Introduction to Deep Learning

Arijit Mondal

Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

Human brain vs von Neumann computer

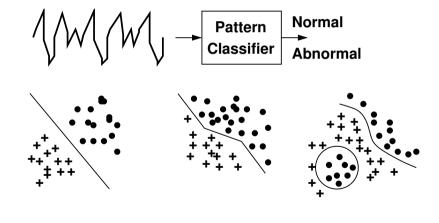
- Massive parallelism
- Distributed representation and computation
- Learning ability
- Generalization ability
- Adaptability
- Inherent contextual information processing
- Fault tolerance
- Low energy consumption

Computer vs Brain

	von Neumann	Neural system
Processor	Complex, high speed, one or a few	Simple, low speed, a large number
Memory	Separate from processor, Localized, Noncontent addressable	Integrated into processor, Distributed, Content addressable
Computing	Centralized, sequential, stored program	Distributed, parallel, self- learning
Reliability	Very vulnerable	Robust
Expertise	Numeric and symbolic manipulations	Perceptual problems
Operating environment	Well defined, well constrained	Poorly defined, unconstrained

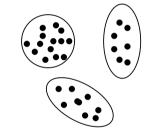
Artificial Neuron: Applications

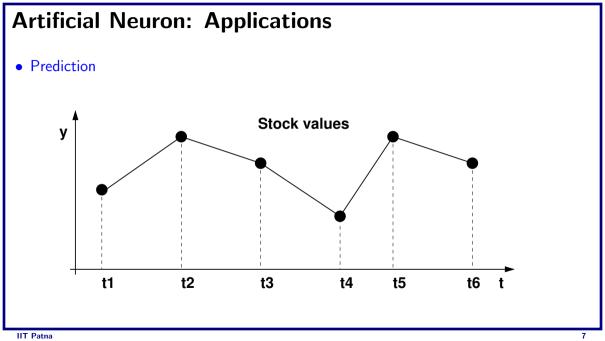
• Pattern classification



Artificial Neuron: Applications

• Clustering/categorization

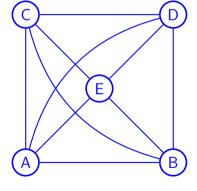




Artificial Neuron: Applications • Retrieval

Artificial Neuron: Applications

Optimization

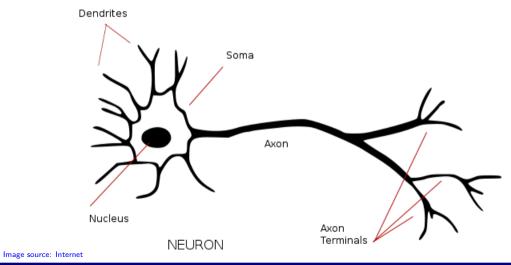


Artificial Neuron Control Controller **Engine Feedback** IIT Patna

History

- Started in 1940s by McCulloch and Pitt
- Rosenblatt perceptron convergence theorem (1960)
- In 1980s ANN started gaining popularity
- Again became popular after 2006

Biological Neuron



Cerebral cortex

- It is a flat sheet of neurons about 2-3 millimeter thick with surface area is 2200 cm²
 - Twice the area of computer keyboard
- It contains around 10¹¹ neurons
 - Number of stars in the Milky-way
- \bullet Each neuron is connected to 10^3-10^4 other neurons
- Total connections is around 10¹⁴-10¹⁵
- Connectionist model

Human brain

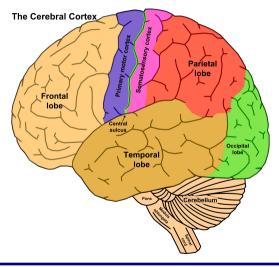


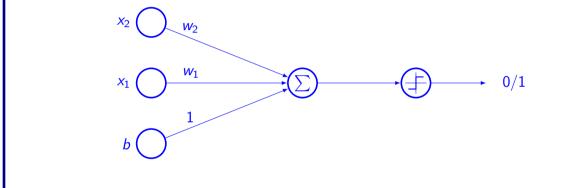
Image source: Internet

IIT Patna

14

Neuron

• One of the primitive models

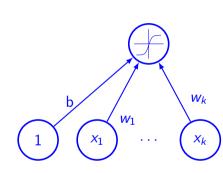


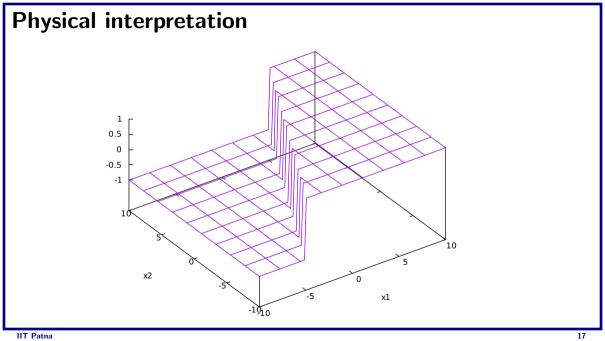
Artificial Neuron

- Neuron pre-activation function
 - $a(\mathbf{x}) = \sum_{i} w_i x_i + b = b + \mathbf{w}^T \mathbf{x}$
- Neuron output activation function

