)$
 - Does it saturate?
 - What about incorrect prediction?
- Invariant to addition of some scalar to all input variables ie.

 $\operatorname{softmax}(z) = \operatorname{softmax}(z + c)$

Hidden units

- Active area of research and does not have good guiding theoretical principle
- Usually rectified linear unit (ReLU) is chosen in most of the cases
- Design process consists of trial and error, then the suitable one is chosen
- Some of the activation functions are not differentiable (eg. ReLU)
 - Still gradient descent performs well
 - Neural network does not converge to local minima but reduces the value of cost function to a very small value

Generalization of ReLU

- ReLU is defined as $g(z) = \max\{0, z\}$
- Using non-zero slope, $h_i = g(z, \alpha)_i = \max(0, z_i) + \alpha_i \min(0, z_i)$
 - Absolute value rectification will make $lpha_i = -1$ and g(z) = |z|
- Leaky ReLU assumes very small values for α_i
- Parametric ReLU tries to learn α_i parameters
- Maxout unit $g(z)_i = \max_{j \in \mathbb{G}^{(i)}} z_j$
 - Suitable for learning piecewise linear function

Logistic sigmoid & hyperbolic tangent

- Logistic sigmoid $g(z) = \sigma(z)$
- Hyperbolic tangent g(z) = tanh(z)
 - $tanh(z) = 2\sigma(2z) 1$
- Widespread saturation of sigmoidal unit is an issue for gradient based learning
 - Usually discouraged to use as hidden units
- Usually, hyperbolic tangent function performs better where sigmoidal function must be used
 - Behaves linearly at 0
 - Sigmoidal activation function are more common in settings other than feedforward network

Other hidden units

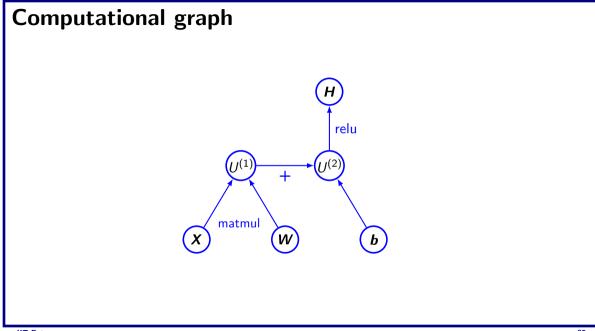
- Differentiable functions are usually preferred
- Activation function $h = \cos(Wx + b)$ performs well for MNIST data set
- Sometimes no activation function helps in reducing the number of parameters
- Radial Basis Function $\phi(\mathbf{x}, \mathbf{c}) = \phi(||\mathbf{x} \mathbf{c}||)$
 - Gaussian $\exp(-(\varepsilon r)^2)$
- Softplus $g(x) = \zeta(x) = \log(1 + exp(x))$
- Hard tanh $g(x) = \max(-1, \min(1, x))$
- Hidden unit design is an active area of research

Architecture design

- Structure of neural network (chain based architecture)
 - Number of layers
 - Number of units in each layer
 - Connectivity of those units
- Single hidden layer is sufficient to fit the training data
- Often deeper networks are preferred
 - Fewer number of units
 - Fewer number of parameters
 - Difficult to optimize

Back propagation

- In a feedforward network, an input x is read and produces an output \hat{y}
 - This is forward propagation
- During training forward propagation continues until it produces cost $J(\theta)$
- Back-propagation algorithm allows the information to flow backward in the network to compute the gradient
- Computation of analytical expression for gradient is easy
- We need to find out gradient of the cost function with respect to the parameters ie. $\nabla_{\theta} J(\theta)$



Chain rule of calculus

- Back-propagation algorithm heavily depends on it
- Let x be a real number and y = g(x) and z = f(g(x)) = f(y)
- Chain rule says $\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx}$
- This can be generalized: Let $x \in \mathbb{R}^m$, $y \in \mathbb{R}^n$, $g : \mathbb{R}^m \to \mathbb{R}^n$ and $f : \mathbb{R} \to \mathbb{R}$ and y = g(x) and z = f(y)

$$\frac{\partial z}{\partial x_i} = \sum_j \frac{\partial z}{\partial y_j} \frac{\partial y_j}{\partial x_i}$$

• In vector notation it will be where $\frac{\partial y}{\partial x}$ is the $n \times m$ Jacobian matrix of g

$$\nabla_{\mathbf{x}} z = \left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right)^T \nabla_{\mathbf{y}} z$$

Application of chain rule

- Let us consider $u^{(n)}$ be the loss quantity. Need to find out the gradient for this.
- Let $u^{(1)}$ to $u^{(n_i)}$ are the inputs
- Therefore, we wish to compute $\frac{\partial u^{(n)}}{\partial u^{(i)}}$ where $i = 1, 2, ..., n_i$
- Let us assume the nodes are ordered so that we can compute one after another
- Each $u^{(i)}$ is associated with an operation $f^{(i)}$ ie. $u^{(i)} = f(\mathbb{A}^{(i)})$