•
$$h(\mathbf{x}) = g(a(\mathbf{x})) = g(\sum_{i} w_i x_i + b)$$

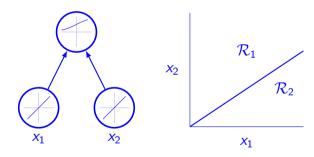
- Notations
 - w Weight vector
 - b Neuron bias
 - b Neuron bias





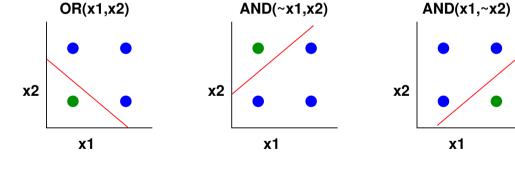
Classification using single neuron

- Single neuron can do binary classification
 - Also known as logistic regression classifier



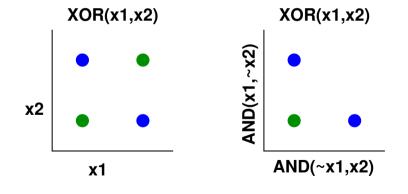
Artificial neuron

• Can solve linearly separable problems

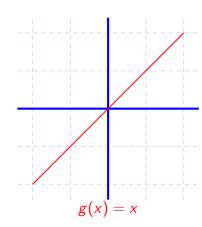


Artificial neuron: XOR problem

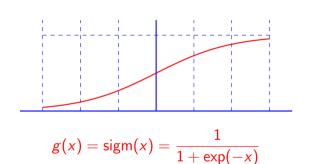
• There are issues for linear separation



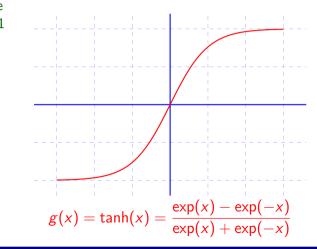
- Linear activation function
 - Not very interesting
 - No change in values
 - Huge range



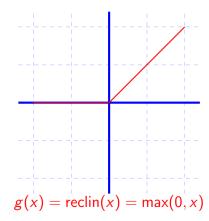
- Sigmoid function
 - Values lie between 0 and 1
 - Strictly increasing function
 - Bounded



- Hyperbolic Tangent (Tanh) function
 - Can be positive or negative
 - Values lie between -1 and 1
 - Strictly increasing function
 - Bounded



- Rectified linear activation function
 - Bounded below by 0
 - Strictly increasing function
 - Not upper bounded



Single hidden layer neural network

• Hidden layer pre-activation

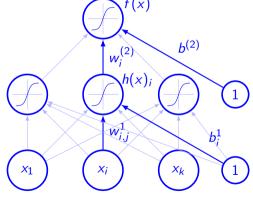
$$a(x)=b^1+w^1x$$

Hidden layer activation

$$h(x) = g(a(x))$$

 $f(x) = o(b^{(2)} + w^{(2)T}h^{1}(x)$

Output layer activation



Multiclass classification

- Need multiple outputs that is one neuron for each class
- Need to determine probability of p(y = c|x)
- Softmax activation function is used at the output

$$o(a) = \operatorname{softmax}(a) = \begin{bmatrix} \exp(a_1) & \exp(a_2) \\ \sum_c \exp(a_c) & \sum_c \exp(a_c) \end{bmatrix}^T$$

- Strictly positive
- Sum to 1
- Class having the highest probability will be the predicted output

Multi layer neural network

• Pre-activation in layer k > 0 ($h^{(0)}(x) = x$)

$$m{a}^{(k)}(x) = m{b}^{(k)} + m{W}^{(k)} m{h}^{(k-1)} x$$

 $h^{(L+1)}(x) = o(a^{(L+1)}(x)) = f(x)$

Hidden layer activation

Output layer activation

er activation
$$m{h}^2$$
 $m{h}^{(k)}(x) = m{g}(m{a}^{(k)}(x))$

 $h^2(x)$

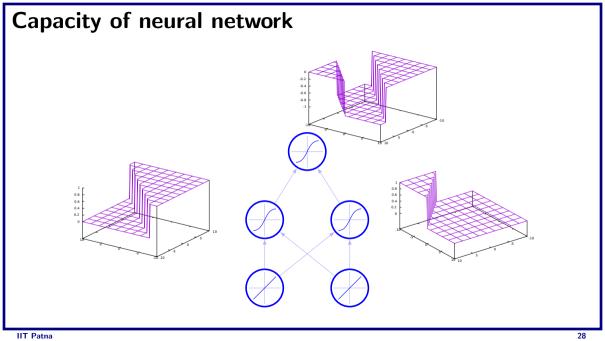
 W^2

 W^1

 $h^1(x)$

 b^2

 b^1



Capacity of neural network

- Universal approximation theorem (Hornik,1991)
 - A single hidden layer neural network with a linear output unit can approximate any continuous function arbitrarily well, given enough hidden units.
- The result is applicable for other hidden layer activation functions such as sigmoid, tanh, etc.
- This is a promising result, but it does not say that there is a learning algorithm to find the necessary parameter values!

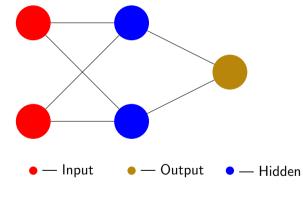
Types of Neural Network

- Feed forward neural network
- Radial basis function network
- Recurrent neural network
- Boltzmann machine
- Long short term memory network
- and many more

● — Input● — Output IIT Patna 31

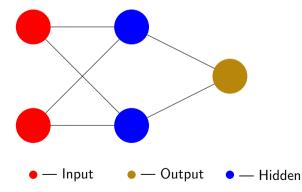
Perceptron

Feed Forward

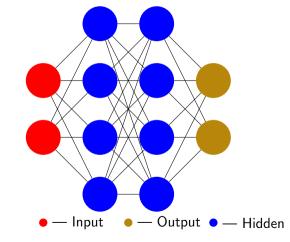


Radial Basis Function

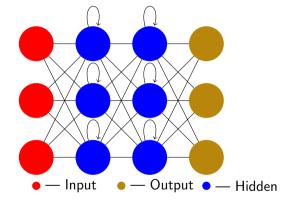
- Typically it will have 3 layers
- Distance from a center vector is computed



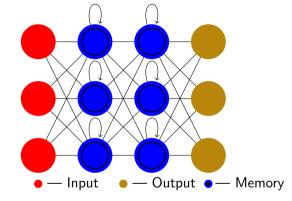
Deep Feed Forward



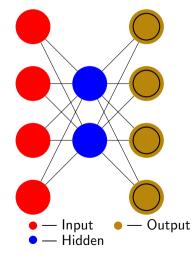
Recurrent Neural Network



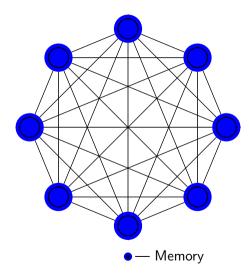
Long Short Term Memory



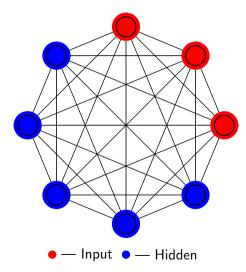
Auto Encoder



Markov chain



Boltzmann Machine



Learning the parameters

- The network must learn the connection weights from available training examples
- Learning can be
 - Supervised
 - Unsupervised
 - Hybrid
- Four basic types of learning rule
 - Error correction rule
 - Boltzmann learning
 - Doitzmann learnin
 - Hebbian
 - Competitive learning

Error correction rule

- Output is generated based on the weight values but this may vary from desired value
- The error information is used to update the weight value
- Perceptron learning algorithm
 - Initialize the weights and threshold to small random numbers
 - Present a pattern vector and evaluate the output of neuron
 - Update the weight according to $w_i(t+1) = w_i(t) + \eta(d-y)x_i$
- Back propagation algorithm

Boltzmann learning

- Usually symmetric recurrent network consisting of binary units
- A subset of neurons interact with environment
- Generally it has two modes
 - Clamped Visible neurons are clamped to specific states
 - Free-running Visible and hidden unit operate freely
- Stochastic learning rule derived from information theoretic and thermodynamic principles
- Learning rule is given by $\Delta w_{ii} = \eta(\bar{\rho}_{ii} \rho_{ii})$

Hebbian rule

- One of the oldest learning rules
- If neuron on both sides of a synapse are activated synchronously and repeatedly, the synapse's strength is selectively increased
- Mathematically, it can be described as $w_{ij}(t+1) = w_{ij}(t) + \eta y_j(t) x_i(t)$

Competitive learning rule

- Output units compete among themselves for activation
- Only one output is active at time
- Also known as winner-take-all
- Mathematically, it can be represented as $w_{i*}x \geq w_ix$
- Competitive learning rule can be stated as

$$\Delta w_{ij} = \begin{cases} \eta(x_j^u - w_{i^*j}) & i = i^* \\ 0 & i \neq i^* \end{cases}$$

Summary

- Error correction rule Single or multilayer perceptron
 - Pattern classification, function approximation, prediction, control
- Boltzmann Recurrent
 - Pattern classification
- Hebbian Multilayer feed forward
 - Pattern classification, data analysis
- Competitive
 - Within class categorization, data compression