Algorithm for forward pass

for $i = 1, ..., n_i$ do $u^{(i)} \leftarrow x_i$ end for for $i = n_i + 1, ..., n$ do $\mathbb{A}^{(i)} \leftarrow \{u^{(j)} | j \in Pa(u^{(i)})\}$ $u^{(i)} \leftarrow f^{(i)}(\mathbb{A}^{(i)})$ end for return $u^{(n)}$

Algorithm for backward pass

$$\begin{array}{l} \texttt{grad_table}[u^{(i)}] \leftarrow 1 \\ \texttt{for } j = n - 1 \text{ down to } 1 \text{ do} \\ \texttt{grad_table}[u^{(j)}] \leftarrow \sum_{i:j \in Pa(u^{(i)})} \texttt{grad_table}[u^{(i)}] \frac{\partial u^{(i)}}{\partial u^{(j)}} \end{array}$$

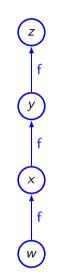
end for

return grad_table

Computational graph & subexpression

• We have
$$x = f(w)$$
, $y = f(x)$, $z = f(y)$
 $\frac{\partial z}{\partial w}$

- $= \frac{\partial z}{\partial y} \frac{\partial y}{\partial x} \frac{\partial x}{\partial w}$
- = f'(y)f'(x)f'(w)
- = f'(f(f(w)))f'(f(w))f'(w)



Forward propagation in MLP

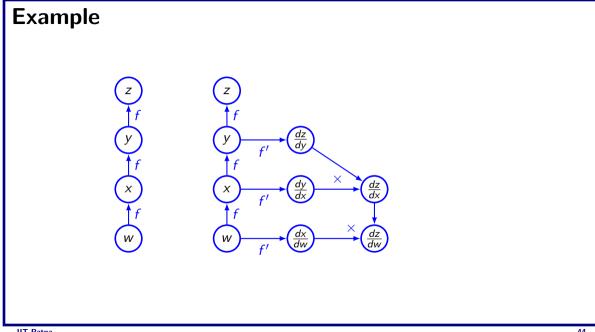
- Input
 - $h^{(0)} = x$
- Computation for each layer $k = 1, \ldots, l$
 - $a^{(k)} = b^{(k)} + W^{(k)} h^{(k-1)}$
 - $h^{(k)} = f(a^{(k)})$
- Computation of output and loss function
 - $\hat{y} = h^{(l)}$
 - $J = L(\hat{\boldsymbol{y}}, \boldsymbol{y}) + \lambda \Omega(\theta)$

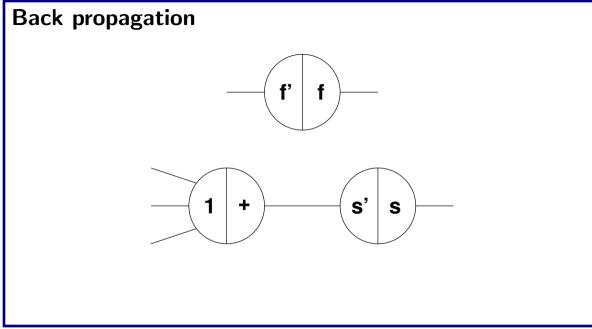
Backward computation in MLP

- Compute gradient at the output
 - $\boldsymbol{g} \leftarrow \nabla_{\hat{\boldsymbol{y}}} J = \nabla_{\hat{\boldsymbol{y}}} L(\hat{\boldsymbol{y}}, \boldsymbol{y})$
- Convert the gradient at output layer into gradient of pre-activation
 - $\boldsymbol{g} \leftarrow \nabla_{\boldsymbol{a}^{(k)}} J = \boldsymbol{g} \odot f'(\boldsymbol{a}^{(k)})$
- Compute gradient on weights and biases
 - $\nabla_{\boldsymbol{b}^{(k)}} J = \boldsymbol{g} + \lambda \nabla_{\boldsymbol{b}^{(k)}} \Omega(\theta)$
 - $\nabla_{\boldsymbol{W}^{(k)}} J = \boldsymbol{g} \boldsymbol{h}^{(k-1)T} + \lambda \nabla_{\boldsymbol{W}^{(k)}} \Omega(\theta)$
- Propagate the gradients wrt the next lower level activation
 - $\boldsymbol{g} \leftarrow \nabla_{\boldsymbol{h}^{(k-1)}} \boldsymbol{J} = \boldsymbol{W}^{(k)T} \boldsymbol{g}$

Computation of derivatives

- Takes a computational graph and a set of numerical values for the inputs, then return a set of numerical values
 - Symbol-to-number differentiation
 - Torch, Caffe
- Takes computational graph and add additional nodes to the graph that provide symbolic description of derivative
 - Symbol-to-symbol derivative
 - Theano, TensorFlow





Back propagation

